跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭明勳
研究生(外文):Myeong-Hoon Jeong
論文名稱:以鈀銅奈米團簇配合電化學方法選擇性還原生成氨氮與氮氣之研究
論文名稱(外文):Electrochemical nitrate reduction using palladium-copper nanoclusters toward N2 and NH3 selectivity
指導教授:林逸彬
指導教授(外文):Yi-Pin Lin
口試委員:席行正潘述元
口試委員(外文):Hsing-Cheng HsiShu-Yuan Pan
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境工程學研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:57
外文關鍵詞:Electrochemical nitrate reductionCopperPalladiumElectrochlorination
DOI:10.6342/NTU202303029
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
This study investigated Cu monometallic and PdCu bimetallic electrodes prepared on Ni foam with varying plating times for the reduction of nitrate. SEM images revealed the morphology evolution, with Cu/Ni electrodes exhibiting agglomerated granules transforming into rhombus structures as plating time increased. Increasing plating time led to a higher Cu proportion, an increased Cu(200)/Cu(111) ratio, and larger crystallite sizes for Cu(111) and Cu(200). PdCu/Ni showed a grape-cluster-like surface with accumulated palladium particles on the surface of copper. Electrochemical impedance spectroscopy indicated the improved electron transfer for the Cu/Ni electrodes and the additional plating of Pd showed an even better electron transfer. The double-layer capacitance (Cdl) revealed that the surface area activity increased with extended plating time for Cu from 2.6 to 5.5mF/cm^2. Nitrate reduction experiments on Cu monometallic electrode demonstrated high removal efficiency and achieving 100% nitrate removal at 210 minutes, with NH_4^+ as the main product. Bimetallic electrode; PdCu10min/Ni exhibited enhanced activity than Cu monometallic electrode. Under constant potential, NO_3^- was fully converted to NH_4^+ without N_2 generation in acidic condition. PdCu bimetallic electrode showed consistent performance over multiple cycles but no N_2 was generated. Electrochlorination with the addition of Cl^- enhanced nitrogen gas evolution and resulted in a low ammonia residual.
口試委員會審定書 I
Acknowledgments II
ABSTRACT IV
Table of Content VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1. Background 1
1.2. Research objective 2
Chapter 2 Literature review 3
2.1. The presence of nitrate and nitrite in the environments 3
2.2. Traditional nitrate, nitrite treatments 4
2.3. Electrochemical Nitrate Reduction 4
2.4. Mechanism of Nitrate reduction on Metallic catalyst 7
Chapter 3. Material and methods 10
3.1 Research framework 10
3.2 Materials and chemicals 11
3.3 Electrode preparation 12
3.4 Electrochemical nitrate reduction experiments 15
3.5 Analytical methods 15
Chapter 4 Results and Discussion 19
4.1 Characterization of electrodes 19
4.2 Nitrate reduction performance of different electrodes 31
4.2.1 Nitrate reduction performance under a constant current density 31
4.2.2 Nitrate reduction performance under constant potential 36
4.3 Reusability of Cu electrode 41
4.4 Enhancement of Nitrogen gas evolution using electrochlorination 43
Chapter 5 Conclusions and Recommendations 46
5.1 Conclusions 46
5.2 Recommendations 47
Reference 49
Speight, J. G. (2017). Industrial Inorganic Chemistry. In Environmental Inorganic Chemistry for Engineers (pp. 111-169). https://doi.org/10.1016/b978-0-12-849891-0.00003-5
Fewtrell, L. (2004). Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion. Environmental Health Perspectives, 112(14), 1371-1374. https://doi.org/10.1289/ehp.7216
Hornung, M. (1999). The Role of Nitrates in the Eutrophication and Acidification of Surface Waters. Managing Risks of Nitrates to Humans and the Environment, 155-174. https://doi.org/10.1533/9781845693206.155
