跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 17:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃怡華
研究生(外文):Yi-Hua Huang
論文名稱:建立以非侵入性神經影像技術為基礎之大腦血流循環指標
論文名稱(外文):Biomarker Identification of Human Circulation based on Non-invasive Neuroimaging Techniques
指導教授:陳中明陳中明引用關係
指導教授(外文):Chung-Ming Chen
口試委員:林慶波李翔傑蔡睿哲羅畯義
口試委員(外文):Ching-Po LinHsiang-Chieh LeeJui-che TsaiChun-Yi Lo
口試日期:2023-01-16
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:66
中文關鍵詞:近紅外光譜儀靜息態功能性磁振造影微小血管疾病低頻振盪腦血管循環指標
外文關鍵詞:functional near-infrared spectroscopyfunctional magnetic resonance imagingcerebral small vessel diseaselow-frequency oscillationvasoreactivityhuman brain circulation
DOI:10.6342/NTU202300358
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腦循環系統是維持大腦正常功能重要的機制,其機制涉及到血氧與營養代謝運送以及廢物清除。腦循環系統中,血管自我調節與血管反應的兩大特性,在維持腦血流之穩定供應扮演重要的角色。先前研究指出為了滿足大腦神經活化時的能量需求,調控血管擴張及局部腦血流增加以輸送氧氣與葡萄糖,此一連串反應機制稱之為神經血管耦合。當神經血管耦合機制出現問題,可導致腦循環末梢小血管血流不足,可能會造成局部腦神經的損傷,進而造成認知功能衰退、微小血管疾病、甚至中風。因此,如何透過非侵入性神經影樣技術,去建立可靠的腦血流相關生物指標,以提供個體大腦神經血管健康資訊,對於探討大腦老化機制及高齡相關神經疾病之早期偵測與介入至為重要。因此,本論文著重於發展兩種量測分析技術以觀察個體大腦神經血流變化,內容包含:1) 運用具有高時間解析度特性的近紅外光譜儀量測,探討高齡長者於執行認知測驗時之大腦局部動態血氧濃度變化; 2) 透過具有高空間解析度特性的功能性磁振造影儀,從中萃取動靜脈血流傳輸時間等相關參數,探討微小血管異常族群之血流變化及其與疾病嚴重度之相關性。
目標一,為了探究在執行認知功能任務時,年齡相關因素是否造成個體神經血流變化,我們運用近紅外光譜儀於個體前額葉區域,分別針對年輕族群與高齡族群,進行血氧相依濃度訊號量測。此研究在認知測驗結果顯示,年輕族群相較於高齡族群,在測驗完成度與反應速度表現上顯著較好,測驗錯誤率較低。在近紅外光譜儀量測結果顯示,進行認知測驗時高齡族群的血氧濃度相對於年輕族群較低,血氧濃度趨勢呈現較緩慢且平穩上升。
目標二,為了探究微小血管病變與腦血流變化之潛在關係,我們運用靜息態功能性磁振造影影像,萃取系統性低頻振幅訊號,搭配時間序列交錯分析演算法,建立健康高齡族群與微小血管異常族群之動靜脈血液穿流時間等指標。此研究證實血液穿流時間指標會隨著年齡增長而增加,並在控制年齡效應後,與白質損傷體積存在顯著正相關之關係。此外,我們發現相較於健康高齡族群,微小血管異常族群其血液穿流時間較長,並且會隨著疾病嚴重程度,呈現了劑量效應的上升趨勢。
總結而論,本論文運用近紅外光譜儀與功能性磁振造影儀,兩種在時間空間維度具有互補資訊的非侵入性神經影像量測技術,所建立的血氧濃度及血流變化訊號,來反應個體大腦老化中的認知表現以及透過於微小血管疾病之應用驗證其臨床可行性。因此,透過此系列研究成果,提供多元的量測技術,以反應個體大腦神經血管健康程度,並作為未來神經及血管相關疾病之血流生物標誌。
Cerebral circulation involves the transport of blood oxygen and nutrients, waste removal, and nutrient metabolism. Maintaining a stable supply of cerebral blood flow depends on vascular autoregulation and vasoreactivity in the cerebral circulatory system. Past studies have indicated that neurovascular coupling occurs to assemble the energy demands of brain nerve activation, regulate blood vessel dilation, and increase cerebral blood flow to transport oxygen and glucose. Earlier studies have indicated that in order to meet the energy needs of the brain during neural activation, the regulation of blood vessel expansion and local brain blood flow increase to transport oxygen and glucose is called the neural vascular coupling mechanism. When the neural vascular coupling mechanism is impaired, it can lead to insufficient blood flow in the terminal small blood vessels of the brain circulation, which may cause damage to local brain nerves, leading to cognitive decline, small vessel disease, and even stroke. Therefore, for exploring the mechanism of brain aging and early detection and intervention of age-related neurological diseases, how to develop reliable brain blood flow-related biomarkers using non-invasive neuroimaging techniques to provide individual brain neurovascular health information is crucial.
