跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/14 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:成佩珊
研究生(外文):Pei-Shan Cheng
論文名稱:步行及跑步的下肢肌電訊號之穿戴式無線記錄系統
論文名稱(外文):Wearable Wireless Recording System for Lower Limb EMG during Walking and Running
指導教授:趙福杉
指導教授(外文):Fu-Shan Jaw
口試委員:高瑀絜曾乙立陳光萱
口試委員(外文):Yu-Chieh KaoYi-Li TsengKuang-Hsuan Chen
口試日期:2023-01-13
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:43
中文關鍵詞:肌電圖穿戴式復健走路跑步無線傳輸
外文關鍵詞:ElectromyographyWearableRehabilitationWalkingRunningWireless
DOI:10.6342/NTU202300328
相關次數:
  • 被引用被引用:1
  • 點閱點閱:60
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著醫療技術水平的提升以及現今人們對於健康照護的重視,近年來國人健康意識越加蓬勃,對於自我的健康狀況與意識逐步上升,無論年長者或者是青壯年都希望能增進身體健康以及延緩老化。健康的身體,需要透過改善生活習慣與長期的肌力訓練來達成,而人類的身體活動能力的優劣與肌耐力息息相關,其中最重要的是下半身的肌群。故本文透過量測多通道下肢表面肌電圖(Surface Electromyography)肌電訊號,開發一款應用於步行之穿戴式無線記錄系統,量測股外側肌(Vastus Lateralis, VL)、脛骨前肌(Tibialis Anterior, TA)、腓腸肌外側(Gastrocnemius Lateralis, LG)、比目魚肌(Soleus, SOL)等四條肌電訊號,透過藍牙無線傳輸,實現即時觀察肌電波型,成為可用於評估下肢肌肉施力狀況之裝置。
本系統由類比下肢肌電量測電路、ESP-32 Node MCU-32S開發板、使用者介面所組成。硬體電路設計中,透過多工器與解多工器之技術,來達到減少體積與功耗之功能。於韌體部分,使用ESP-32開發板之類比數位轉換器、藍牙模組,將下肢肌電訊號數位化,並傳送至電腦使用者介面中,呈現出肌電訊號之波型。
本系統為了達到穿戴式之需求,設計低功率消耗與小型化之電路,可以方便且輕巧的配戴於腿部,可於運動或復健時,即時記錄多通道下肢肌電訊號。期許本系統未來完成整合後,能將裝置應用於物聯網中,方便給予醫護人員或一般運動員進行使用,對人們的自我健康有更大的助益。
With the advance in medical technology and attach importance to health care, people's health awareness has obtained more and more attention in recent year. Both the elderly and young adults hope to improve their health and postpone senility. A healthy body needs to be achieved by improving habits in daily life and long-term training on muscle strength. However, the quality of human physical activity is closely related to muscle endurance, especially the muscles of the lower body. Therefore, in this thesis a wearable multi-channel wireless recording system for lower limb EMG signals duringwalking and running were developed. The EMG signals of vastus lateralis (VL), tibialis anterior (TA), gastrocnemius lateralis (LG), and soleus (SOL). Four EMG signals are transmitted wirelessly through Bluetooth and can be used to evaluate the force status of lower limb muscles.This system consists of a measurement circuit, an ESP-32 Node MCU-32Sdevelopment board, and a user interface. In the hardware circuit, size reduction and low power consumption is achieved through the technology of multiplexer and demultiplexer. Then, the Analog-to-Digital Converter (ADC) and the Bluetooth module of the ESP-32 development board was used to digitize the EMG signals and send them to the computer, and finally the user interface shows the waveform of the EMGs.In order to achieve the wearable requirements, this system is designed with low power consumption and miniaturized to be able to be lightly worn on the legs, and can record multi-channel EMGs in real time during exercise or rehabilitation. It is hoped that after the implementation of this system in the near future, the device can be applied to the Internet of Things (IOT), which is convenient for medical staff or general athletes to use and will be of greater benefit to people's self-health.
口試委員審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
目錄 V
圖目錄 VIII
表目錄 X
第一章、緒論 1
1.1 研究背景 1
1.2 研究動機與目的 7
第二章、研究方法 8
2.1 系統架構 8
2.2 設計考量 9
2.3 下肢量測肌群之選擇 11
2.4 各類電路設計之考量 13
2.4.1 參考地電位設計之考量 13
2.4.2 時脈振盪器與計數器設計之考量 13
2.4.3 多工器與解多工器設計之考量 13
2.4.4 放大器設計之考量 14
2.4.5 二階低通濾波器設計之考量 14
2.4.6 類比數位轉換器 15
2.4.7 藍牙環境設計與使用者介面 15
2.5 元件及儀器的選擇考量 16
2.5.1 時脈振盪器 16
2.5.2 計數器 16
2.5.3 多工器與解多工器 16
2.5.4 儀表放大器 17
2.5.5 運算放大器 17
2.5.6 開發板 18
第三章、實驗結果 19
3.1 系統電路設計 19
3.1.1 參考地電位之電路 21
3.1.2 時脈振盪器與計數器 21
3.1.3 多工器 22
3.1.4 儀表放大器 23
3.1.5 積分器與一階高通濾波器 23
3.1.6 第二級放大器 24
3.1.7 二階低通濾波器 24
3.1.8 解多工器 25
3.1.9 開發板 26
3.2 頻率響應 27
3.3 使用者介面設計 28
3.4 實際量測結果 30
3.5 系統外觀 32
第四章、討論 33
4.1 下肢肌電訊號之應用與貢獻 33
4.2 環境中 60 HZ 雜訊之處理 34
4.3 輸入電壓選擇之重要性 36
4.4 運算放大器選擇作為參考地電位之重要性 38
4.5 鋁箔紙外殼與導線 40
4.6 系統整合 40
第五章、結論 41
參考文獻 42
[1] “2021 年健身房產業調查報告,” 台灣趨勢研究. [Online]. Available: https://www.twtrend.com/trend-detail/gymsurvey01/. [Accessed: 06-Dec-2022].