Atangana Njock, P. G., Zhou, A., Yin, Z., & Shen, S.-L. (2023). Integrated risk assessment approach for eutrophication in coastal waters: Case of Baltic Sea. Journal of Cleaner Production, 387. https://doi.org/10.1016/j.jclepro.2022.135673
International Comparison of Water Quality (2020). Retrieved from https://english.water.gov.taipei/cp.aspx?n=ED0C1E259A61491D&s=C17809EB5BA6F5E7
Taiwan Environmental Protection Administration (2022). Retrieved from https://oaout.epa.gov.tw/law/EngLawContent.aspx?lan=E&id=295&KW=nitrate
Min, B., Gao, Q., Yan, Z., Han, X., Hosmer, K., Campbell, A., & Zhu, H. (2021). Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction. Industrial & Engineering Chemistry Research, 60(41), 14635-14650. https://doi.org/10.1021/acs.iecr.1c03072
SSINA (SPECIALTY STEEL INDUSTRY OF NORTH AMERICA) (2020). Retrieved from https://www.ssina.com/education/fabrication/passivation/
Hocking, M. B. (2005). Ammonia, Nitric Acid and Their Derivatives. Handbook of Chemical Technology and Pollution Control (Third Edition), 321-364. https://doi.org/10.1016/B978-012088796-5/50014-4
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00014
Moloantoa, K. M., Khetsha, Z. P., van Heerden, E., Castillo, J. C., & Cason, E. D. (2022). Nitrate Water Contamination from Industrial Activities and Complete Denitrification as a Remediation Option. Water, 14(5), 799. https://doi.org/10.3390/w14050799
Kurt, E., Koseoglu-Imer, D. Y., Dizge, N., Chellam, S., & Koyuncu, I. (2012). Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dye wash wastewater. Desalination, 302, 24-32. https://doi.org/10.1016/j.desal.2012.05.019
Shelly, Y., Kuk, M., Menashe, O., Zeira, G., Azerrad, S., & Kurzbaum, E. (2021). Nitrate removal from a nitrate-rich reverse osmosis concentrate: Superior efficiency using the bioaugmentation of an Acinetobacter biofilm. Journal of Water Process Engineering, 44, 102425. https://doi.org/10.1016/j.jwpe.2021.102425
Zhang, J., Fan, C., Zhao, M., Wang, Z., Jiang, S., Jin, Z., Bei, K., Zheng, X., Wu, S., Lin, P., & Miu, H. (2023). A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal. Chemosphere, 313, 137474. https://doi.org/10.1016/j.chemosphere.2022.137474
Giddey, S., Badwal, S. P. S., Munnings, C., & Dolan, M. (2017). Ammonia as a Renewable Energy Transportation Media. ACS Sustainable Chemistry & Engineering, 5(11), 10231-10239. https://doi.org/10.1021/acssuschemeng.7b02219
Jin, H., Guo, C., Liu, X., Liu, J., Vasileff, A., Jiao, Y., Zheng, Y., & Qiao, S. Z. (2018). Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chem Rev, 118(13), 6337-6408. https://doi.org/10.1021/acs.chemrev.7b00689
Shih, Y.-J., Wu, Z.-L., Lin, C.-Y., Huang, Y.-H., & Huang, C.-P. (2020). Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N2 selectivity. Applied Catalysis B: Environmental, 273. https://doi.org/10.1016/j.apcatb.2020.119053
Shih, Y.-J., Wu, Z.-L., Huang, Y.-H., & Huang, C.-P. (2020). Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni). Chemical Engineering Journal, 383. https://doi.org/10.1016/j.cej.2019.123157
Zhang, X., Wang, Y., Liu, C., Yu, Y., Lu, S., & Zhang, B. (2021). Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering Journal, 403, 126269. https://doi.org/10.1016/j.cej.2020.126269
Su, J. F., Kuan, W.-F., Chen, C.-L., & Huang, C.-P. (2020). Enhancing electrochemical nitrate reduction toward dinitrogen selectivity on Sn-Pd bimetallic electrodes by surface structure design. Applied Catalysis A: General, 606. https://doi.org/10.1016/j.apcata.2020.117809
Cao, Y., Yuan, S., Meng, L., Wang, Y., Hai, Y., Su, S., Ding, W., Liu, Z., Li, X., & Luo, M. (2023). Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia: Mechanism Insight and Catalyst Design. ACS Sustainable Chemistry & Engineering, 11(21), 7965-7985. https://doi.org/10.1021/acssuschemeng.3c01084
