跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/11 06:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳汶慈
研究生(外文):Wen-Tzu Chen
論文名稱:慣性測量單元之空間座標轉換應用於游泳選手動作分析
論文名稱(外文):Apply Coordinate Transformation of Inertial Measurement Unit to Swimmers’ Motion Analysis
指導教授:施博仁施博仁引用關係
指導教授(外文):Po-Jen Shih
口試委員:林謙如林季嬋
口試委員(外文):Chien-Ju LinChi-Chan Lin
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:94
中文關鍵詞:游泳生物力學慣性測量單元速度演算空間座標轉換自由式划手分析跳水動作評估
外文關鍵詞:swimming biomechanicsInertial Measurement Unitcoordinate transformationswimming speedfreestyle stroke analysisstart performance assessment
DOI:10.6342/NTU202302871
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景:目前仍缺乏能夠在最小動作干擾下,記錄游泳者從跳台起跳到觸牆之間連續速度的測量設備。因此,在競技游泳領域中,尚未有標準化的方式分析實際游泳過程的前進速度、識別划水階段和推進力。實驗目的:本研究旨在利用易操作和高解析度的設備收集游泳者的動作訊號,從而對游泳過程進行各面向分析。此外,從選手前進的瞬時速度與各項游泳指標比較,可以深入了解人體與水中環境之間的相互作用。方法:為了確保測量準確並最小化累積誤差,我們結合了慣性測量單元(IMU)和輔助工具,例如:行動裝置攝影和自主開發水中位置偵測系統。將 IMU的運動連續訊號使用座標轉換技術和創新的速度演算法進行數據處理。總共進行了三個實際測驗:(1)不同泳速的自由式,(2)評估跳水模式,以及 (3)測量50公尺自由自由式游泳期間的速度變化。結果:運用IMU可量化每次划手週期中的手掌方向和各划手階段持續時間。並以計算出的前進瞬時速度和受試者軀幹的角速度,比較二種跳水技術效益。最後,我們利用IMU瞬時速度訊號來分析游泳全程動作技術所產生的推進力效益。結論:本實驗結合IMU、座標轉換和自主開發位置偵測系統的演算法,期許未來能建立更廣泛應用於不同水平游泳運動員的游泳表現評估系統。
Background: Because the absence of measurement devices recording a swimmer's speed from the starting block to the wall touch with minimal interference, hinders the standardization of evaluating forward speed, stroke phase identification, and propulsive force. Objective : The study aims to collect swimmers’ motion utilizing streamlined and high-resolution equipment, allowing for a comprehensive analysis of swimming patterns. Moreover, the calculation of instantaneous forward speed and the comparison of swimming indicators provide insights into the mechanical interactions in water. Methods: To ensure accurate measurements and minimize cumulative errors, we integrate Inertial Measurement Units (IMUs) and auxiliary tools, such as mobile device and a self-developed detection system. The IMU signal data is processed using coordinate transformation techniques and innovative thrust speed calculation algorithms. We conducting three experiments: (1)freestyle at various speeds, (2)evaluating starting modes, and (3)measuring speed during a 50-meter freestyle swim. Result: We quantify hand direction during each stroke cycle and the stroke phases duration. Analysis of thrust speed, and body angular velocity enables comparative evaluation of two types of starting performance techniques. Finally, we used the IMU instantaneous speed signal to analysis the effective propulsion in different stroke phases. Conclusion: This experiment combines IMUs, coordinate transformation techniques, and a self-developed detection system to establish a swimming performance evaluation system that can potentially be applied for swimmers at different levels.
