跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 07:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李恆瑋
研究生(外文):Heng-Wei Lee
論文名稱:口蹄疫病毒3A蛋白致內質網改造之機制 與病毒空殼蛋白應用
論文名稱(外文):Mechanism of Foot-and-Mouth Disease Virus 3A Induced-ER Remodeling and Diagnostic Application of Virus-Like Particles
指導教授:鄭益謙
指導教授(外文):Ivan-Chen Cheng
口試委員:張惠雯蔡沛學楊平政王宜萱
口試委員(外文):Hui-Wen ChangPei-Shiue TsaiPing-Cheng YangI-Hsuan Wang
口試日期:2022-10-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:獸醫學系
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
論文頁數:142
中文關鍵詞:口蹄疫病毒3A蛋白COPII機制病毒空殼蛋白單源抗體阻斷型ELISA
外文關鍵詞:Foot-and-Mouth Disease Virus3A proteinCOPII pathwayVirus-Like ParticlesMonoclonal antibodiesBlocking ELISA
DOI:10.6342/NTU202210020
相關次數:
  • 被引用被引用:0
  • 點閱點閱:8
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
多數正股RNA病毒入侵細胞後會將宿主胞器進行改造,目的是為了保護病毒RNA與集中資源,營造出對病毒最優化的複製環境。其中包括冠狀病毒、登革熱病毒、腸病毒和口蹄疫病毒。然而,至今人們對於病毒改造胞器的機制多半不甚了解。腸病毒與口蹄疫病毒皆屬於Picornaviridae家族,且有相對大量的研究基礎,值得口蹄疫病毒研究借鏡。已知腸病毒3A蛋白可與COPI因子GBF1作用,可能與改造Golgi或ERGIC(ER-to-Golgi intermediate compartment)相關,改造的胞器稱為replication organelles(ROs)。但文獻指出口蹄疫病毒增殖需要的是COPII因子而非COPI,且改造胞器推測為內質網。因此,本研究主題之一是深度探究口蹄疫病毒3A蛋白與COPII機制,企圖建立一個假說說明口蹄疫病毒是如何將宿主的內質網進行改造。
對應GBF1於COPI機制所扮演的角色,我們大膽假設並證實口蹄疫病毒3A蛋白可與COPII因子Sec12以及Sar1作用。證明的方法為Co-immunoprecipitation assay和Colocalization test。另外,使細胞表現不同長度的3A蛋白並接合螢光蛋白GFP (Green fluorescent protein)或APEX 2後,以螢光顯微鏡或穿透式電子顯微鏡發現3A的第42至92氨基酸(3A全長153氨基酸)就足以將內質網改造,雖然改造功能弱於全長3A。其中「42-59」與「76-92」氨基酸同與Sar1的pocket(第198氨基酸附近)作用。總結,我們的假說為3A與Sar1以及內質網上的Sec12作用,藉此加速Sec12活化Sar1。兩個active Sar1同時與3A上的42-59及72-92氨基酸區域結合,3A貼在內質網膜上藉由這方式將膜外凹成vesicle。該vesicle推測為口蹄疫病毒RO的前身。此機制不需要COPII因子內外coat蛋白參與,顯然與COPII傳統機制迥異。雖然,這model仍需要更精確的其他實驗佐證,但根據我們的實驗結果以及各方的文獻資料,我們認為這model是可能性最高、最完美的詮釋。
除了研究口蹄疫病毒非結構蛋白3A外,我們企圖建立一個無病毒參與的血清檢測試劑,以取代只能於負壓實驗室操作的血清中和試驗(Serum Neutralization test, SNT)。實際構想為以病毒空殼蛋白(Virus-Like Particles, VLPs)為抗原、單源抗體(Monoclonal Antibodies, MAbs)為capture antibody和tracer,建構blocking ELISA (bELISA)。口蹄疫病毒中O血清型別影響全球最為廣泛,包括台灣。其病毒表面上已知有5個中和抗原決定位,當中只有site 1為linear epitope,其它則需要經過蛋白折疊甚至需多個蛋白互相擠壓折疊才能構成。可想而知,常規做法以合成peptide去鑑定單源抗體的結合位並不可行。另外,製備中和決定位突變之病毒在台灣又不恰當。所以,為了從已製備的單源抗體庫存中篩選出site 2 MAb,我們建立了一套以VLP為基準的鑑定平臺。構想為表現wild-type與site 2突變的兩種VLPs,篩選出可與正常VLP作用但無法與site 2 mutated VLP作用的MAb。VLP製備方法參考Polacek等人的論文:表現病毒的P1蛋白與少量的3C酵素,P1經過3C切割後自行組裝成VLP。總之,藉此方法成功篩選出10個site 2 MAbs。
接下來,以同樣方式鑑定出S11B MAb辨識site 3。由於血清中抗體除了5種中和抗體外,還有不具備中和能力的抗體。為了能反映出血清的中和能力,我們原先希望偵測血清中各site的抗體成分。實際作法為以VLP為抗原,搭配不同site MAb為tracer(包括site 1、site 2和site 3),結果以site 3 MAb為tracer所得的值與SN titer有最好的相關性(R2 = 0.8071, n=63)。但同時我們也注意到抗體所佔據體積幾乎涵蓋整個病毒基本重複結構(protomer),代表抗體之間難免有steric effect,這同時意謂著site 3 MAb所測得(阻擋掉)的抗體不只有site 3抗體。以MAb為tracer是不可能精確測得該類抗體的濃度。另一方面,由於VLP容易崩解,我們同時也採用了未切割過的P1蛋白為抗原建構檢測系統。雖然,P1無法呈現site 3,其抗原完整性比VLP差,但最終P1-based bELISA搭配site 1 Q10E MAb為tracer仍有不錯的SN titer相關性(R2 = 0.7680, n=63)。
總之,本論文分成兩大主題。其一,研究口蹄疫病毒非結構蛋白3A如何改造細胞胞器,其機制牽涉到兩個未被發現的作用關係(3A-Sar1和3A-Sec12)。我們相信這機制在口蹄疫病毒RO形成機制中是最為關鍵的環節。另一主題著重在結構蛋白、VLP和抗體。我們建立了一套以VLP為基準的MAb鑑定平臺,以及以VLP或P1為抗原的bELISA檢測系統。希望能在產業和應用端做出貢獻。
Most positive-stranded RNA viruses modify host organelles to protect the viral RNA (vRNA) and concentrate resources. The modified environment optimizes viral replication, such as that of coronavirus, dengue virus, enterovirus, and foot-and-mouth disease virus (FMDV). However, the mechanism of a virus reorganizing cellular endomembranes is barely understood. Enterovirus and FMDV both belong to the Picornaviridae family; therefore, the relatively large body of research on enterovirus can provide a reference for FMDV. Enteroviral 3A protein can interact with the COPI factor GBF1, which is possibly associated with modifying the Golgi and ERGIC (ER-to-Golgi intermediate compartment) into replication organelles (ROs). However, previous research indicates that FMDV replication depends on the COPII factor instead of COPI, and it should be the ER (endoplasmic reticulum) that is modified. Therefore, one of our goals was to profoundly investigate the FMDV 3A protein and the COPII pathway to build a model to explain how FMDV remodels the ER into ROs.