The purpose of this dissertation was to develop techniques for observing the blood flow changes of individual brain regions, including (1) using a near-infrared spectrometer with high time resolution to measure and explore the brain's hemodynamics dynamic change when elderly individuals perform cognitive tests; (2) using functional magnetic resonance imaging with a high spatial resolution to extract the relevant parameters of arterial and venous transit time, to examine changes in blood flow of cerebral small vessel disease and its relationship with disease severity.
In Aim 1, to investigate whether age caused individual neurovascular changes, we used near-infrared spectroscopy to measure the concentration change of hemoglobin in the frontal lobe region of young and elderly populations. According to the results of this study, the younger group performed significantly better than the elderly group on the cognitive test in terms of test completion and reaction speed. In addition, the younger group had a lower error rate during the trial. During the cognitive test, the blood oxygen concentration of the elderly group was lower than that of the younger group. The trend of oxyhemoglobin concentrations was slowly and steadily rising.
In Aim 2, for examining the potential association between microvascular lesions and cerebral blood flow changes, we used resting-state functional magnetic resonance imaging to extract systematic low-frequency oscillation signals and further applied cross-correlation analysis to estimate the individual vascular relevant parameters (arterial and venous transit time) in healthy aging and cerebral small vessel disease populations. The result revealed that the transit time increased with age. In addition, after controlling this age effect, there still was a significant positive correlation between the transit time and white matter lesions volume. Furthermore, compared to the healthy elderly group, the transit time was longer in the cerebral small vessel disease group, and the alteration showed the dose-effect increasing tread with the disease severity.
In summary, this dissertation utilized near-infrared spectroscopy and functional magnetic resonance imaging, two non-invasive neuroimaging measurement techniques with complementary information in temporal and spatial dimensions, to establish oxygen concentration and cerebral brain flow indices that reflected individual cognitive performance in the aging process and validated the clinical feasibility in cerebral small vessel disease. Therefore, based on these study results, we provided multiple measurement techniques that reflected individual neurovascular healthy and might serve as potential biomarkers for neurological and vascular-related diseases in the future.
致謝 II
中文摘要 III
ABSTRACT V
CONTENTS VIII
LIST OF FIGURES XI
LIST OF TABLES XII
CHAPTER 1INTRODUCTION 1
1.1 BACKGROUND 1
1.2 CURRENT BRAIN IMAGING TECHNIQUES OF BRAIN HEMODYNAMICS EVALUATION AND THEIR LIMITATIONS 2
1.3 FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (NIRS) 4
1.4 BLOOD-OXYGENATION-LEVEL-DEPENDENT FUNCTIONAL MAGNETIC RESONANCE IMAGING (BOLD-FMRI) 5
1.4.1 Systemic low-frequency oscillation (sLFO) 10
1.5 CEREBRAL BLOOD FLOW AND COGNITIVE FUNCTION 14
1.6 RESEARCH AIMS 16
CHAPTER 2 QUANTITATIVE EVALUATION OF AGE-RELATED EFFECTS BASED ON OXYGENATION DYNAMIC SIGNALS DURING THE WISCONSIN CARD SORTING TEST 17
2.1 INTRODUCTION 17
2.2 METHODS 19
2.2.1 Subjects 19
2.2.2 NIRS measurements 19
2.2.3 Stimulus task and procedure 21
2.3 RESULT 22
2.4 DISCUSSION 25
2.5 CONCLUSION 30
CHAPTER 3 ALTERATION OF VASCULAR TRANSIT TIME IN PATIENTS WITH CSVD 31
3.1 INTRODUCTION 31
3.2 WHITE MATTER HYPERINTENSITY (WMH) 33
3.3 AIM 36
3.4 MATERIALS AND METHODS 37
3.4.1 Participants 37
3.4.2 Image acquisition 37
3.4.3 Imaging preprocessing for resting state fMRI scans 39
3.4.4 Time lag mapping 40
3.4.5 Quantification of WMHs 43
3.4.6 The detection and assessment of CSVD 45
3.4.7 Statistical analysis 46
3.5 RESULTS 48
3.5.1 Demographics and cognitive performance 48
3.5.2 The relationship between arterial and venous transit time and Age 49
3.5.3 The relationship between arterial and venous transit time and WMH index 50
3.5.4 The difference in arterial and venous transit time between CSVD and non-CSVD group 51
3.5.5 The relationship between arterial and venous transit time and CSVD index 52
3.6 DISCUSSION AND CONCLUSION 53
3.7 LIMITATION 56
CHAPTER 4 CONCLUSION AND SUMMARY, AND FUTURE EXTENSIONS 57
4.1 CONCLUSION AND SUMMARY 57
4.2 FUTURE EXTENSIONS 59
REFERENCES 60
1.Williams LR, Leggett RW. Reference values for resting blood flow to organs of man. Clin Phys Physiol Meas. 1989;10(3):187-217.
