跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/23 14:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭紫瑄
研究生(外文):Tzu-Hsuan Peng
論文名稱:2019年臺灣代表性樣本中乙型腎上腺素受體激動劑與飲食習慣之關係探討
論文名稱(外文):The Association Between Dietary Habits and β-Adrenergic Agonists in Urine from Representative Population of Taiwan in 2019
指導教授:陳保中陳保中引用關係
指導教授(外文):Pau-Chung Chen
口試委員:鄭維智林怡君林靜君
口試委員(外文):Wei-Chih ChengYi-Jun LinChing-Chun Lin
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:環境與職業健康科學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:45
中文關鍵詞:乙型腎上腺素受體激動劑人體生物監測飲食習慣肉類四足家畜內臟
外文關鍵詞:β-adrenergic agonistHuman Biomonitoring (HBM)dietary habitsmeatfour-footed livestockoffal
DOI:10.6342/NTU202303874
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:近年由於美牛、萊豬的開放進口,使乙型腎上腺素受體激動劑 (β-adrenergic agonists) 成為廣泛討論的議題。然而,除了美國的萊克多巴胺,乙型腎上腺素受體激動劑在大部分國家皆為違法的飼料添加物,因此不僅是分布情況,針對飲食暴露相關的研究也較少。
研究目的:本研究目的是希望能藉由量測並分析具全國代表性的生物檢體樣本,了解國人整體的暴露分布情況。此外,儘管在過去政府雖然有針對禽畜相關產品制定乙型受體素最大殘留容許量 (maximum residue level, MRL)的相關規範,然而針對肉品中乙型受體素殘留量的檢測並不能反映出國人的實際暴露情形。因此本研究的另一個目的是找出飲食習慣、食物的種類(尤其是肉類產品及其相關加工製品)與乙型受體素檢出率之間的關聯。
材料方法:本研究使用之具全國代表性樣本來自2019年的人體生物監測收案 (Human Biomonitoring, HBM),母群體為設籍於臺灣本島及澎湖地區七歲以上的居民,參考國民營養健康調查(NAHSIT)的抽樣方法,使用分層、多段與集束取樣法。根據先前的文獻研究,暴露的主要途徑為攝取含有乙型受體素殘留的肉品,且乙型受體素的半衰期短,經由飲食暴露進入人體的乙型受體素平均四小時、最長不超過兩天便會經由尿液及糞便排出體外,雖然在排出時可能伴隨有相對應的代謝物,不過大部分仍會以原型 (parent compounds)存在。因此本研究採用的生物檢體為尿液,尿檢體經由水解、萃取及淨化處理後,使用液相層析串聯質譜儀 (LC/MS/MS),以常見的八種乙型受體素:萊克多巴胺 (ractopamine)、克倫特羅 (clenbuterol)、特布他林 (terbutaline)、沙丁胺醇 (salbutamol)、希帕特羅 (zilpaterol)、西馬特羅(cimaterol)、妥洛特羅(tulobuterol)和喘必定(fenoterol)作為分析物進行檢測。在統計部分則會將檢測結果和營養及飲食問卷中與禽畜相關產品食用的變項結合,使用費雪精確性檢定(Fisher’s exact test)及羅吉斯迴歸(Logistics regression)進行分析。
研究結果:2019年人體生物監測收案 (Human Biomonitoring, HBM)個案總數為1748位,排除無檢體的個案後可用於後續分析之個案數為1578位。根據費雪精確性檢定的結果顯示,克倫特羅的檢出率明顯高於其他7種乙型受體素,然而不論個案是否有呼吸道相關或是心臟方面相關疾病的用藥,皆不會影響整體乙型受體素的檢出率。8種乙型受體素在性別組別之間分布均勻,不過在年齡組別的部分,18歲以下的族群在克倫特羅的檢出率高於19歲以上的族群,而19-64歲組別的檢出率又高於65歲以上的族群,且這兩種效應皆達到統計上的顯著。在區域分布方面,東部地區的沙丁胺醇檢出率和北部地區的妥洛特羅檢出率均顯著高於其他區域的組別。在飲食習慣對乙型受體素暴露的部分,羅吉斯迴歸分析的結果顯示四足家畜的食用頻率會與克倫特羅的檢出率呈正相關,而肉類製品或其加工產品則會增加妥洛特羅的檢出風險,同樣,內臟的食用亦與妥洛特羅及喘必定的檢出率呈正相關。另一方面,蔬菜的攝取會與特布他林的檢出率呈負相關,意即蔬菜食用頻率較高者,其特布他林檢出的風險反而較低。
結論:乙型受體素的檢出率與某些種類的食物如四足家畜、肉類製品或其加工製品以及內臟呈正相關。然而,我們使用的營養及飲食問卷內容並非針對乙型受體素的來源設計,因此,對於檢出率特別高的克倫特羅,未來可能需要進一步追溯其暴露來源。
Background: Recently, due to the permission of American beef and pork import, β-adrenergic agonists have become a high-profile issue. However, except ractopamine in the United States, β-adrenergic agonists are illegal feed additives in most countries. Hence, there are fewer relative research about not only distribution but dietary exposure.