As the counterpart of GBF1 in the COPI pathway, we hypothesized that FMDV 3A interacted with the COPII factors Sec12 and Sar1, which was further proved by co-immunoprecipitation assay and colocalization test in 3A expressing cells. In addition, the region of aa 42–92 for 3A (full length: 153 aa), despite showing relatively low performance compared to its full length, is sufficient for modifying the ER into vesicle-like structures, according to fluorescence microscopy and transmission electron microscopy images of cells expressing truncated 3A fusing to GFP (green fluorescent protein) and APEX2, respectively. Furthermore, the regions of aa 42–59 and aa 76–92 can bind to the pocket on Sar1 (around aa 198). In short, we hypothesize that FMDV 3A enhances Sar1 activation by co-interacting with Sar1 and Sec12. Two active Sar1 interact with aa 42–59 and aa 76–92 of 3A, whereby 3A can directly curve the ER membrane into protrusive vesicle-like structures. These vesicles might be the precursors of FMDV RO. This mechanism is independent of COPII inner and outer coat proteins and distinct from the traditional COPII pathway. Although it still requires further experiments to prove, we think the model we raised is the most reasonable and ideal interpretation for our data and previous references.
In addition to studying the FMDV non-structural protein 3A, we aimed to develop a diagnostic tool for seroconversion of FMDV to replace the serum neutralization test (SNT), which can only be conducted in a negative pressure laboratory. The format of blocking ELISA was designed with FMD virus-like particles (VLPs) as diagnostic antigens and monoclonal antibodies (MAbs) as capture antibodies and tracers. There are five neutralization sites in serotype O, which is prevalent worldwide, including in Taiwan. Only site 1 is a linear epitope; others are conformational structures that demand protein folding and mutual interaction between subunits. Synthetic peptides are thus unsuitable for mapping and screening most neutralizing antibodies. In addition, the generation of site-mutated artificial FMDV is not allowed in Taiwan. Therefore, we established a platform based on VLP to screen out site MAbs from a well-prepared MAb pool. Based on the study by Polacek and colleagues, we expressed viral P1 protein (or site 2 mutated P1) with a relatively low amount of 3C protease within the cells. Processed P1 (or mutated P1) self-assembled into VLPs (or site 2 mutated VLPs (mVLPs)). Ten site 2 MAbs were screened for mutations that abrogated or inhibited the binding.
Next, the site 3 MAb, S11B, was characterized by the same strategy as that of the site 2 MAb. Given that those serum antibodies are composed of five neutralizing antibodies and “non-neutralizing” antibodies, our first goal was to detect each neutralizing antibody by indicating MAbs. Therefore, bELISAs based on VLP paired with the site 1, site 2, and site 3 MAbs were performed. The PI value from VLPs paired with S11B MAb showed the highest correlation to SN titer (R2 = 0.8071, n=63). On the other hand, we found that the site 3 MAb as a tracer would detect (block) not only site 3 antibodies. Because of the large bulk of antibodies compared to repeating unit protomers of virions, it was almost impossible to detect specific antibodies by bELISA with MAb. Although the antigenicity of P1, which failed to present site 3, is not an authentic representation of virions compared to VLPs, it can avoid the problem of dissociation from VLPs. Hence, unprocessed P1 was also used as an antigen for bELISA, and it demonstrated a good performance (R2 = 0.7680, n=63) when paired with the site 1 MAb Q10E.
In summary, this thesis is divided into two parts. One is to study how FMDV non-structure 3A protein modifies the organelles. The modification is involved two undiscovered interactions (3A-Sar1 and 3A-Sec12). We believe the mechanism we raised is most critical in RO formation. The other topic is about structure protein, VLP, and antibodies. We established a platform based on VLP to characterize MAb’s binding sites and a detection system based on VLP or P1 for evaluating vaccinated animal serum, hoping we can contribute to industrial and practical areas.