2.Iadecola C. The Neurovascular Unit Coming of Age: A Journey through Neurovascular Coupling in Health and Disease. Neuron. 2017;96(1):17-42.
3.Bentourkia M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, et al. Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci. 2000;181(1-2):19-28.
4.Leenders KL, Perani D, Lammertsma AA, Heather JD, Buckingham P, Healy MJ, et al. Cerebral blood flow, blood volume and oxygen utilization. Normal values and effect of age. Brain. 1990;113 ( Pt 1):27-47.
5.Parkes LM, Rashid W, Chard DT, Tofts PS. Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med. 2004;51(4):736-43.
6.Zhang N, Gordon ML, Goldberg TE. Cerebral blood flow measured by arterial spin labeling MRI at resting state in normal aging and Alzheimer's disease. Neurosci Biobehav Rev. 2017;72:168-75.
7.Mak HK, Chan Q, Zhang Z, Petersen ET, Qiu D, Zhang L, et al. Quantitative assessment of cerebral hemodynamic parameters by QUASAR arterial spin labeling in Alzheimer's disease and cognitively normal Elderly adults at 3-tesla. J Alzheimers Dis. 2012;31(1):33-44.
8.Bangen KJ, Nation DA, Clark LR, Harmell AL, Wierenga CE, Dev SI, et al. Interactive effects of vascular risk burden and advanced age on cerebral blood flow. Front Aging Neurosci. 2014;6:159.
9.Crane DE, Black SE, Ganda A, Mikulis DJ, Nestor SM, Donahue MJ, et al. Gray matter blood flow and volume are reduced in association with white matter hyperintensity lesion burden: a cross-sectional MRI study. Front Aging Neurosci. 2015;7:131.
10.Gregg NM, Kim AE, Gurol ME, Lopez OL, Aizenstein HJ, Price JC, et al. Incidental Cerebral Microbleeds and Cerebral Blood Flow in Elderly Individuals. JAMA Neurol. 2015;72(9):1021-8.
11.Lindegaard KF, Lundar T, Wiberg J, Sjoberg D, Aaslid R, Nornes H. Variations in middle cerebral artery blood flow investigated with noninvasive transcranial blood velocity measurements. Stroke. 1987;18(6):1025-30.
12.Newell DW, Aaslid R, Lam A, Mayberg TS, Winn HR. Comparison of flow and velocity during dynamic autoregulation testing in humans. Stroke. 1994;25(4):793-7.
13.Chi NF, Wang CY, Chan L, Hu HH. Comparing Different Recording Lengths of Dynamic Cerebral Autoregulation: 5 versus 10 Minutes. Biomed Res Int. 2018;2018:7803426.
14.Panerai RB, Jara JL, Saeed NP, Horsfield MA, Robinson TG. Dynamic cerebral autoregulation following acute ischaemic stroke: Comparison of transcranial Doppler and magnetic resonance imaging techniques. J Cereb Blood Flow Metab. 2016;36(12):2194-202.
15.Grandin CB. Assessment of brain perfusion with MRI: methodology and application to acute stroke. Neuroradiology. 2003;45(11):755-66.