謝誌 I
中文摘要 II
ABSTRACT III
第一章 緒論 1
1.1 前言 1
1.1.1 國外游泳科學研究現況 1
1.1.2 台灣游泳科學研究現況 2
1.2 研究動機 2
1.3 文獻回顧 4
1.3.1 游泳運動生物力學 4
1.3.2 測量設備 10
1.3.3 游泳表現評估系統 13
1.4 IMU組成與功能 14
1.4.1 加速度規 15
1.4.2 陀螺儀 16
1.4.3 磁場感測器 18
1.4.4 IMU特性與局限 18
1.4.5 IMU局部身體部位相關探討 20
第二章 座標轉換 22
2.1 空間座標定義 22
2.2 空間座標轉換演算方法 24
2.2.1 旋轉矩陣介紹 25
2.2.2 尤拉角介紹 26
2.2.3 四元數法介紹 28
2.3 基於IMU游泳生物力學的座標轉換 30
2.4 IMU速度演算與水中偵測系統開發 31
2.4.1 基於IMU的速度演算方法 32
2.4.2 驗證實驗 38
2.4.3 水中位置偵測系統開發 43
第三章 慣性測量單元運用於奧運選手技術分析 48
3.1 不同速度下划手動作分析 49
3.1.1 受試者、測試地點及項目 49
3.1.2 實驗設備與座標定義 50
3.1.3 實驗流程 52
3.1.4 數據分析 53
3.2 跳水模式的速度分析 55
3.2.1 受試者、測試地點及項目 55
3.2.2 實驗設備與座標定義 55
3.2.3 實驗流程 56
3.2.3 數據分析 56
3.3 50公尺自由式速度與動作技術分析 59
3.3.1 受試者、測試地點及項目 60
3.3.2 實驗設備與座標定義 60
3.3.3 實驗流程 61
3.3.4 數據分析 62
第四章 結果與討論 66
4.1 不同游泳速度的自由式 66
4.1.2 實驗結果 66
4.1.2 討論 72
4.2 跳水實驗結果與討論 74
4.2.1 實驗結果 74
4.2.2 討論 79
4.3 50公尺自由式結果與討論 80
4.3.1 實驗結果 80
4.3.2 討論 84
第五章 結論與未來展望 86
5.1 結論 86
5.2 未來展望 88
參考資料 90
1.Cortesi, M., Giovanardi, A., Gatta, G., Mangia, A. L., Bartolomei, S., & Fantozzi, S., Inertial sensors in swimming: Detection of stroke phases through 3D wrist trajectory. . Journal of Sports Science & Medicine, 2019. 18(3): p. 438.
2Kadi, T., et al., Novel Method for Estimating Propulsive Force Generated by Swimmers’ Hands Using Inertial Measurement Units and Pressure Sensors. Sensors, 2022. 22(17): p. 6695.
3Cohen, R.C., et al., Studying the effects of asymmetry on freestyle swimming using smoothed particle hydrodynamics. Computer Methods in Biomechanics and Biomedical Engineering, 2020. 23(7): p. 271-284.
4Koga, D., et al., Effects of exceeding stroke frequency of maximal effort on hand kinematics and hand propulsive force in front crawl. Sports Biomechanics, 2020: p. 1-13.
5Hamidi Rad, M., et al., SWIMMING PHASE-BASED PERFOMANCE EVALUATION USING A SINGLE IMU IN FRONT CRAWL. ISBS Proceedings Archive, 2021. 39(1): p. 61.
6Hamidi Rad, M., et al., SmartSwim, a Novel IMU-Based Coaching Assistance. Sensors, 2022. 22(9): p. 3356.
7Clément, J., Charbonneau, M., & Thompson, M., Instantaneous velocity estimation for the four swimming strokes using a 3-axis accelerometer: Validation on paralympic athletes. Journal of Biomechanics, 2021. 117: p. 110261.
8Dadashi, F., et al., Front-Crawl Instantaneous Velocity Estimation Using a Wearable Inertial Measurement Unit. Sensors, 2012. 12(10): p. 12927-12939.
9Hyodo, H., et al., Relationship between Swimming Velocity and Trunk Twist Motion in Short-Distance Crawl Swimming. Biomechanics, 2023. 3(2): p. 193-203.
10吳淑真, 從 2020 東京奧運展望臺灣運動科研的發展. 人文與社會科學簡訊, 2021. 23(1).
11林謙如, 以角速度感測器觀測自由式選手動作與矯正回饋, in 華人運動生物力學期刊. 2022.
12Mullen, G.J., Swimming science: Optimizing training and performance. 2018: University of Chicago Press.
13Marinho, D.A., et al., Smartpaddle® as a New Tool for Monitoring Swimmers’ Kinematic and Kinetic Variables in Real Time. The Open Sports Sciences Journal, 2022. 15(1).
14FINA Swimming World Cup 2021,. 2018 - 2023 World Aquatics; Available from: https://www.worldaquatics.com/competitions/1381/fina-swimming-world-cup-2021/rankings?scoringId=3af19871-08a2-49a4-95a7-c4b161d366ed.
15Seifert, L., D. Chollet, and B. Bardy, Effect of swimming velocity on arm coordination in the front crawl: a dynamic analysis. Journal of sports sciences, 2004. 22(7): p. 651-660.