致謝 I
中文摘要 II
Abstract V
Chapter I General introduction 1
1.1 Foot-and-mouth disease virus 2
1.2 COPI/COPII pathway 8
1.3 Replication organelles 13
1.4 Motor protein complex: dynein/dynactin 18
1.5 Neutralization sites 21
1.6 Virus-like particle 24
1.7 Summary 25
Chapter II Foot-and-Mouth Disease Virus 3A Hijacks Sar1 and Sec12 for ER 44
Remodeling in a COPII-Independent Manner
Chapter III Dynamic Character of Foot-and-Mouth Disease Virus 3A vesicles 76
Chapter IV Neutralizing monoclonal antibodies against porcinophilic foot-and- 91
mouth disease virus mapped to antigenic site 2 by utilizing novel
mutagenic virus-like particles to detect the antigenic change
Chapter V The Use of Distinctive Monoclonal Antibodies in FMD VLP- and P1- 100
Based Blocking ELISA for the Seromonitoring of Vaccinated Swine
Chapter VI General discussion 112
6.1 Mechanism of Foot-and-Mouth Disease Virus 3A Induced-ER Remodeling
6.2 Diagnostic Application of Virus-Like Particles
6.3 Conclusion and Future Works
Abrams, C.C., King, A.M., Belsham, G.J., 1995. Assembly of foot-and-mouth disease virus empty capsids synthesized by a vaccinia virus expression system. J Gen Virol 76 ( Pt 12), 3089-3098.
Aktas, S., Samuel, A.R., 2000. Identification of antigenic epitopes on the foot and mouth disease virus isolate O1/Manisa/Turkey/69 using monoclonal antibodies. Rev Sci Tech 19, 744-753.
Appenzeller-Herzog, C., Hauri, H.P., 2006. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 119, 2173-2183.
Arita, M., Kojima, H., Nagano, T., Okabe, T., Wakita, T., Shimizu, H., 2013. Oxysterol-binding protein family I is the target of minor enviroxime-like compounds. J Virol 87, 4252-4260.
Asfor, A.S., Upadhyaya, S., Knowles, N.J., King, D.P., Paton, D.J., Mahapatra, M., 2014. Novel antibody binding determinants on the capsid surface of serotype O foot-and-mouth disease virus. J Gen Virol 95, 1104-1116.
Barnett, P.V., Samuel, A.R., Pullen, L., Ansell, D., Butcher, R.N., Parkhouse, R.M., 1998. Monoclonal antibodies, against O1 serotype foot-and-mouth disease virus, from a natural bovine host, recognize similar antigenic features to those defined by the mouse. J Gen Virol 79 ( Pt 7), 1687-1697.
Beard, C.W., Mason, P.W., 2000. Genetic determinants of altered virulence of Taiwanese foot-and-mouth disease virus. J Virol 74, 987-991.
Belov, G.A., Feng, Q., Nikovics, K., Jackson, C.L., Ehrenfeld, E., 2008. A critical role of a cellular membrane traffic protein in poliovirus RNA replication. PLoS Pathog 4, e1000216.
Belov, G.A., Nair, V., Hansen, B.T., Hoyt, F.H., Fischer, E.R., Ehrenfeld, E., 2012. Complex dynamic development of poliovirus membranous replication complexes. J Virol 86, 302-312.
Belsham, G.J., McInerney, G.M., Ross-Smith, N., 2000. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J Virol 74, 272-280.
Berryman, S., Moffat, K., Harak, C., Lohmann, V., Jackson, T., 2016. Foot-and-mouth disease virus replicates independently of phosphatidylinositol 4-phosphate and type III phosphatidylinositol 4-kinases. J Gen Virol 97, 1841-1852.
Carter, A.P., Diamant, A.G., Urnavicius, L., 2016. How dynein and dynactin transport cargos: a structural perspective. Curr Opin Struct Biol 37, 62-70.
Chatel-Chaix, L., Bartenschlager, R., 2014. Dengue virus- and hepatitis C virus-induced replication and assembly compartments: the enemy inside--caught in the web. J Virol 88, 5907-5911.
Chen, Y.H., Du, W., Hagemeijer, M.C., Takvorian, P.M., Pau, C., Cali, A., Brantner, C.A., Stempinski, E.S., Connelly, P.S., Ma, H.C., Jiang, P., Wimmer, E., Altan-Bonnet, G., Altan-Bonnet, N., 2015. Phosphatidylserine vesicles enable efficient en bloc transmission of enteroviruses. Cell 160, 619-630.
Cheng, I.C., Liang, S.M., Tu, W.J., Chen, C.M., Lai, S.Y., Cheng, Y.C., Lee, F., Huang, T.S., Jong, M.H., 2006. Study on the porcinophilic foot-and-mouth disease virus I. production and characterization of monoclonal antibodies against VP1. J Vet Med Sci 68, 859-864.
Ci, Y., Liu, Z.Y., Zhang, N.N., Niu, Y., Yang, Y., Xu, C., Yang, W., Qin, C.F., Shi, L., 2020. Zika NS1-induced ER remodeling is essential for viral replication. J Cell Biol 219.
Cortese, M., Lee, J.Y., Cerikan, B., Neufeldt, C.J., Oorschot, V.M.J., Kohrer, S., Hennies, J., Schieber, N.L., Ronchi, P., Mizzon, G., Romero-Brey, I., Santarella-Mellwig, R., Schorb, M., Boermel, M., Mocaer, K., Beckwith, M.S., Templin, R.M., Gross, V., Pape, C., Tischer, C., Frankish, J., Horvat, N.K., Laketa, V., Stanifer, M., Boulant, S., Ruggieri, A., Chatel-Chaix, L., Schwab, Y., Bartenschlager, R., 2020. Integrative Imaging Reveals SARS-CoV-2-Induced Reshaping of Subcellular Morphologies. Cell Host Microbe 28, 853-866 e855.