16.Kwong KK, Chesler DA, Weisskoff RM, Donahue KM, Davis TL, Ostergaard L, et al. MR perfusion studies with T1-weighted echo planar imaging. Magn Reson Med. 1995;34(6):878-87.
17.Jobsis FF. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science. 1977;198(4323):1264-7.
18.Ferrari M, Quaresima V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage. 2012;63(2):921-35.
19.Scholkmann F, Kleiser S, Metz AJ, Zimmermann R, Mata Pavia J, Wolf U, et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage. 2014;85 Pt 1:6-27.
20.Li R, Yang D, Fang F, Hong KS, Reiss AL, Zhang Y. Concurrent fNIRS and EEG for Brain Function Investigation: A Systematic, Methodology-Focused Review. Sensors (Basel). 2022;22(15).
21.Ogawa S, Lee TM, Kay AR, Tank DW. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A. 1990;87(24):9868-72.
22.Krekelberg B, Boynton GM, van Wezel RJ. Adaptation: from single cells to BOLD signals. Trends Neurosci. 2006;29(5):250-6.
23.Buxton RB. The physics of functional magnetic resonance imaging (fMRI). Rep Prog Phys. 2013;76(9):096601.
24.Willie CK, Tzeng YC, Fisher JA, Ainslie PN. Integrative regulation of human brain blood flow. J Physiol. 2014;592(5):841-59.
25.Kim JH, Ress D. Arterial impulse model for the BOLD response to brief neural activation. Neuroimage. 2016;124(Pt A):394-408.
26.Wise RG, Ide K, Poulin MJ, Tracey I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage. 2004;21(4):1652-64.
27.Aso T, Sugihara G, Murai T, Ubukata S, Urayama SI, Ueno T, et al. A venous mechanism of ventriculomegaly shared between traumatic brain injury and normal ageing. Brain. 2020;143(6):1843-56.
28.Birn RM, Murphy K, Bandettini PA. The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum Brain Mapp. 2008;29(7):740-50.
29.Giller CA, Hatab MR, Giller AM. Oscillations in cerebral blood flow detected with a transcranial Doppler index. J Cereb Blood Flow Metab. 1999;19(4):452-9.
30.Fox MD, Corbetta M, Snyder AZ, Vincent JL, Raichle ME. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci U S A. 2006;103(26):10046-51.
31.Liu TT. Reprint of 'Noise contributions to the fMRI signal: An Overview'. Neuroimage. 2017;154:4-14.
32.Tong Y, Hocke LM, Nickerson LD, Licata SC, Lindsey KP, Frederick B. Evaluating the effects of systemic low frequency oscillations measured in the periphery on the independent component analysis results of resting state networks. Neuroimage. 2013;76:202-15.
33.Tong Y, Yao JF, Chen JJ, Frederick BD. The resting-state fMRI arterial signal predicts differential blood transit time through the brain. J Cereb Blood Flow Metab. 2019;39(6):1148-60.
34.Tong Y, Hocke LM, Frederick BB. Low Frequency Systemic Hemodynamic "Noise" in Resting State BOLD fMRI: Characteristics, Causes, Implications, Mitigation Strategies, and Applications. Front Neurosci. 2019;13:787.
35.Erdogan SB, Tong Y, Hocke LM, Lindsey KP, de BFB. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals. Front Hum Neurosci. 2016;10:311.
36.Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537-41.
37.Josephs O, Henson RN. Event-related functional magnetic resonance imaging: modelling, inference and optimization. Philos Trans R Soc Lond B Biol Sci. 1999;354(1387):1215-28.
38.Tong Y, Frederick BD. Time lag dependent multimodal processing of concurrent fMRI and near-infrared spectroscopy (NIRS) data suggests a global circulatory origin for low-frequency oscillation signals in human brain. Neuroimage. 2010;53(2):553-64.
39.Tong Y, Hocke LM, Fan X, Janes AC, Frederick B. Can apparent resting state connectivity arise from systemic fluctuations? Front Hum Neurosci. 2015;9:285.
40.Crandell D, Moinuddin M, Fields M, Friedman BI, Robertson J. Cerebral transit time of 99m technetium sodium pertechnetate before and after cerebral arteriography. J Neurosurg. 1973;38(5):545-7.
41.Schreiber SJ, Franke U, Doepp F, Staccioli E, Uludag K, Valdueza JM. Dopplersonographic measurement of global cerebral circulation time using echo contrast-enhanced ultrasound in normal individuals and patients with arteriovenous malformations. Ultrasound Med Biol. 2002;28(4):453-8.