Objective: This study aimed to establish the distributions of eight types of β-adrenergic agonists among a representative of population in Taiwan. Besides, the detection results of residual β-adrenergic agonists in meat couldn’t represent actual exposure of the population although the government have enacted maximum residue level (MRL) standards of residual β-adrenergic agonists in meat and related products. Therefore, the other objective of this study was to find out the association between the dietary habits (types of food especially meat) and the detection rates of eight types of β-adrenergic agonists.
Material and Methods: The nationwide representative samples used in this study came from Human Biomonitoring (HBM) in 2019. The cases were enrolled from population which residents are over seven years old and registering in the main island of Taiwan and Penghu area, and the sampling methods referred the National Nutrition and Health Survey (NAHSIT) enrollment include stratified, multiple stage and cluster sampling. According to previous studies, the main exposure route was ingestion of meat or related products containing β-adrenergic agonists residues. The half-lives of β-adrenergic agonists were very short. β-adrenergic agonists would be excreted trough urine or feces within two days. Although it might accompany by some corresponding metabolites, most of β-adrenergic agonists still were excreted as their parent compounds. Thus, the chosen specimen was urine. After urine was hydrolyzed, extracted and purified, liquid chromatograph tandem mass spectrometer (LC/MS/MS) would be used to detect eight types of common β-adrenergic agonists as analytes: ractopamine, clenbuterol, terbutaline, salbutamol, zilpaterol, cimaterol, tulobuterol and fenoterol. Then in the statistics part, the detected results would be combined with the variables about poultry-related products ingestion in nutrition and diet questionnaire for analysis by using Fisher’s exact test and Logistics regression.
Results: According to the results of Fisher’s exact test, the detection rate of clenbuterol was much higher than the other seven types of β-adrenergic agonists, and whether the case took respiratory or cardiac medication wouldn’t affect detection rates of the whole population. The distribution of eight types of β-adrenergic agonists in sex group was even. However, the detection rates of clenbuterol in under-18-year-old groups were higher than other groups, and in the 19-64-year-old group, clenbuterol detection rate was higher than that of the group over 65 years old. Then, salbutamol detection rate of eastern group and tulobuterol detection rate of northern group was higher than the other region groups. In terms of exposure of β-adrenergic agonists from dietary habits, the logistics regression analysis results showed that four-footed livestock ingestion frequency positively related to clenbuterol detection rate, and meat product would increase the risk of tulobuterol detection. Similarly, offal ingestion frequency had positive association with detection of tulobuterol and fenoterol. In the other hands, vegetable ingestion and terbutaline detection were negatively correlated.
Conclusions: We found that the detection rates of β-adrenergic agonists were positively associated with some types of foods such as four-footed livestock, meat products and offal. However, the nutrition and dietary habits questionnaire we used wasn’t designed for specific sources of β-adrenergic agonists. Hence, for clenbuterol with a particularly high detection rate, it might need to trace the exposure sources in the future.
口試委員會審定書 i
中文摘要 ii
英文摘要 iv
目錄 01
Chapter 1. Introduction 02
Chapter 2. Material and Methods 07
2.1. Study population and data collect 07
2.2. Measurement of β-adrenergic agonists 08
2.3. Distribution analysis 09
2.4. Confounding variables 10
2.5. Statistics analysis 11
Chapter 3. Results 13
3.1. Baseline characteristics of study population 13
3.2. Distribution of β-adrenergic agonists 14
3.3. Multiple logistic regression models 15
3.4. Analysis of variance (ANOVA) test 16
Chapter 4. Discussion 18
Chapter 5. Conclusions 23
Figure 1 25
Figure 2 25
Figure 3 26
Figure 4 27
Figure 5 28
Figure 6 29
Figure 7 30
Figure 8 31
Table 1 32
Table 2 33
Table 3 35
Table 4 36
Table 5 36
Table 6 36
Table 7 36
Supplementary Table S1 37
Supplementary Table S2 37
Supplementary Table S3 37
Supplementary Table S4 38
Supplementary Table S5 39
Supplementary Table S6 39
References 40
Aroeira, C. N., Feddern, V., Gressler, V., Molognoni, L., Daguer, H., Dalla Costa, O. A., de Lima, G., & Contreras-Castillo, C. J. (2019). Determination of ractopamine residue in tissues and urine from pig fed meat and bone meal. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 36(3), 424-433. https://doi.org/10.1080/19440049.2019.1567942
Australia, GSK. (2014). Salbutamol Australian Product Information.