Crawford, S.E., Criglar, J.M., Liu, Z., Broughman, J.R., Estes, M.K., 2019. COPII Vesicle Transport Is Required for Rotavirus NSP4 Interaction with the Autophagy Protein LC3 II and Trafficking to Viroplasms. J Virol 94.
Crowther, J.R., Farias, S., Carpenter, W.C., Samuel, A.R., 1993. Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J Gen Virol 74 ( Pt 8), 1547-1553.
Cruz, L., Buchkovich, N.J., 2017. Rerouting the traffic from a virus perspective. Front Biosci (Landmark Ed) 22, 1845-1866.
de Los Santos, T., Diaz-San Segundo, F., Grubman, M.J., 2007. Degradation of nuclear factor kappa B during foot-and-mouth disease virus infection. J Virol 81, 12803-12815.
Deepak, P.R., Saravanan, P., Biswal, J.K., Basagoudanavar, S.H., Dechamma, H.J., Umapathi, V., Sreenivasa, B.P., Tamilselvan, R.P., Krishnaswamy, N., Zaffer, I., Sanyal, A., 2019. Generation of acid resistant virus like particles of vaccine strains of foot-and-mouth disease virus (FMDV). Biologicals 60, 28-35.
Deitz, S.B., Dodd, D.A., Cooper, S., Parham, P., Kirkegaard, K., 2000. MHC I-dependent antigen presentation is inhibited by poliovirus protein 3A. Proc Natl Acad Sci U S A 97, 13790-13795.
den Boon, J.A., Ahlquist, P., 2010. Organelle-like membrane compartmentalization of positive-strand RNA virus replication factories. Annu Rev Microbiol 64, 241-256.
Dodd, D.A., Giddings, T.H., Jr., Kirkegaard, K., 2001. Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J Virol 75, 8158-8165.
Dodding, M.P., Way, M., 2011. Coupling viruses to dynein and kinesin-1. EMBO J 30, 3527-3539.
Dong, H., Liu, P., Bai, M., Wang, K., Feng, R., Zhu, D., Sun, Y., Mu, S., Li, H., Harmsen, M., Sun, S., Wang, X., Guo, H., 2021. Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies. Protein Cell.
Dorobantu, C.M., Albulescu, L., Harak, C., Feng, Q., van Kampen, M., Strating, J.R., Gorbalenya, A.E., Lohmann, V., van der Schaar, H.M., van Kuppeveld, F.J., 2015. Modulation of the Host Lipid Landscape to Promote RNA Virus Replication: The Picornavirus Encephalomyocarditis Virus Converges on the Pathway Used by Hepatitis C Virus. PLoS Pathog 11, e1005185.
Dorobantu, C.M., Albulescu, L., Lyoo, H., van Kampen, M., De Francesco, R., Lohmann, V., Harak, C., van der Schaar, H.M., Strating, J.R., Gorbalenya, A.E., van Kuppeveld, F.J., 2016. Mutations in Encephalomyocarditis Virus 3A Protein Uncouple the Dependency of Genome Replication on Host Factors Phosphatidylinositol 4-Kinase IIIalpha and Oxysterol-Binding Protein. mSphere 1.
Dorobantu, C.M., van der Schaar, H.M., Ford, L.A., Strating, J.R., Ulferts, R., Fang, Y., Belov, G., van Kuppeveld, F.J., 2014. Recruitment of PI4KIIIbeta to coxsackievirus B3 replication organelles is independent of ACBD3, GBF1, and Arf1. J Virol 88, 2725-2736.
Du, Y., Bi, J., Liu, J., Liu, X., Wu, X., Jiang, P., Yoo, D., Zhang, Y., Wu, J., Wan, R., Zhao, X., Guo, L., Sun, W., Cong, X., Chen, L., Wang, J., 2014. 3Cpro of foot-and-mouth disease virus antagonizes the interferon signaling pathway by blocking STAT1/STAT2 nuclear translocation. J Virol 88, 4908-4920.
Du, Y., Duan, T., Feng, Y., Liu, Q., Lin, M., Cui, J., Wang, R.F., 2018. LRRC25 inhibits type I IFN signaling by targeting ISG15-associated RIG-I for autophagic degradation. EMBO J 37, 351-366.
Dwivedi, D., Chawla, P., Sharma, M., 2019. Incorporating Motility in the Motor: Role of the Hook Protein Family in Regulating Dynein Motility. Biochemistry 58, 1026-1031.
Egger, D., Pasamontes, L., Bolten, R., Boyko, V., Bienz, K., 1996. Reversible dissociation of the poliovirus replication complex: functions and interactions of its components in viral RNA synthesis. J Virol 70, 8675-8683.
Feng, Y., Duan, T., Du, Y., Jin, S., Wang, M., Cui, J., Wang, R.F., 2017. LRRC25 Functions as an Inhibitor of NF-kappaB Signaling Pathway by Promoting p65/RelA for Autophagic Degradation. Sci Rep 7, 13448.
Flint, S.J., Racaniello, V.R., Rall, G.F., Skalka, A.M., Enquist, L.W., 2015. Principles of virology, 4th edition. Edition. ASM Press, Washington, DC, volumes p.
Fromme, J.C., Orci, L., Schekman, R., 2008. Coordination of COPII vesicle trafficking by Sec23. Trends Cell Biol 18, 330-336.
Fry, E.E., Newman, J.W.I., Curry, S., Najjam, S., Jackson, T., Blakemore, W., Lea, S.M., Miller, L., Burman, A., King, A.M.Q., Stuart, D.I., 2005. Structure of Foot-and-mouth disease virus serotype A10 61 alone and complexed with oligosaccharide receptor: receptor conservation in the face of antigenic variation. J Gen Virol 86, 1909-1920.