42.Monti L, Donati D, Menci E, Cioni S, Bellini M, Grazzini I, et al. Cerebral circulation time is prolonged and not correlated with EDSS in multiple sclerosis patients: a study using digital subtracted angiography. PLoS One. 2015;10(2):e0116681.
43.Tong Y, Lindsey KP, Hocke LM, Vitaliano G, Mintzopoulos D, Frederick BD. Perfusion information extracted from resting state functional magnetic resonance imaging. J Cereb Blood Flow Metab. 2017;37(2):564-76.
44.Frederick B, Nickerson LD, Tong Y. Physiological denoising of BOLD fMRI data using Regressor Interpolation at Progressive Time Delays (RIPTiDe) processing of concurrent fMRI and near-infrared spectroscopy (NIRS). Neuroimage. 2012;60(3):1913-23.
45.Li Y, Zhang H, Yu M, Yu W, Frederick BD, Tong Y. Systemic low-frequency oscillations observed in the periphery of healthy human subjects. J Biomed Opt. 2018;23(5):1-11.
46.Joris PJ, Mensink RP, Adam TC, Liu TT. Cerebral Blood Flow Measurements in Adults: A Review on the Effects of Dietary Factors and Exercise. Nutrients. 2018;10(5).
47.Phillips AA, Chan FH, Zheng MM, Krassioukov AV, Ainslie PN. Neurovascular coupling in humans: Physiology, methodological advances and clinical implications. J Cereb Blood Flow Metab. 2016;36(4):647-64.
48.Taylor VH, MacQueen GM. Cognitive dysfunction associated with metabolic syndrome. Obes Rev. 2007;8(5):409-18.
49.Hock C, Villringer K, Muller-Spahn F, Wenzel R, Heekeren H, Schuh-Hofer S, et al. Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer's disease monitored by means of near-infrared spectroscopy (NIRS)--correlation with simultaneous rCBF-PET measurements. Brain Res. 1997;755(2):293-303.
50.Matteis M, Troisi E, Monaldo BC, Caltagirone C, Silvestrini M. Age and sex differences in cerebral hemodynamics: a transcranial Doppler study. Stroke. 1998;29(5):963-7.
51.Herrmann MJ, Walter A, Ehlis AC, Fallgatter AJ. Cerebral oxygenation changes in the prefrontal cortex: effects of age and gender. Neurobiol Aging. 2006;27(6):888-94.
52.Fristoe NM, Salthouse TA, Woodard JL. Examination of age-related deficits on the Wisconsin Card Sorting Test. Neuropsychology. 1997;11(3):428-36.
53.Rhodes MG. Age-related differences in performance on the Wisconsin card sorting test: a meta-analytic review. Psychol Aging. 2004;19(3):482-94.
54.Nyhus E, Barcelo F. The Wisconsin Card Sorting Test and the cognitive assessment of prefrontal executive functions: a critical update. Brain Cogn. 2009;71(3):437-51.
55.Smith EE, Jonides J. Storage and executive processes in the frontal lobes. Science. 1999;283(5408):1657-61.
56.Chuang CC, Chen CM, Hsieh YS, Liu TC, Sun CW. Brain structure and spatial sensitivity profile assessing by near-infrared spectroscopy modeling based on 3D MRI data. J Biophotonics. 2013;6(3):267-74.
57.Wang L, Ayaz H, Izzetoglu M. Investigation of the source-detector separation in near infrared spectroscopy for healthy and clinical applications. J Biophotonics. 2019;12(11):e201900175.
58.Hoshi Y, Kobayashi N, Tamura M. Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol (1985). 2001;90(5):1657-62.
59.Strangman G, Culver JP, Thompson JH, Boas DA. A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage. 2002;17(2):719-31.
60.Isingrini M, Vazou F. Relation between fluid intelligence and frontal lobe functioning in older adults. Int J Aging Hum Dev. 1997;45(2):99-109.
61.Rodriguez-Aranda C, Sundet K. The frontal hypothesis of cognitive aging: factor structure and age effects on four frontal tests among healthy individuals. J Genet Psychol. 2006;167(3):269-87.