16Morais, J.E., et al., Upper-limb kinematics and kinetics imbalances in the determinants of front-crawl swimming at maximal speed in young international level swimmers. Scientific Reports, 2020. 10(1).
17Dadashi, F., et al., Automatic front-crawl temporal phase detection using adaptive filtering of inertial signals. Journal of sports sciences, 2013. 31(11): p. 1251-1260.
18Toussaint, H.M., et al., Effect of fatigue on stroking characteristics in an arms-only 100-m front-crawl race. Medicine and Science in Sports and Exercise, 2006. 38(9): p. 1635-1642.
19McGibbon, K.E., et al., Pacing in Swimming: A Systematic Review. Sports Medicine, 2018. 48(7): p. 1621-1633.
20Schnitzler, C., Ludovic Seifert, and Chris Button., Adaptability in swimming pattern: How propulsive action is modified as a function of speed and skill. Frontiers in Sports and Active Living 3 2021. 618990.
21Cortesi, M., et al., Arm-Stroke Descriptor Variability during 200-m Front Crawl Swimming. Sensors, 2021. 21(2): p. 324.
22Simbaña Escobar, D., et al., Functional Role of Movement and Performance Variability: Adaptation of Front Crawl Swimmers to Competitive Swimming Constraints. Journal of Applied Biomechanics, 2018. 34(1): p. 53-64.
23Chollet, Chalies, and Chatard, A New Index of Coordination for the Crawl: Description and Usefulness. International Journal of Sports Medicine, 2000. 21(1): p. 54-59.
24Koga, D., et al., Relationship between hand kinematics, hand hydrodynamic pressure distribution and hand propulsive force in sprint front crawl swimming. Frontiers in Sports and Active Living, 2022. 4: p. 15.
25Monnet, T., et al., Measurement of three-dimensional hand kinematics during swimming with a motion capture system: a feasibility study. Sports Engineering, 2014. 17(3): p. 171-181.
26Samson, M., Monnet, T., Bernard, A., Lacouture, P., & David, L., Comparative study between fully tethered and free swimming at different paces of swimming in front crawl. Sports biomechanics., 2018.
27Lopes, T.J., et al., Using Wearables to Monitor Swimmers’ Propulsive Force to Get Real-Time Feedback and Understand Its Relationship to Swimming Velocity. Applied Sciences, 2023. 13(6): p. 4027.
28Hamidi Rad, M., Gremeaux, V., Dadashi, F., & Aminian, K. , A Novel Macro-Micro Approach for Swimming Analysis in Main Swimming Techniques Using IMU Sensors. Frontiers in bioengineering and biotechnology, 2021(8): p. 597738.
29Cappaert, J.M., D.L. Pease, and J.P. Troup, Three-dimensional analysis of the men‘s 100-m freestyle during the 1992 Olympic Games. Journal of applied biomechanics, 1995. 11(1): p. 103-112.
30Seifert, L., et al., Arm coordination, power, and swim efficiency in national and regional front crawl swimmers. Human movement science, 2010. 29(3): p. 426-439.
31Seifert, L., Toussaint, H. M., Alberty, M., Schnitzler, C., & Chollet, D, Arm coordination, power, and swim efficiency in national and regional front crawl swimmers. Human Movement Science, , 2010. 29(3): p. 426-439.
32Bixler, B. and S. Riewald, Analysis of a swimmer's hand and arm in steady flow conditions using computational fluid dynamics. Journal of biomechanics, 2002. 35(5): p. 713-717.
33Samson, M., et al., Analysis of a swimmer’s hand and forearm in impulsive start from rest using computational fluid dynamics in unsteady flow conditions. Journal of biomechanics, 2018. 67: p. 157-165.
34Barbosa, T.M., et al., Arm-pull thrust in human swimming and the effect of post-activation potentiation. Scientific Reports, 2020. 10(1).
35Morais, J., et al., Agreement between Different Methods to Measure the Active Drag Coefficient in Front-Crawl Swimming. Journal of Human Kinetics, 2023. 86(1): p. 41-49.
36Dadashi, F., G. Millet, and K. Aminian, Front-crawl stroke descriptors variability assessment for skill characterisation. Journal of sports sciences, 2016. 34(15): p. 1405-1412.
37Puel, F., et al., 3D kinematic and dynamic analysis of the front crawl tumble turn in elite male swimmers. Journal of Biomechanics, 2012. 45(3): p. 510-515.
38Craig, A.B., B. Termin, and D.R. Pendergast, Simultaneous recordings of velocity and video during swimming. Portuguese Journal of Sport Sciences, 2006. 6(2): p. 32-35.