Fu, S.Z., Yang, W.P., Ru, Y., Zhang, K.S., Wang, Y., Liu, X.T., Li, D., Zheng, H.X., 2019. DDX56 cooperates with FMDV 3A to enhance FMDV replication by inhibiting the phosphorylation of IRF3. Cell Signal 64, 109393.
Fujita, K., Krishnakumar, S.S., Franco, D., Paul, A.V., London, E., Wimmer, E., 2007. Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication. Biochemistry 46, 5185-5199.
Gamarnik, A.V., Andino, R., 1998. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12, 2293-2304.
Ganji, V.K., Biswal, J.K., Lalzampuia, H., Basagoudanavar, S.H., Saravanan, P., Tamil Selvan, R.P., Umapathi, V., Reddy, G.R., Sanyal, A., Dechamma, H.J., 2018. Mutation in the VP2 gene of P1-2A capsid protein increases the thermostability of virus-like particles of foot-and-mouth disease virus serotype O. Appl Microbiol Biotechnol 102, 8883-8893.
Garcia, M.A., Meurs, E.F., Esteban, M., 2007. The dsRNA protein kinase PKR: virus and cell control. Biochimie 89, 799-811.
Gladue, D.P., O'Donnell, V., Baker-Bransetter, R., Pacheco, J.M., Holinka, L.G., Arzt, J., Pauszek, S., Fernandez-Sainz, I., Fletcher, P., Brocchi, E., Lu, Z., Rodriguez, L.L., Borca, M.V., 2014. Interaction of foot-and-mouth disease virus nonstructural protein 3A with host protein DCTN3 is important for viral virulence in cattle. J Virol 88, 2737-2747.
Godi, A., Pertile, P., Meyers, R., Marra, P., Di Tullio, G., Iurisci, C., Luini, A., Corda, D., De Matteis, M.A., 1999. ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1, 280-287.
Gonzalez-Magaldi, M., Martin-Acebes, M.A., Kremer, L., Sobrino, F., 2014. Membrane topology and cellular dynamics of foot-and-mouth disease virus 3A protein. PLoS One 9, e106685.
Gonzalez-Magaldi, M., Postigo, R., de la Torre, B.G., Vieira, Y.A., Rodriguez-Pulido, M., Lopez-Vinas, E., Gomez-Puertas, P., Andreu, D., Kremer, L., Rosas, M.F., Sobrino, F., 2012. Mutations that hamper dimerization of foot-and-mouth disease virus 3A protein are detrimental for infectivity. J Virol 86, 11013-11023.
Grazioli, S., Fallacara, F., Brocchi, E., 2013. Mapping of antigenic sites of foot-and-mouth disease virus serotype Asia 1 and relationships with sites described in other serotypes. J Gen Virol 94, 559-569.
Greber, U.F., Way, M., 2006. A superhighway to virus infection. Cell 124, 741-754.
Greninger, A.L., 2015. Picornavirus-Host Interactions to Construct Viral Secretory Membranes. Molecular Basis of Viral Infection 129, 189-212.
Greninger, A.L., Knudsen, G.M., Betegon, M., Burlingame, A.L., Derisi, J.L., 2012. The 3A protein from multiple picornaviruses utilizes the golgi adaptor protein ACBD3 to recruit PI4KIIIbeta. J Virol 86, 3605-3616.
Greninger, A.L., Knudsen, G.M., Betegon, M., Burlingame, A.L., DeRisi, J.L., 2013. ACBD3 interaction with TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding. mBio 4, e00098-00013.
Guan, S.H., Belsham, G.J., 2017. Separation of foot-and-mouth disease virus leader protein activities; identification of mutants that retain efficient self-processing activity but poorly induce eIF4G cleavage. J Gen Virol 98, 671-680.
Gullberg, M., Muszynski, B., Organtini, L.J., Ashley, R.E., Hafenstein, S.L., Belsham, G.J., Polacek, C., 2013. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells. J Gen Virol 94, 1769-1779.
Guo, H.C., Sun, S.Q., Jin, Y., Yang, S.L., Wei, Y.Q., Sun, D.H., Yin, S.H., Ma, J.W., Liu, Z.X., Guo, J.H., Luo, J.X., Yin, H., Liu, X.T., Liu, D.X., 2013. Foot-and-mouth disease virus-like particles produced by a SUMO fusion protein system in Escherichia coli induce potent protective immune responses in guinea pigs, swine and cattle. Vet Res 44, 48.
Gurkan, C., Stagg, S.M., Lapointe, P., Balch, W.E., 2006. The COPII cage: unifying principles of vesicle coat assembly. Nat Rev Mol Cell Biol 7, 727-738.
Hsu, N.Y., Ilnytska, O., Belov, G., Santiana, M., Chen, Y.H., Takvorian, P.M., Pau, C., van der Schaar, H., Kaushik-Basu, N., Balla, T., Cameron, C.E., Ehrenfeld, E., van Kuppeveld, F.J., Altan-Bonnet, N., 2010. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell 141, 799-811.
Huang, M., Weissman, J.T., Beraud-Dufour, S., Luan, P., Wang, C., Chen, W., Aridor, M., Wilson, I.A., Balch, W.E., 2001. Crystal structure of Sar1-GDP at 1.7 A resolution and the role of the NH2 terminus in ER export. J Cell Biol 155, 937-948.