Ai, F., & Wang, J. (2022). Theoretical Evaluation of Electrochemical Nitrate Reduction Reaction on Graphdiyne-Supported Transition Metal Single-Atom Catalysts. ACS Omega, 7(35), 31309-31317. https://doi.org/10.1021/acsomega.2c03588
Teng, M., Ye, J., Wan, C., He, G., & Chen, H. (2022). Research Progress on Cu-Based Catalysts for Electrochemical Nitrate Reduction Reaction to Ammonia. Industrial & Engineering Chemistry Research, 61(40), 14731-14746. https://doi.org/10.1021/acs.iecr.2c02495
Duca, M., Koper, M., (2012). Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci., 2012,5, 9726-9742
https://doi.org/10.1039/C2EE23062C
Lu, X., Song, H., Cai, J., & Lu, S. (2021). Recent development of electrochemical nitrate reduction to ammonia: A mini review. Electrochemistry Communications, 129. https://doi.org/10.1016/j.elecom.2021.107094
Wu, Z.-L., & Shih, Y.-J. (2022). Bimetallic palladium-tin nanoclusters, PdSn(2 0 0) and PdSn(1 0 1), templated with cationic surfactant for electrochemical denitrification toward N2 and NH4+ selectivity. Chemical Engineering Journal, 433. https://doi.org/10.1016/j.cej.2021.133852
Shin, H., Jung, S., Bae, S., Lee, W., & Kim, H. (2014). Nitrite reduction mechanism on a Pd surface. Environ Sci Technol, 48(21), 12768-12774. https://doi.org/10.1021/es503772x
Ebbesen, S. D., Mojet, B. L., & Lefferts, L. (2010). Effect of PH on the Nitrite Hydrogenation Mechanism over Pd/Al2O3 and Pt/Al2O3: Details Obtained with ATR-IR Spectroscopy. J. Phys. Chem. C 2011, 115, 1186–1194. https://doi.org/10.1021/jp106521t
Cerrón-Calle, G. A., Fajardo, A. S., Sánchez-Sánchez, C. M., & Garcia-Segura, S. (2022). Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Applied Catalysis B: Environmental, 302. https://doi.org/10.1016/j.apcatb.2021.120844
Li, L., Yun, Y., Zhang, Y., Huang, Y., & Xu, Z. (2018). Electrolytic reduction of nitrate on copper and its binary composite electrodes. Journal of Alloys and Compounds, 766, 157-160. https://doi.org/10.1016/j.jallcom.2018.07.004
Shen, Z., Liu, D., Peng, G., Ma, Y., Li, J., Shi, J., Peng, J., & Ding, L. (2020). Electrocatalytic reduction of nitrate in water using Cu/Pd modified Ni foam cathode: High nitrate removal efficiency and N2-selectivity. Separation and Purification Technology, 241. https://doi.org/10.1016/j.seppur.2020.116743
Zhang, Y., Zhao, Y., Chen, Z., Wang, L., Wu, P., & Wang, F. (2018). Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N2 selectivity. Electrochimica Acta, 291, 151-160. https://doi.org/10.1016/j.electacta.2018.08.154
Favarini Beltrame, T., Gomes, M. C., Marder, L., Marchesini, F. A., Ulla, M. A., & Moura Bernardes, A. (2020). Use of copper plate electrode and Pd catalyst to the nitrate reduction in an electrochemical dual-chamber cell. Journal of Water Process Engineering, 35, 101189. https://doi.org/10.1016/j.jwpe.2020.101189
Li, J., Gao, J., Feng, T., Zhang, H., Liu, D., Zhang, C., Huang, S., Wang, C., Du, F., Li, C., & Guo, C. (2021). Effect of supporting matrixes on performance of copper catalysts in electrochemical nitrate reduction to ammonia. Journal of Power Sources, 511. https://doi.org/10.1016/j.jpowsour.2021.230463
Wang, S., Lu, A., & Zhong, C. J. (2021). Hydrogen production from water electrolysis: role of catalysts. Nano Converg, 8(1), 4. https://doi.org/10.1186/s40580-021-00254-x
Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K., & Westerhoff, P. (2018). Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental, 236, 546-568. https://doi.org/10.1016/j.apcatb.2018.05.041
Tan, X., Wang, X., Zhou, T., Chen, T., Liu, Y., Ma, C., Guo, H., & Li, B. (2022). Preparation of three dimensional bimetallic Cu-Ni/NiF electrodes for efficient electrochemical removal of nitrate nitrogen. Chemosphere, 295, 133929. https://doi.org/10.1016/j.chemosphere.2022.133929