Bethesda (MD). (2017. Beta-2 Adrenergic Agonists. [Updated 2017 Sep 11]). Clinical and Research Information on Drug-Induced Liver Injury [Internet]. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.ncbi.nlm.nih.gov/books/NBK548685/
Boison, J., Sanders, P., Chicoine, A., & Scheid, S. (2016). Zilpaterol hydrochloride.
Brown, D., Ryan, K., Daniel, Z., Mareko, M., Talbot, R., Moreton, J., Giles, T. C. B., Emes, R., Hodgman, C., Parr, T., & Brameld, J. M. (2019). Author Correction: The Beta-adrenergic agonist, Ractopamine, increases skeletal muscle expression of Asparagine Synthetase as part of an integrated stress response gene program. Sci Rep, 9(1), 15412. https://doi.org/10.1038/s41598-019-43807-1
Byrem, T. M., Robinson, T. F., Boisclair, Y. R., Bell, A. W., Schwark, W. S., & Beermann, D. H. (1992). Analysis and pharmacokinetics of cimaterol in growing Holstein steers. J Anim Sci, 70(12), 3812-3819. https://doi.org/10.2527/1992.70123812x
Canada, GSK. (2017). Salbutamol Canadian Product Information.
Chasseaud, L. F., & Wood, S. G. (1986). Pharmacokinetics of the bronchodilator tulobuterol in man after repeated oral doses. J Int Med Res, 14(5), 223-227. https://doi.org/10.1177/030006058601400501
Cheng, T. D., Shelver, W. L., Hong, C. C., McCann, S. E., Davis, W., Zhang, Y., Ambrosone, C. B., & Smith, D. J. (2016). Urinary Excretion of the β-Adrenergic Feed Additives Ractopamine and Zilpaterol in Breast and Lung Cancer Patients. J Agric Food Chem, 64(40), 7632-7639. https://doi.org/10.1021/acs.jafc.6b02723
Chiang, K. M. (NAHSIT 2013-2016). 調查簡介與抽樣設計. Retrieved from https://pse.is/HQWUD
Chikhou, F., Moloney, A. P., Austin, F. H., Roche, J. F., & Enright, W. J. (1991). Effects of cimaterol administration on plasma concentrations of various hormones and metabolites in Friesian steers. Domest Anim Endocrinol, 8(4), 471-480. https://doi.org/10.1016/0739-7240(91)90016-d
Davies, D. S., George, C. F., Blackwell, E., Conolly, M. E., & Dollery, C. T. (1974). Metabolism of terbutaline in man and dog. Br J Clin Pharmacol, 1(2), 129-136. https://doi.org/10.1111/j.1365-2125.1974.tb00221.x
Depaolini, A. R., Fattore, E., Cappelli, F., Pellegrino, R., Castiglioni, S., Zuccato, E., Fanelli, R., & Davoli, E. (2016). Source discrimination of drug residues in wastewater: The case of salbutamol. J Chromatogr B Analyt Technol Biomed Life Sci, 1023-1024, 62-67. https://doi.org/10.1016/j.jchromb.2016.04.033
Eadara, J. K., Dalrymple, R. H., DeLay, R. L., Ricks, C. A., & Romsos, D. R. (1989). Effects of cimaterol, a beta-adrenergic agonist, on protein metabolism in rats. Metabolism, 38(9), 883-890. https://doi.org/10.1016/0026-0495(89)90236-9
European Food Safety Authority (EFSA), Arcella, D., Baert, K., Binaglia, M., Gervelmeyer, A., Innocenti, M. L., Ribo, O., Steinkellner, H., & Verhagen, H. (2016). Review of proposed MRLs, safety evaluation of products obtained from animals treated with zilpaterol and evaluation of the effects of zilpaterol on animal health and welfare. EFSA Journal, 14(9), e04579. https://doi.org/https://doi.org/10.2903/j.efsa.2016.4579
European Food Safety Authority [EFSA]. (2009). Safety evaluation of ractopamine.