39Hamidi Rad, M., et al., Swimming phase-based performance evaluation using a single IMU in main swimming techniques. Frontiers in bioengineering and biotechnology, 2021: p. 1268.
40Faisal, I.A., T. Waluyo Purboyo, and A. Siswo Raharjo Ansori, A Review of accelerometer sensor and gyroscope sensor in IMU sensors on motion capture. J. Eng. Appl. Sci 2019. 15.3 p. 826-829.
41Dadafshar, M., Accelerometer and gyroscopes sensors: operation, sensing, and applications. Maxim Integrated [online], 2014.
42Passaro, V.M.N., et al., Gyroscope Technology and Applications: A Review in the Industrial Perspective. Sensors, 2017. 17(10): p. 2284.
43Zhang, H., et al., An Interface ASIC Design of MEMS Gyroscope with Analog Closed Loop Driving. Sensors, 2023. 23(5): p. 2615.
44Madgwick, S.O.H., A.J.L. Harrison, and R. Vaidyanathan. Estimation of IMU and MARG orientation using a gradient descent algorithm. 2011. IEEE.
45Kok, M., J.D. Hol, and T.B. Schön, Using Inertial Sensors for Position and Orientation Estimation. Foundations and Trends® in Signal Processing, 2017. 11(1-2): p. 1-153.
46Feng, D., et al., Kalman-Filter-Based Integration of IMU and UWB for High-Accuracy Indoor Positioning and Navigation. IEEE Internet of Things Journal, 2020. 7(4): p. 3133-3146.
47Wilson, S., Eberle, H., Hayashi, Y., Madgwick, S. O., McGregor, A., Jing, X., & Vaidyanathan, R, Formulation of a new gradient descent MARG orientation algorithm: Case study on robot teleoperation. Mechanical Systems and Signal Processing, 2019. 130: p. 183-200.
48Neumann, D.A., Kinesiology of the musculoskeletal system-e-book: foundations for rehabilitation. 2016: Elsevier Health Sciences.
49Hol, J.D., Sensor fusion and calibration of inertial sensors, vision, ultra-wideband and GPS. 2011, Linköping University Electronic Press.
50Diebel, J., Representing attitude: Euler angles, unit quaternions, and rotation vectors. Matrix, 2006. 58(15-16): p. 1-35.
51Madgwick, S., An efficient orientation filter for inertial and inertial/magnetic sensor arrays. Report x-io and University of Bristol (UK), 2010. 25: p. 113-118.
52廖文選, 陳., 以 DSP 實現 GPS 與 IMU 感測器整合系統. 99年.
53陳宗麟, 高., 使 用 平 面 加 速 規 及 磁 場 感 測 器 之 姿 態 估 測 器. 95年.
54Craig, J.J., Introduction to robotics. 2006: Pearson Educacion.
55Dadashi, F., Millet, G., & Aminian, K, Inertial measurement unit and biomechanical analysis of swimming: an update. . Swiss Society of Sports Medicine, 2013. 61(ARTICLE): p. 21-26.
56Fernandes, A., et al., Intracycle Velocity Variation in Swimming: A Systematic Scoping Review. Bioengineering, 2023. 10(3): p. 308.
57江虹玲, 王振興, and 黃滄海, 游泳穿戴式裝置開發之文獻回顧. 中華體育季刊, 2019. 33(4): p. 261-272.
58Bächlin, M. and G. Tröster, Swimming performance and technique evaluation with wearable acceleration sensors. Pervasive and mobile computing, 2012. 8(1): p. 68-81.
59Vantorre, J., D. Chollet, and L. Seifert, Biomechanical analysis of the swim-start: A review. Journal of sports science & medicine, 2014. 13(2): p. 223.
60Fantozzi, S., Giovanardi, A., Magalhães, F. A., Di Michele, R., Cortesi, M., & Gatta, G., Assessment of three-dimensional joint kinematics of the upper limb during simulated swimming using wearable inertial-magnetic measurement units. Journal of Sports Sciences, 2016. 34(11): p. 1073-1080.
61VICON CAPTURE.U USER GUIDE. 2022.
62黃智勇, 游泳選手抓台式與起跑式出發動作之運動學分析., in 臺灣師範大學體育學系學位論文. 2002.
63Guignard, B., et al., Behavioral Dynamics in Swimming: The Appropriate Use of Inertial Measurement Units. Front Psychol, 2017. 8: p. 383.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top