跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴蕙萍
研究生(外文):Huei-Pin Lai
論文名稱:SDHD相關之副神經節瘤的親源遺傳模式
論文名稱(外文):Parent-of-origin Effects on SDHD related Paragangliomas
指導教授:楊偉勛楊偉勛引用關係
指導教授(外文):Wei-Shiung Yang
口試委員:陳沛隆吳婉禎
口試委員(外文):Pei-Lung ChenWan-Zhen Wu
口試日期:2023-07-12
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:分子醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:58
中文關鍵詞:SDHD相關之遺傳性副神經節親源遺傳模式次世代定序單核苷酸變異探針假性缺氧
外文關鍵詞:SDHD related paragangliomaParent-of-origin effectNext general sequencingSingle nucleotides variation probespseudohypoxia
DOI:10.6342/NTU202302777
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
背景
SDHD 及 SDHAF2 相關之遺傳性副神經節瘤有特殊的親源遺傳模式。當突變基因由父親遺傳給子代時才會形成腫瘤。這種特殊的遺傳模式可能與第 11 p15.5-15.4 在腫瘤中母源基因的缺失有關,過去已經有人使用熒光原位雜合(Fluorescent In Situ Hybridization)、異質性缺失分析(Loss of Heterozygosity Analysis)、微衛星標記(Microsatellite Marker)、單核苷酸多態性陣列(Single Nucleotide Polymorphism Array)等實驗方式證實。
目的
由於先前的研究方式在 11p15.5-15.4 染色體區域解析度較低。我們使用新的實驗方式,單核苷酸變異探針(Single Nucleotides Variation Probe),此方式偵測在11p15.5-15.4 染色體區域是否有基因缺失及判定缺失的來源有較高的解析度。
方法
我們收集了 13 個 SDHD 相關之遺傳性副神經節瘤腫瘤和部分 SDHD 患者父母血液、23 個非 SDHD 相關之副神經節瘤腫瘤及 1 個 SDHAF2 相關腎上腺髓質增生(Adrenal Medullary Hyperplasia)檢體。使用單核苷酸變異探針合併次世代定序(Next Generation Sequencing)原理,對 12 個位於 11p15.5-15.4 的母源表現基因進行 1-8 個不同點位單核苷酸變異的序列分析。將患者父母血液及患者腫瘤的單核苷酸變異數據進行比對和判定,我們可以證明腫瘤檢體上是否有母源基因缺失。
結果
在 13 個 SDHD 相關之遺傳性副神經節瘤樣本中,有 12 個樣本的異質性不平衡率(Heterozygosity Imbalance Ratio) 超過百分之 75,只有一個腫瘤沒有異質性不平衡。在收集到父母血液或母親血液的 SDHD 家族中,有四位患者可判定百分之 80 以上腫瘤的基因缺失來自母親,且無證據顯示父親基因缺失。在 SDHAF2相關腎上腺髓質增生(Adrenal Medullary Hyperplasia)檢體中只有 H19 有異質性不平衡。在非 SDHD 相關副神經節瘤腫瘤檢體中,突變基因和假性缺氧 (Pseudohypoxia)有關的檢體,異質性不平衡率也較高。
結論
使用單核苷酸變異探針方式可以證實 SDHD 相關之遺傳性副神經節樣本在 11p15.5-15.4 區域有母源基因的缺失。H19 為可能造成父源遺傳模式的抑癌基 因。11p15.5-15.4 區域有母源基因的缺失與假性缺氧的致癌模式有正相關。
Background
Hereditary paraganglioma-related germline SDHD (succinate dehydrogenase D) and SDHAF2 (Succinate Dehydrogenase Complex Assembly Factor 2) exhibit a striking parent-of-origin effect. The mutant gene must be passed down from the father in order for tumor to occur. This particular pattern of inheritance may be related to the deletion of maternal fragments of 11p15.5-15.4 in tumors, which has been confirmed in the past studies by methods of fluorescent in situ hybridization (FISH), loss of heterozygosity analysis (LOH analysis), microsatellite marker and single nucleotide polymorphism array (SNP array).