Food and Agriculture Organization of the United Nations [FAO]/WHO. (2006). Evaluation of certain veterinary drug residues in food. Sixty-sixth report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser(939), 1-80, backcover.
Food and Agriculture Organization of the United Nations [FAO]/WHO Expert Committee. (2013). RESIDUE EVALUATION OF CERTAIN VETERINARY DRUGS.
Food and Agriculture Organization of the United Nations [FAO]/WHO. (2014). Evaluation of certain veterinary drug residues in food.
Food and Agriculture Organization of the United Nations [FAO]/WHO. (2016a). 81st Joint FAO/WHO Expert Committee on Food Additives [JECFA] meeting, 2015 - Zilpaterol hydrocloride.
Food and Agriculture Organization of the United Nations [FAO]/WHO. (2016b). Zilpaterol hydrochloride. https://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=6191
Food and Agriculture Organization of the United Nations [FAO]/WHO. (2018). Maximum Residue Limits (MRLs) and Risk Management Recommendations (RMRs) for Residue of Veterinary Drugs in Foods.
Food and Drug Administration [FDA]. (1999). Ractopamine hydrochloride. Retrieved from https://animaldrugsatfda.fda.gov/adafda/app/search/public/document/downloadFoi/507
Food and Drug Administration [FDA]. (2011). FDA Drug Safety Communication: New warnings against use of terbutaline to treat preterm labor. https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-new-warnings-against-use-terbutaline-treat-preterm-labor
Food and Drug Administration [FDA]. (2019). Clenbuterol.
Food and Drug Administration [FDA]. (2020). Terbutaline. https://www.drugs.com/pro/terbutaline.html
Food and Drug Administration [FDA]. (2021). Ractopamine hydrochloride.
Garbinato, C., Schneider, S. E., Sachett, A., Decui, L., Conterato, G. M., Müller, L. G., & Siebel, A. M. (2020). Exposure to ractopamine hydrochloride induces changes in heart rate and behavior in zebrafish embryos and larvae. Environ Sci Pollut Res Int, 27(17), 21468-21475. https://doi.org/10.1007/s11356-020-08634-2
Haasnoot, W., Stouten, P., Lommen, A., Cazemier, G., Hooijerink, D., & Schilt, R. (1994). Determination of fenoterol and ractopamine in urine by enzyme immunoassay. Analyst, 119(12), 2675-2680. https://doi.org/10.1039/an9941902675
Hildebrandt, R., Wagner, B., Preiss-Nowzohour, K., & Gundert-Remy, U. (1994). Fenoterol metabolism in man: sulphation versus glucuronidation. Xenobiotica, 24(1), 71-77. https://doi.org/10.3109/00498259409043222
Hochhaus, G., & Möllmann, H. (1992). Pharmacokinetic/pharmacodynamic characteristics of the beta-2-agonists terbutaline, salbutamol and fenoterol. Int J Clin Pharmacol Ther Toxicol, 30(9), 342-362.
Hunt, T. L. (1994). Cardiovascular activity and safety of ractopamine hydrochloride:determination of a no-effect dose. [Unpublished report on study No. T4V-LC-ERAA from Pharmaco LSR, Austin, Texas 78704, USA].
Kojima, S., Otani, M., & Kubodera, A. (1980). Studies on the absorption, distribution, metabolism and excretion of 1-(3,5-dihydroxyphenyl)-1-hydroxy-2-[(4-hydroxyphenyl)isopropylamino]-ethane hydrobromide (Th 1165 a, fenoterol hydrobromide) in mice. Arzneimittelforschung, 30(6), 959-964.