Ilnytska, O., Santiana, M., Hsu, N.Y., Du, W.L., Chen, Y.H., Viktorova, E.G., Belov, G., Brinker, A., Storch, J., Moore, C., Dixon, J.L., Altan-Bonnet, N., 2013. Enteroviruses harness the cellular endocytic machinery to remodel the host cell cholesterol landscape for effective viral replication. Cell Host Microbe 14, 281-293.
Jackson, T., Belsham, G.J., 2021. Picornaviruses: A View from 3A. Viruses 13.
Kirchhausen, T., 2000. Three ways to make a vesicle. Nat Rev Mol Cell Biol 1, 187-198.
Kirchweger, R., Ziegler, E., Lamphear, B.J., Waters, D., Liebig, H.D., Sommergruber, W., Sobrino, F., Hohenadl, C., Blaas, D., Rhoads, R.E., et al., 1994. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J Virol 68, 5677-5684.
Kitson, J.D., McCahon, D., Belsham, G.J., 1990. Sequence analysis of monoclonal antibody resistant mutants of type O foot and mouth disease virus: evidence for the involvement of the three surface exposed capsid proteins in four antigenic sites. Virology 179, 26-34.
Knowles, N.J., Samuel, A.R., Davies, P.R., Kitching, R.P., Donaldson, A.I., 2001. Outbreak of foot-and-mouth disease virus serotype O in the UK caused by a pandemic strain. Vet Rec 148, 258-259.
Lamphear, B.J., Kirchweger, R., Skern, T., Rhoads, R.E., 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. Implications for cap-dependent and cap-independent translational initiation. J Biol Chem 270, 21975-21983.
Lanke, K.H., van der Schaar, H.M., Belov, G.A., Feng, Q., Duijsings, D., Jackson, C.L., Ehrenfeld, E., van Kuppeveld, F.J., 2009. GBF1, a guanine nucleotide exchange factor for Arf, is crucial for coxsackievirus B3 RNA replication. J Virol 83, 11940-11949.
Lawrence, P., Rai, D., Conderino, J.S., Uddowla, S., Rieder, E., 2016. Role of Jumonji C-domain containing protein 6 (JMJD6) in infectivity of foot-and-mouth disease virus. Virology 492, 38-52.
Lawrence, P., Rieder, E., 2009. Identification of RNA helicase A as a new host factor in the replication cycle of foot-and-mouth disease virus. J Virol 83, 11356-11366.
Lee, C.D., Yan, Y.P., Liang, S.M., Wang, T.F., 2009. Production of FMDV virus-like particles by a SUMO fusion protein approach in Escherichia coli. J Biomed Sci 16, 69.
Li, C., Zhu, Z., Du, X., Cao, W., Yang, F., Zhang, X., Feng, H., Li, D., Zhang, K., Liu, X., Zheng, H., 2017. Foot-and-mouth disease virus induces lysosomal degradation of host protein kinase PKR by 3C proteinase to facilitate virus replication. Virology 509, 222-231.
Li, D., Lei, C., Xu, Z., Yang, F., Liu, H., Zhu, Z., Li, S., Liu, X., Shu, H., Zheng, H., 2016a. Foot-and-mouth disease virus non-structural protein 3A inhibits the interferon-beta signaling pathway. Sci Rep 6, 21888.
Li, D., Yang, W., Yang, F., Liu, H., Zhu, Z., Lian, K., Lei, C., Li, S., Liu, X., Zheng, H., Shu, H., 2016b. The VP3 structural protein of foot-and-mouth disease virus inhibits the IFN-beta signaling pathway. FASEB J 30, 1757-1766.
Li, K., Wang, C., Yang, F., Cao, W., Zhu, Z., Zheng, H., 2021. Virus-Host Interactions in Foot-and-Mouth Disease Virus Infection. Front Immunol 12, 571509.
Long, K.R., Yamamoto, Y., Baker, A.L., Watkins, S.C., Coyne, C.B., Conway, J.F., Aridor, M., 2010. Sar1 assembly regulates membrane constriction and ER export. J Cell Biol 190, 115-128.
Longjam, N., Deb, R., Sarmah, A.K., Tayo, T., Awachat, V.B., Saxena, V.K., 2011. A Brief Review on Diagnosis of Foot-and-Mouth Disease of Livestock: Conventional to Molecular Tools. Vet Med Int 2011, 905768.
Loundras, E.A., Herod, M.R., Harris, M., Stonehouse, N.J., 2016. Foot-and-mouth disease virus genome replication is unaffected by inhibition of type III phosphatidylinositol-4-kinases. J Gen Virol 97, 2221-2230.
Ma, L.N., Zhang, J., Chen, H.T., Zhou, J.H., Ding, Y.Z., Liu, Y.S., 2011. An overview on ELISA techniques for FMD. Virol J 8, 419.
Ma, X., Li, P., Bai, X., Sun, P., Bao, H., Lu, Z., Cao, Y., Li, D., Chen, Y., Qiao, Z., Liu, Z., 2014. Sequences outside that of residues 93-102 of 3A protein can contribute to the ability of foot-and-mouth disease virus (FMDV) to replicate in bovine-derived cells. Virus Res 191, 161-171.
Ma, X.X., Ma, L.N., Chang, Q.Y., Ma, P., Li, L.J., Wang, Y.Y., Ma, Z.R., Cao, X., 2018. Type I Interferon Induced and Antagonized by Foot-and-Mouth Disease Virus. Front Microbiol 9, 1862.
Mahapatra, M., Hamblin, P., Paton, D.J., 2012. Foot-and-mouth disease virus epitope dominance in the antibody response of vaccinated animals. J Gen Virol 93, 488-493.