Aim
The resolution of previous studies was low. For higher resolution of gene on chromosome 11p15.5-15.4, we designed a novel approach - single nucleotides variation probe.
Methods
We obtained blood samples from some SDHD patients' parents, specimens of 13 paraganglioma associated to SDHD through inheritance, 23 paraganglioma tumors unrelated to SDHD, and one adrenal medullary hyperplasia linked to SDHAF2.On 12 maternally expressed genes located at 11p15.5-15.4, the sequencing analysis of 1-8 single-nucleotide variations was carried out using the single nucleotide variation probe and next generation sequencing (NGS) method. We can establish whether there is a maternal gene deletion in the tumor sample by comparing and analyzing the single nucleotide variation data of the patient's tumor and the blood from the patient's parents.
Results
Only one tumor showed no heterozygosity imbalance among of the 13 hereditary paraganglioma samples related to SDHD, while 12 samples had a heterozygosity imbalance ratio (H/I Ratio) more than 75%. There were four patients who could determine that more than 80% of the gene deletions in the tumor came from the mother and there was no evidence of the father's gene deletion in the SDHD family whose parents' blood or mother's blood was obtained. In SDHAF2 related adrenal medullary hyperplasia (AMH), only H19 had loss of heterozygosity. The heterozygosity imbalance ratio (H/I Ratio) was higher in paraganglioma with mutant gene related to pseudohypoxia in Non-SDHD group.
Conclusions
Using a single nucleotide variant probe (SNP probe) strategy, it was determined that the SDHD related hereditary paraganglioma had maternal gene loss in the 11p15.5–15.4. The tumor suppressor gene H19 might result in paternal inheritance. Positive correlations were found between maternal gene deletions in the 11p15.5– 15.4 and pseudohypoxic oncogenic patterns.
口試委員會審定書 1
中文摘要 2
Abstract 4
目錄 7
第一章、Introduction 10
第二章、Methods 13
2.1 Study Design 13
Maternal expressed gene on 11p15.5-15.4 14
Select SNVs 17
Patient and samples 18
2.2 SDHD Carrier of Family 19
2.3 Single nucleotide variation probe analysis 21
2.4 Data Analysis 22
第三章、Results 25
3.1 Loss of Heterozygosity on Chromosome 11p15.5-15.4 25
SDHD group 25
Non-SDHD group 26
3.2 Maternal loss on chromosome 11p15.5-15.4 29
SDHD proband with parent blood DNA 29
SDHD Proband with mother blood DNA 32
3.3 Located the maternal expressed tumor suppress genes 34
SDHAF2 related adrenal medullary hyperplasia 34
Paraganglioma with chromosome 11 retention 35
Heterozygosity percentage 37
3.4 Loss of heterozygosity in 11p15.5-15.4 related to pseudohypoxia 37
第四章、Discussion 38
4.1 Review of Research Findings 38
H19 - a candidate tumor modifier 39
Single nucleotide variation probe – New methods 42
4.2 Limitations of our study 43
4.3 Implications of the Study 44
4.4 Recommendations for Future Research 45
4.5 Conclusions 46
References 47
Supplement 1. Independent T-test analysis of heterozygosity imbalance ratio of SDHD and Non-SDHD groups 51
Supplement 2. Family 1-3, 47 SNV probes analysis 52
Supplement 3. Family 4-6, 47 SNV probes analysis 53
Supplement 4. SDHD group, 47 SNV probes analysis, heterozygosity percentage 54
Supplement 5-1. Non-SDHD group, 47 SNV probes analysis, heterozygosity percentage (H/I ratio >0.55) 55
Supplement 5-2. Non-SDHD group, 47 SNVs probes analysis, heterozygosity percentage (H/I ratio <0.55) 56
Supplement 6. The H/I ratio of cluster 1A and 1B, Cluster 2 57
Supplement 7. 12 genes SNV coverage (base. pair) and coverage rate 58
1. Joakim Crona, David Ta ̈ıeb, and Karel Pacak New Perspectives on Pheochromocytoma and Paraganglioma: Toward a Molecular Classification Endocrine Reviews, December 2017, 38(6):489–515
2. Lam AK. Update on adrenal tumours in 2017 World Health Organization (WHO) of endocrine tumours. Endocr Pathol. 2017;28(3):213-227.