62.Hock C, Muller-Spahn F, Schuh-Hofer S, Hofmann M, Dirnagl U, Villringer A. Age dependency of changes in cerebral hemoglobin oxygenation during brain activation: a near-infrared spectroscopy study. J Cereb Blood Flow Metab. 1995;15(6):1103-8.
63.Kahlaoui K, Di Sante G, Barbeau J, Maheux M, Lesage F, Ska B, et al. Contribution of NIRS to the study of prefrontal cortex for verbal fluency in aging. Brain Lang. 2012;121(2):164-73.
64.Ohsugi H, Ohgi S, Shigemori K, Schneider EB. Differences in dual-task performance and prefrontal cortex activation between younger and older adults. BMC Neurosci. 2013;14:10.
65.Kwee IL, Nakada T. Dorsolateral prefrontal lobe activation declines significantly with age--functional NIRS study. J Neurol. 2003;250(5):525-9.
66.Kameyama M, Fukuda M, Uehara T, Mikuni M. Sex and age dependencies of cerebral blood volume changes during cognitive activation: a multichannel near-infrared spectroscopy study. Neuroimage. 2004;22(4):1715-21.
67.Cabeza R, Anderson ND, Locantore JK, McIntosh AR. Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage. 2002;17(3):1394-402.
68.Hou X, Liu P, Gu H, Chan M, Li Y, Peng SL, et al. Estimation of brain functional connectivity from hypercapnia BOLD MRI data: Validation in a lifespan cohort of 170 subjects. Neuroimage. 2019;186:455-63.
69.Zlatar ZZ, Towler S, McGregor KM, Dzierzewski JM, Bauer A, Phan S, et al. Functional language networks in sedentary and physically active older adults. J Int Neuropsychol Soc. 2013;19(6):625-34.
70.Lundberg MS, Crow MT. Age-related changes in the signaling and function of vascular smooth muscle cells. Exp Gerontol. 1999;34(4):549-57.
71.D'Esposito M, Deouell LY, Gazzaley A. Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nat Rev Neurosci. 2003;4(11):863-72.
72.Yakushiji Y. [Trends and challenges in clinical research on cerebral small vessel disease, with a particular emphasis on type-1 small vessel disease]. Rinsho Shinkeigaku. 2020;60(11):743-51.
73.Li Q, Yang Y, Reis C, Tao T, Li W, Li X, et al. Cerebral Small Vessel Disease. Cell Transplant. 2018;27(12):1711-22.
74.de Laat KF, Tuladhar AM, van Norden AG, Norris DG, Zwiers MP, de Leeuw FE. Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain. 2011;134(Pt 1):73-83.
75.Del Bene A, Makin SD, Doubal FN, Inzitari D, Wardlaw JM. Variation in risk factors for recent small subcortical infarcts with infarct size, shape, and location. Stroke. 2013;44(11):3000-6.
76.Wardlaw JM. William M. Feinberg Award for Excellence in Clinical Stroke: Small Vessel Disease; a Big Problem, But Fixable. Stroke. 2018;49(7):1770-5.
77.Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol. 2013;12(8):822-38.
78.Zhuang FJ, Chen Y, He WB, Cai ZY. Prevalence of white matter hyperintensities increases with age. Neural Regen Res. 2018;13(12):2141-6.
79.Raz N, Rodrigue KM, Kennedy KM, Dahle C, Head D, Acker JD. Differential age-related changes in the regional metencephalic volumes in humans: a 5-year follow-up. Neurosci Lett. 2003;349(3):163-6.
80.Huang CC, Chou KH, Lee WJ, Yang AC, Tsai SJ, Chen LK, et al. Brain white matter hyperintensities-predicted age reflects neurovascular health in middle-to-old aged subjects. Age Ageing. 2022;51(5).
81.de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry. 2001;70(1):9-14.
82.de Leeuw FE, de Groot JC, Oudkerk M, Witteman JC, Hofman A, van Gijn J, et al. Hypertension and cerebral white matter lesions in a prospective cohort study. Brain. 2002;125(Pt 4):765-72.
83.Zhu YC, Chabriat H, Godin O, Dufouil C, Rosand J, Greenberg SM, et al. Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging. J Neurol. 2012;259(3):530-6.
84.Kim KW, MacFall JR, Payne ME. Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biol Psychiatry. 2008;64(4):273-80.
85.Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189-98.
86.Shyu YI, Yip PK. Factor structure and explanatory variables of the Mini-Mental State Examination (MMSE) for elderly persons in Taiwan. J Formos Med Assoc. 2001;100(10):676-83.