Martinez, J.L., Arnoldi, F., Schraner, E.M., Eichwald, C., Silva-Ayala, D., Lee, E., Sztul, E., Burrone, O.R., Lopez, S., Arias, C.F., 2019. The Guanine Nucleotide Exchange Factor GBF1 Participates in Rotavirus Replication. J Virol 93.
Mason, P.W., Grubman, M.J., Baxt, B., 2003. Molecular basis of pathogenesis of FMDV. Virus Res 91, 9-32.
McCahon, D., Crowther, J.R., Belsham, G.J., Kitson, J.D., Duchesne, M., Have, P., Meloen, R.H., Morgan, D.O., De Simone, F., 1989. Evidence for at least four antigenic sites on type O foot-and-mouth disease virus involved in neutralization; identification by single and multiple site monoclonal antibody-resistant mutants. J Gen Virol 70 ( Pt 3), 639-645.
McKenney, R.J., Huynh, W., Tanenbaum, M.E., Bhabha, G., Vale, R.D., 2014. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345, 337-341.
McMahon, C., Studer, S.M., Clendinen, C., Dann, G.P., Jeffrey, P.D., Hughson, F.M., 2012. The structure of Sec12 implicates potassium ion coordination in Sar1 activation. J Biol Chem 287, 43599-43606.
Meissner, J.M., Bhatt, J.M., Lee, E., Styers, M.L., Ivanova, A.A., Kahn, R.A., Sztul, E., 2018. The ARF guanine nucleotide exchange factor GBF1 is targeted to Golgi membranes through a PIP-binding domain. J Cell Sci 131.
Melia, C.E., van der Schaar, H.M., Lyoo, H., Limpens, R., Feng, Q., Wahedi, M., Overheul, G.J., van Rij, R.P., Snijder, E.J., Koster, A.J., Barcena, M., van Kuppeveld, F.J.M., 2017. Escaping Host Factor PI4KB Inhibition: Enterovirus Genomic RNA Replication in the Absence of Replication Organelles. Cell Rep 21, 587-599.
Midgley, R., Moffat, K., Berryman, S., Hawes, P., Simpson, J., Fullen, D., Stephens, D.J., Burman, A., Jackson, T., 2013. A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection. J Gen Virol 94, 2636-2646.
Moffat, K., Howell, G., Knox, C., Belsham, G.J., Monaghan, P., Ryan, M.D., Wileman, T., 2005. Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport. J Virol 79, 4382-4395.
Moffat, K., Knox, C., Howell, G., Clark, S.J., Yang, H., Belsham, G.J., Ryan, M., Wileman, T., 2007. Inhibition of the secretory pathway by foot-and-mouth disease virus 2BC protein is reproduced by coexpression of 2B with 2C, and the site of inhibition is determined by the subcellular location of 2C. J Virol 81, 1129-1139.
Moghimi, S., Viktorova, E., Zimina, A., Szul, T., Sztul, E., Belov, G.A., 2020. Enterovirus Infection Induces Massive Recruitment of All Isoforms of Small Cellular Arf GTPases to the Replication Organelles. J Virol 95.
Mohana Subramanian, B., Madhanmohan, M., Sriraman, R., Chandrasekhar Reddy, R.V., Yuvaraj, S., Manikumar, K., Rajalakshmi, S., Nagendrakumar, S.B., Rana, S.K., Srinivasan, V.A., 2012. Development of foot-and-mouth disease virus (FMDV) serotype O virus-like-particles (VLPs) vaccine and evaluation of its potency. Antiviral Res 96, 288-295.
Monaghan, P., Cook, H., Jackson, T., Ryan, M., Wileman, T., 2004. The ultrastructure of the developing replication site in foot-and-mouth disease virus-infected BHK-38 cells. J Gen Virol 85, 933-946.
Moseley, G.W., Roth, D.M., DeJesus, M.A., Leyton, D.L., Filmer, R.P., Pouton, C.W., Jans, D.A., 2007. Dynein light chain association sequences can facilitate nuclear protein import. Mol Biol Cell 18, 3204-3213.
O'Donnell, V.K., Pacheco, J.M., Henry, T.M., Mason, P.W., 2001. Subcellular distribution of the foot-and-mouth disease virus 3A protein in cells infected with viruses encoding wild-type and bovine-attenuated forms of 3A. Virology 287, 151-162.
OIE. 2021. Foot and mouth disease: Official Disease Status (OIE).
Pacheco, J.M., Gladue, D.P., Holinka, L.G., Arzt, J., Bishop, E., Smoliga, G., Pauszek, S.J., Bracht, A.J., O'Donnell, V., Fernandez-Sainz, I., Fletcher, P., Piccone, M.E., Rodriguez, L.L., Borca, M.V., 2013. A partial deletion in non-structural protein 3A can attenuate foot-and-mouth disease virus in cattle. Virology 446, 260-267.
Pan, L., Zhang, Y., Wang, Y., Wang, B., Wang, W., Fang, Y., Jiang, S., Lv, J., Wang, W., Sun, Y., Xie, Q., 2008. Foliar extracts from transgenic tomato plants expressing the structural polyprotein, P1-2A, and protease, 3C, from foot-and-mouth disease virus elicit a protective response in guinea pigs. Vet Immunol Immunopathol 121, 83-90.
Paul, A.V., Rieder, E., Kim, D.W., van Boom, J.H., Wimmer, E., 2000. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol 74, 10359-10370.
Peng, J., Yi, J., Yang, W., Ren, J., Wen, Y., Zheng, H., Li, D., 2020. Advances in Foot-and-Mouth Disease Virus Proteins Regulating Host Innate Immunity. Front Microbiol 11, 2046.
Peotter, J., Kasberg, W., Pustova, I., Audhya, A., 2019. COPII-mediated trafficking at the ER/ERGIC interface. Traffic 20, 491-503.