Lee, C. C., & Taiwan Food and Drug Administration [TFDA]. (2019). 食用肉品暴露萊克多巴胺之健康風險評估報告摘要: Ministry of Health and Welfare [MOHW]. Retrieved from https://www.google.com/url?client=internal-element-cse&cx=012254495936870409035:lzvyrg0mtim&q=https://www.fda.gov.tw/tc/includes/GetFile.ashx%3Fid%3Df637359425505911706&sa=U&ved=2ahUKEwiIhbrf7syAAxWgpVYBHVMnA544ChAWegQICRAC&usg=AOvVaw2ddqh40oX2KynXF5bJKJXz
Lehner, A. F., Hughes, C. G., Harkins, J. D., Nickerson, C., Mollett, B., Dirikolu, L., Bosken, J., Camargo, F., Boyles, J., Troppmann, A., Karpiesiuk, W. W., Woods, W. E., & Tobin, T. (2004). Detection and confirmation of ractopamine and its metabolites in horse urine after Paylean administration. J Anal Toxicol, 28(4), 226-238. https://doi.org/10.1093/jat/28.4.226
Li, C., Adhikari, B. K., Gao, L., Zhang, S., Liu, Q., Wang, Y., & Sun, J. (2018). Performance-Enhancing Drugs Abuse Caused Cardiomyopathy and Acute Hepatic Injury in a Young Bodybuilder. Am J Mens Health, 12(5), 1700-1704. https://doi.org/10.1177/1557988318783504
Liou, S. H., Yang, G. C., Wang, C. L., & Chiu, Y. H. (2014). Monitoring of PAEMs and beta-agonists in urine for a small group of experimental subjects and PAEs and beta-agonists in drinking water consumed by the same subjects. J Hazard Mater, 277, 169-179. https://doi.org/10.1016/j.jhazmat.2014.02.024
Liu, X., Grandy, D. K., & Janowsky, A. (2014). Ractopamine, a livestock feed additive, is a full agonist at trace amine-associated receptor 1. J Pharmacol Exp Ther, 350(1), 124-129. https://doi.org/10.1124/jpet.114.213116
Lopes, P. M., Albuquerque, F., Ferreira, A. M., & Trabulo, M. (2022). Clenbuterol-induced myocarditis in a young man desiring to lose weight. BMJ Case Rep, 15(3). https://doi.org/10.1136/bcr-2021-247898
Ministry of Health and Welfare [MOHW]. (2022). 鹽酸萊克多巴胺人體每日可接受攝取量評估: Ministry of Health and Welfare. Retrieved from https://www.google.com/url?client=internal-element-cse&cx=012254495936870409035:lzvyrg0mtim&q=https://www.fda.gov.tw/upload/133/%25E9%25B9%25BD%25E9%2585%25B8%25E8%2590%258A%25E5%2585%258B%25E5%25A4%259A%25E5%25B7%25B4%25E8%2583%25BA%25E4%25BA%25BA%25E9%25AB%2594%25E6%25AF%258F%25E6%2597%25A5%25E5%258F%25AF%25E6%258E%25A5%25E5%258F%2597%25E6%2594%259D%25E5%258F%2596%25E9%2587%258F%25E8%25A9%2595%25E4%25BC%25B0.doc&sa=U&ved=2ahUKEwiIhbrf7syAAxWgpVYBHVMnA544ChAWegQICBAC&usg=AOvVaw31f94NS3JcH1HXS9saYj8G
Ministry of Health and Welfare [MOHW]. (2022修正). 動物用藥殘留標準第3條. Retrieved from https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040026&kw=%e5%8b%95%e7%89%a9%e7%94%a8%e8%97%a5%e6%ae%98%e7%95%99%e6%a8%99%e6%ba%96
Muralidhar, S. R. (2023). Tulobuterol : Indications, Uses, Dosage, Drugs Interactions and Side effects. https://medicaldialogues.in/generics/tulobuterol-2723019
National Environmental Health Research Center/National Health Research Institutes [NEHRC/NHRI]. (2014). 美牛進口後國人體內瘦肉精殘留量之流行病學監測與健康影響評估. Retrieved from http://nehrc.nhri.org.tw/toxic/ref/%E7%98%A6%E8%82%89%E7%B2%BE.pdf
National Health Research Institutes [NHRI]. (2013). 開放含瘦肉精肉品進口後國人瘦肉精殘留量攝食暴露評估: National Health Research Institutes.