Liu, G., Yu, J. C., Lu, G. Q., & Cheng, H. M. (2011). Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun (Camb), 47(24), 6763-6783. https://doi.org/10.1039/c1cc10665a
Lee, J. M., Jung, K. K., & Ko, J. S. (2016). Growth Mechanism and Application of Nanostructures Fabricated by a Copper Sulfate Solution Containing Boric Acid. Journal of The Electrochemical Society, 163(8), D407-D413. https://doi.org/10.1149/2.0691608jes
Islam, M. N., & Channon, R. B. (2020). Electrochemical sensors. In Bioengineering Innovative Solutions for Cancer (pp. 47-71). https://doi.org/10.1016/b978-0-12-813886-1.00004-8
Sun, D., Monaghan, P., Brantley, W. A., & Johnston, W. M. (2002). Electrochemical impedance spectroscopy study of high-palladium dental alloys. Part I: behavior at open-circuit potential. J Mater Sci Mater Med, 13(5), 435-442. https://doi.org/10.1023/a:1014719513624
Du, C., Shang, M., Mao, J., & Song, W. (2017). Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting. Journal of Materials Chemistry A, 5(30), 15940-15949. https://doi.org/10.1039/c7ta03669h
Wei, C., Sun, S., Mandler, D., Wang, X., Qiao, S. Z., & Xu, Z. J. (2019). Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev, 48(9), 2518-2534. https://doi.org/10.1039/c8cs00848e
Connor, P., Schuch, J., Kaiser, B., & Jaegermann, W. (2020). The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. Zeitschrift für Physikalische Chemie, 234(5), 979-994. https://doi.org/10.1515/zpch-2019-1514
Masa, J., Andronescu, C., & Schuhmann, W. (2020). Electrocatalysis as the Nexus for Sustainable Renewable Energy: The Gordian Knot of Activity, Stability, and Selectivity. Angew Chem Int Ed Engl, 59(36), 15298-15312. https://doi.org/10.1002/anie.202007672
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2017). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361
Wada, K., Hirata, T., Hosokawa, S., Iwamoto, S., & Inoue, M. (2012). Effect of supports on Pd–Cu bimetallic catalysts for nitrate and nitrite reduction in water. Catalysis Today, 185(1), 81-87. https://doi.org/10.1016/j.cattod.2011.07.021
Iwamoto, M., Akiyama, M., Aihara, K., & Deguchi, T. (2017). Ammonia Synthesis on Wool-Like Au, Pt, Pd, Ag, or Cu Electrode Catalysts in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. ACS Catalysis, 7(10), 6924-6929. https://doi.org/10.1021/acscatal.7b01624
Dima, G. E., de Vooys, A. C. A., & Koper, M. T. M. (2003). Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. Journal of Electroanalytical Chemistry, 554-555, 15-23. https://doi.org/10.1016/s0022-0728(02)01443-2
Duncan, H., & Lasia, A. (2008). Separation of hydrogen adsorption and absorption on Pd thin films. Electrochimica Acta, 53(23), 6845-6850. https://doi.org/10.1016/j.electacta.2007.12.012
Sun, W., Li, Q., Gao, S., & Shang, J. K. (2012). Monometallic Pd/Fe3O4 catalyst for denitrification of water. Applied Catalysis B: Environmental, 125, 1-9. https://doi.org/10.1016/j.apcatb.2012.05.014
Gombas, D., Luo, Y., Brennan, J., Shergill, G., Petran, R., Walsh, R., Hau, H., Khurana, K., Zomorodi, B., Rosen, J., Varley, R., & Deng, K. (2017). Guidelines To Validate Control of Cross-Contamination during Washing of Fresh-Cut Leafy Vegetables. J Food Prot, 80(2), 312-330. https://doi.org/10.4315/0362-028X.JFP-16-258
Mostafa, E., Reinsberg, P., Garcia-Segura, S., & Baltruschat, H. (2018). Chlorine species evolution during electrochlorination on boron-doped diamond anodes: In-situ electrogeneration of Cl2, Cl2O and ClO2. Electrochimica Acta, 281, 831-840. https://doi.org/10.1016/j.electacta.2018.05.099
Ordeig, O., Mas, R., Gonzalo, J., Del Campo, F. J., Muñoz, F. J., & de Haro, C. (2005). Continuous Detection of Hypochlorous Acid/Hypochlorite for Water Quality Monitoring and Control. Electroanalysis, 17(18), 1641-1648. https://doi.org/10.1002/elan.200403194
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