3. Svenja Nölting, Nicole Bechmann, David Taieb, et al.. Personalized Management of Pheochromocytoma and Paraganglioma Endocrine Reviews, 2022, Vol. 43, No. 2, 199–239
4. Neumann HP, Bausch B, McWhinney SR, et al... Germline mutations in nonsyndromic pheochromocytoma. N Engl J Med. 2002; 34619:1459–1466.
5. Rasheed MRHA, Tarjan G. Succinate Dehydrogenase Complex: An Updated Review. Arch Pathol Lab Med. 2018 Dec;142(12):1564-1570
6. Attje S. Hoekstraa, Peter Devileea,b, Jean-Pierre Bayleya Models of parent-of- origin tumorigenesis in hereditary paraganglioma Seminars in Cell & Developmental Biology 43 (2015) 117–124
7. Hensen EF, Jordanova ES, van Minderhout IJHM, et al... Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD linked paraganglioma and phaeochromocytoma families. Oncogene. 2004; 2323:4076–4083.
8. Attje S. Hoekstra, Erik F. Hensen, Ekaterina S. Jordanova, et al... Loss of
maternal chromosome 11 is a signature event in SDHAF2, SDHD, and VHL- related paragangliomas, but less significant in SDHB-related paragangliomas Oncotarget, 2017, Vol. 8, (No. 9), pp: 14525-1453
9. Jean-Pierre Bayley, Rogier A Oldenburg, Jennifer Nuk et al.. Paraganglioma and pheochromocytoma upon maternal transmission of SDHD mutations BMC Medical Genetics 2014, 15:111
10. Tischler AS and deKrijger RR 15 YEARS OF PARAGANGLIOMA: Pathology of pheochromocytoma and paraganglioma. Endocr Relat Cancer
2015, .22(4):T123-133.
11. Korpershoek E, Petri BJ, Post E, et al.. Adrenal medullary hyperplasia is a precursor lesion for pheochromocytoma in MEN2 syndrome. Neoplasia 2014, 16(10):868-873.
12. Attje S Hoekstra, Ruben D. Addie, Cor Ras, et al... Parent-of-origin tumourigenesis is mediated by an essential imprinted modifier in SDHD-linked paragangliomas: SLC22A18 and CDKN1C are candidate tumour modifiers Human Molecular Genetics, 2016, Vol. 25, No. 17 3715–3728
13. Bayley JP, van Minderhout I, Hogendoorn PC, et al. .. Sdhd and SDHD/H19 knockout mice do not develop paraganglioma or pheochromocytoma. PLoS One. 2009 Nov 24;4(11)
14. Eli Raveh, Imad J. Matouk, Michal Gilon, et al...The H19 Long non-coding RNA in cancer initiation, progression and metastasis – aproposed unifying theory Raveh et al. Molecular Cancer (2015) 14:184
15. van Nederveen FH, Dannenberg H, Sleddens HF, et al... p53 alterations and their relationship to SDHD mutations in parasympathetic paragangliomas. Mod Pathol. 2003 Sep;16(9):849-56.
16. Hiroyuki Tsujimoto, Satoshi Nishizuka, J. Leslie Redpath, et al... Differential gene expression in tumorigenic and nontumorigenic HeLa × normal human fibroblast hybrid cells Mol Carcinog. 1999;26(4):298–304
17. Xiaonan Zhang and Tobias Sjöblom. A Novel Paradigm for Cancer Therapy. Pharmaceuticals 2021, 14, 57
18. Pamela S Larson, Benjamin L Schlechter, Chia-Lin King, et al.. CDKN1C/p57kip2 is a candidate tumor suppressor gene in human breast cancer BMC Cancer 2008, 8:68 doi:10.1186/1471-2407-8-68
19. Yeonjoo Jung, Yukyung Jun, Hee-Young Lee, et al.. Characterization of SLC22A18 as a tumor suppressor and novel biomarker in colorectal cancer. Oncotarget, 2015, Vol. 6, No. 28
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文