[2] Demi, “5 大常見錯誤健身動作沒練到肌肉還反傷身!,” Worldgymtaiwan.com, 22-Oct-2019.
[3] https://www.ndc.gov.tw/Content_List.aspx?n=D527207EEEF59B9B [Accessed:2015]
[4] “因應未來新興消費趨勢 穿戴/智慧裝置實現多元支付,”Reurl.cc. [Online].Available: https://reurl.cc/mZyNgA. [Accessed: 06-Dec-2022].
[5] T. Stöckel, R. Jacksteit, M. Behrens, R. Skripitz, R. Bader, and A. Mau Moeller,“The mental representation of the human gait in young and older adults,” Front.Psychol., vol. 6, p. 943, 2015.
[6] J. F. Yang and D. A. Winter, “Surface EMG profiles during different walking cadences in humans,” Electroencephalogr. Clin. Neurophysiol., vol. 60, no. 6, pp.485–491, 1985.
[7] M. G. J. Gazendam and A. L. Hof, “Averaged EMG profiles in jogging and running at different speeds,” Gait Posture, vol. 25, no. 4, pp. 604–614, 2007.
[8] V. Wank, U. Frick, and D. Schmidtbleicher, “Kinematics and electromyography of lower limb muscles in overground and treadmill running,” Int. J. Sports Med., vol.19, no. 7, pp. 455–461, 1998.
[9] A. Alves-Pinto, T. Blumenstein, V. Turova, and R. Lampe, “Altered lower leg muscle activation patterns in patients with cerebral palsy during cycling on an ergometer,” Neuropsychiatr. Dis. Treat., vol. 12, pp. 1445–1456, 2016.
[10] S.-H. Liu, C.-B. Lin, Y. Chen, W. Chen, T.-S. Huang, and C.-Y. Hsu, “An EMG patch for the real-time monitoring of muscle-fatigue conditions during exercise,” Sensors (Basel), vol. 19, no. 14, p. 3108, 2019.
[11] A. Péter et al., “Comparing surface and fine-wire electromyography activity oflower leg muscles at different walking speeds,” Front. Physiol., vol. 10, p. 1283, 2019.
[12] Y. P. Ivanenko, R. E. Poppele, and F. Lacquaniti, “Five basic muscle activation patterns account for muscle activity during human locomotion: Basic muscle 43 activation patterns,” J. Physiol., vol. 556, no. Pt 1, pp. 267–282, 2004.
[13] K. Sasaki and R. R. Neptune, “Differences in muscle function during walking and running at the same speed,” J. Biomech., vol. 39, no. 11, pp. 2005–2013, 2006.
[14] H. W. Smit, K. Verton, and C. A. Grimbergen, “A low-cost multichannel preamplifier for physiological signals,” IEEE Trans. Biomed. Eng., vol. BME-34, no. 4, pp. 307–310, 1987.
[15] De Luca, Carlo J. "Surface electromyography: Detection and recording." DelSys Incorporated 10.2 (2002): 1-10.
[16] Stegeman, Dick, and Hermie Hermens. "Standards for surface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM)." Enschede: Roessingh Research and Development 10 (2007)
[17] “Welcome to SENIAM,” Seniam.org. [Online]. Available: http://www.seniam.org/. [Accessed: 06-Dec-2022].
[18] “NodeMCU-32S Wi-Fi/藍芽開發板硬體介紹,” 16-Jul-2020. [Online]. Available: https://www.chosemaker.com/board/esp32/lesson-1/. [Accessed: 06-Dec-2022].
[19] P. Edouard et al., “Lower limb muscle injury location shift from posterior lower leg to hamstring muscles with increasing discipline-related running velocity in international athletics championships,” J. Sci. Med. Sport, vol. 24, no. 7, pp. 653–659, 2021.
[20] K. A. Robb, J. D. Hyde, and S. D. Perry, “The role of enhanced plantar surface sensory feedback on lower limb EMG during planned gait termination,” Somatosens. Mot. Res., vol. 38, no. 2, pp. 146–156, 2021.
[21] J. M. Wakeling, S. A. Pascual, and B. M. Nigg, “Altering muscle activity in the lower extremities by running with different shoes,” Med. Sci. Sports Exerc., vol.34, no. 9, pp. 1529–1532, 2002
電子全文 電子全文(網際網路公開日期:20260207)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top