National Institute of Environmental Health Sciences/National Health Research Institutes [NIEHS/NHRI]. (n.d.). Human Biomonitoring [Internet]. https://niehs.nhri.edu.tw/en/%E7%A0%94%E7%A9%B6%E9%A0%98%E5%9F%9F/%E4%BA%BA%E9%AB%94%E7%94%9F%E7%89%A9%E7%9B%A3%E6%B8%AC%E8%B3%87%E6%96%99
Prezelj, A., Obreza, A., & Pecar, S. (2003). Abuse of clenbuterol and its detection. Curr Med Chem, 10(4), 281-290. https://doi.org/10.2174/0929867033368330
Reszka, K. J., McGraw, D. W., & Britigan, B. E. (2009). Peroxidative metabolism of beta2-agonists salbutamol and fenoterol and their analogues. Chem Res Toxicol, 22(6), 1137-1150. https://doi.org/10.1021/tx900071f
Shelver, W. L., & Smith, D. J. (2006). Tissue residues and urinary excretion of zilpaterol in sheep treated for 10 days with dietary zilpaterol. J Agric Food Chem, 54(12), 4155-4161. https://doi.org/10.1021/jf060552m
Shelver, W. L., & Smith, D. J. (2011). Immunochemical-based zilpaterol measurement and validation in urine and tissues. Food and Agricultural Immunology, 22.
Smith, D. J. (1998). The pharmacokinetics, metabolism, and tissue residues of beta-adrenergic agonists in livestock. J Anim Sci, 76(1), 173-194. https://doi.org/10.2527/1998.761173x
Spiller, H. A., James, K. J., Scholzen, S., & Borys, D. J. (2013). A descriptive study of adverse events from clenbuterol misuse and abuse for weight loss and bodybuilding. Subst Abus, 34(3), 306-312. https://doi.org/10.1080/08897077.2013.772083
Svedmyr, N. (1985). Fenoterol: a beta2-adrenergic agonist for use in asthma. Pharmacology, pharmacokinetics, clinical efficacy and adverse effects. Pharmacotherapy, 5(3), 109-126. https://doi.org/10.1002/j.1875-9114.1985.tb03409.x
Taiwan Food and Drug Administration [TFDA]. (2018修正). 食品中動物用藥殘留量檢驗方法-乙型受體素類多重殘留分析: Ministry of Health and Welfare. Retrieved from https://www.fda.gov.tw/tc/siteListContent.aspx?sid=103&id=36959
Tang, C., Liang, X., Zhang, K., Zhao, Q., Meng, Q., & Zhang, J. (2016). Residues of Ractopamine and Identification of its Glucuronide Metabolites in Plasma, Urine, and Tissues of Cattle. J Anal Toxicol, 40(9), 738-743. https://doi.org/10.1093/jat/bkw072
Tegnér, K., Nilsson, H. T., Persson, C. G., Persson, K., & Ryrfeldt, A. (1984). Elimination pathways of terbutaline. Eur J Respir Dis Suppl, 134, 93-100.
Taiwan Food and Drug Administration [TFDA]. (2022). 市售萊克多巴胺快篩試劑檢驗效能之評估. Retrieved from https://www.fda.gov.tw/tc/includes/GetFile.ashx?id=f638085308727970112
Taiwan Food and Drug Administration [TFDA]. (2023). 西藥、醫療器材、特定用途化粧品許可證查詢 (clenbuterol, terbutaline, salbutamol, fenoterol). https://info.fda.gov.tw/mlms/H0001.aspx
Ungemach, F. R. (n.d.). Ractopamine (addendum) WHO Food Additives Series: 53. http://www.inchem.org/documents/jecfa/jecmono/v53je08.htm
United States Department of Agriculture [USDA]. (2013). Determination of Ractopamine Hydrochloride by High Performance Liquid Chromatography. Retrieved from https://www.fsis.usda.gov/sites/default/files/media_file/2020-11/CLG-RAC1.pdf
Wagner, S. A., DVM, P., Mostrom, M. S., DVM, P., Hammer, C. J., DVM, P., Jennifer F. Thorson, B., & David J. Smith, P. (2008). Adverse Effects of Zilpaterol Administration in Horses: Three Cases. 28.
Ye, F., Liu, S., Yang, Y., Zhao, T., Li, S., Zhou, T., & Tan, W. (2019). Identification of the major metabolites of (R)-salbutamol in human urine, plasma and feces using ultra high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J Sep Sci. https://doi.org/10.1002/jssc.201900330
Zalko, D., Debrauwer, L., Bories, G., & Tulliez, J. (1998). Metabolism of clenbuterol in rats. Drug Metab Dispos, 26(9), 891-899.
Zheng, B., & Yadav, K. (2021). Acute salbutamol toxicity in the emergency department: A case report. World J Emerg Med, 12(1), 73-75. https://doi.org/10.5847/wjem.j.1920-8642.2021.01.012
電子全文 電子全文(網際網路公開日期:20280809)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top