87.Satterthwaite TD, Elliott MA, Gerraty RT, Ruparel K, Loughead J, Calkins ME, et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage. 2013;64:240-56.
88.Amemiya S, Kunimatsu A, Saito N, Ohtomo K. Cerebral hemodynamic impairment: assessment with resting-state functional MR imaging. Radiology. 2014;270(2):548-55.
89.Cole JH, Leech R, Sharp DJ, Alzheimer's Disease Neuroimaging I. Prediction of brain age suggests accelerated atrophy after traumatic brain injury. Ann Neurol. 2015;77(4):571-81.
90.Aso T, Jiang G, Urayama SI, Fukuyama H. A Resilient, Non-neuronal Source of the Spatiotemporal Lag Structure Detected by BOLD Signal-Based Blood Flow Tracking. Front Neurosci. 2017;11:256.
91.Satow T, Aso T, Nishida S, Komuro T, Ueno T, Oishi N, et al. Alteration of Venous Drainage Route in Idiopathic Normal Pressure Hydrocephalus and Normal Aging. Front Aging Neurosci. 2017;9:387.
92.Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95-113.
93.Schmidt P, Gaser C, Arsic M, Buck D, Forschler A, Berthele A, et al. An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. Neuroimage. 2012;59(4):3774-83.
94.Ashburner J, Friston KJ. Voxel-based morphometry--the methods. Neuroimage. 2000;11(6 Pt 1):805-21.
95.Griffanti L, Jenkinson M, Suri S, Zsoldos E, Mahmood A, Filippini N, et al. Classification and characterization of periventricular and deep white matter hyperintensities on MRI: A study in older adults. Neuroimage. 2018;170:174-81.
96.Anderson JS, Druzgal TJ, Lopez-Larson M, Jeong EK, Desai K, Yurgelun-Todd D. Network anticorrelations, global regression, and phase-shifted soft tissue correction. Hum Brain Mapp. 2011;32(6):919-34.
97.Nishida S, Aso T, Takaya S, Takahashi Y, Kikuchi T, Funaki T, et al. Resting-state Functional Magnetic Resonance Imaging Identifies Cerebrovascular Reactivity Impairment in Patients With Arterial Occlusive Diseases: A Pilot Study. Neurosurgery. 2019;85(5):680-8.
98.Chung CP, Lee WJ, Chou KH, Lee PL, Peng LN, Wang PN, et al. Frailty and dementia risks in asymptomatic cerebral small vessel disease: A longitudinal cohort study. Arch Gerontol Geriatr. 2022;102:104754.
99.Mihara F, Kuwabara Y, Tanaka A, Yoshiura T, Sasaki M, Yoshida T, et al. Reliability of mean transit time obtained using perfusion-weighted MR imaging; comparison with positron emission tomography. Magn Reson Imaging. 2003;21(1):33-9.
100.Andeweg J. The anatomy of collateral venous flow from the brain and its value in aetiological interpretation of intracranial pathology. Neuroradiology. 1996;38(7):621-8.
101.Smith DE, Rapp PR, McKay HM, Roberts JA, Tuszynski MH. Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J Neurosci. 2004;24(18):4373-81.
102.Smith EE, Egorova S, Blacker D, Killiany RJ, Muzikansky A, Dickerson BC, et al. Magnetic resonance imaging white matter hyperintensities and brain volume in the prediction of mild cognitive impairment and dementia. Arch Neurol. 2008;65(1):94-100.
103.Turk M, Zaletel M, Pretnar-Oblak J. Ratio between carotid artery stiffness and blood flow - a new ultrasound index of ischemic leukoaraiosis. Clin Interv Aging. 2016;11:65-71.
104.Puglisi V, Bramanti A, Lanza G, Cantone M, Vinciguerra L, Pennisi M, et al. Impaired Cerebral Haemodynamics in Vascular Depression: Insights From Transcranial Doppler Ultrasonography. Front Psychiatry. 2018;9:316.
105.Purkayastha S, Fadar O, Mehregan A, Salat DH, Moscufo N, Meier DS, et al. Impaired cerebrovascular hemodynamics are associated with cerebral white matter damage. J Cereb Blood Flow Metab. 2014;34(2):228-34.
電子全文 電子全文(網際網路公開日期:20241120)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top