Polacek, C., Gullberg, M., Li, J., Belsham, G.J., 2013. Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells. J Gen Virol 94, 1249-1258.
Porta, C., Xu, X., Loureiro, S., Paramasivam, S., Ren, J., Al-Khalil, T., Burman, A., Jackson, T., Belsham, G.J., Curry, S., Lomonossoff, G.P., Parida, S., Paton, D., Li, Y., Wilsden, G., Ferris, N., Owens, R., Kotecha, A., Fry, E., Stuart, D.I., Charleston, B., Jones, I.M., 2013. Efficient production of foot-and-mouth disease virus empty capsids in insect cells following down regulation of 3C protease activity. J Virol Methods 187, 406-412.
Puckette, M., Clark, B.A., Smith, J.D., Turecek, T., Martel, E., Gabbert, L., Pisano, M., Hurtle, W., Pacheco, J.M., Barrera, J., Neilan, J.G., Rasmussen, M., 2017. Foot-and-Mouth Disease (FMD) Virus 3C Protease Mutant L127P: Implications for FMD Vaccine Development. J Virol 91.
Quintero, C.A., Giraudo, C.G., Villarreal, M., Montich, G., Maccioni, H.J., 2010. Identification of a site in Sar1 involved in the interaction with the cytoplasmic tail of glycolipid glycosyltransferases. J Biol Chem 285, 30340-30346.
Randall, R.E., Goodbourn, S., 2008. Interferons and viruses: an interplay between induction, signalling, antiviral responses and virus countermeasures. J Gen Virol 89, 1-47.
Raux, H., Flamand, A., Blondel, D., 2000. Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74, 10212-10216.
Rodriguez Pulido, M., Saiz, M., 2017. Molecular Mechanisms of Foot-and-Mouth Disease Virus Targeting the Host Antiviral Response. Front Cell Infect Microbiol 7, 252.
Schroer, T.A., 2004. Dynactin. Annu Rev Cell Dev Biol 20, 759-779.
Shengjuler, D., Chan, Y.M., Sun, S., Moustafa, I.M., Li, Z.L., Gohara, D.W., Buck, M., Cremer, P.S., Boehr, D.D., Cameron, C.E., 2017. The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain. Structure 25, 1875-1886 e1877.
Splinter, D., Razafsky, D.S., Schlager, M.A., Serra-Marques, A., Grigoriev, I., Demmers, J., Keijzer, N., Jiang, K., Poser, I., Hyman, A.A., Hoogenraad, C.C., King, S.J., Akhmanova, A., 2012. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures. Mol Biol Cell 23, 4226-4241.
Springer, S., Malkus, P., Borchert, B., Wellbrock, U., Duden, R., Schekman, R., 2014. Regulated oligomerization induces uptake of a membrane protein into COPII vesicles independent of its cytosolic tail. Traffic 15, 531-545.
Stenfeldt, C., Arzt, J., Pacheco, J.M., Gladue, D.P., Smoliga, G.R., Silva, E.B., Rodriguez, L.L., Borca, M.V., 2018. A partial deletion within foot-and-mouth disease virus non-structural protein 3A causes clinical attenuation in cattle but does not prevent subclinical infection. Virology 516, 115-126.
Szul, T., Sztul, E., 2011. COPII and COPI traffic at the ER-Golgi interface. Physiology (Bethesda) 26, 348-364.
Tanenbaum, M.E., Vale, R.D., McKenney, R.J., 2013. Cytoplasmic dynein crosslinks and slides anti-parallel microtubules using its two motor domains. Elife 2, e00943.
Toropova, K., Zalyte, R., Mukhopadhyay, A.G., Mladenov, M., Carter, A.P., Roberts, A.J., 2019. Structure of the dynein-2 complex and its assembly with intraflagellar transport trains. Nat Struct Mol Biol 26, 823-829.
Townley, A.K., Feng, Y., Schmidt, K., Carter, D.A., Porter, R., Verkade, P., Stephens, D.J., 2008. Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J Cell Sci 121, 3025-3034.
Ujike, M., Taguchi, F., 2015. Incorporation of spike and membrane glycoproteins into coronavirus virions. Viruses 7, 1700-1725.
Urnavicius, L., Zhang, K., Diamant, A.G., Motz, C., Schlager, M.A., Yu, M., Patel, N.A., Robinson, C.V., Carter, A.P., 2015. The structure of the dynactin complex and its interaction with dynein. Science 347, 1441-1446.
van der Schaar, H.M., Dorobantu, C.M., Albulescu, L., Strating, J., van Kuppeveld, F.J.M., 2016. Fat(al) attraction: Picornaviruses Usurp Lipid Transfer at Membrane Contact Sites to Create Replication Organelles. Trends Microbiol 24, 535-546.
Viktorova, E.G., Gabaglio, S., Meissner, J.M., Lee, E., Moghimi, S., Sztul, E., Belov, G.A., 2019. A Redundant Mechanism of Recruitment Underlies the Remarkable Plasticity of the Requirement of Poliovirus Replication for the Cellular ArfGEF GBF1. J Virol 93.
Visser, L.J., Medina, G.N., Rabouw, H.H., de Groot, R.J., Langereis, M.A., de Los Santos, T., van Kuppeveld, F.J.M., 2019. Foot-and-Mouth Disease Virus Leader Protease Cleaves G3BP1 and G3BP2 and Inhibits Stress Granule Formation. J Virol 93.
Wang, D., Fang, L., Li, K., Zhong, H., Fan, J., Ouyang, C., Zhang, H., Duan, E., Luo, R., Zhang, Z., Liu, X., Chen, H., Xiao, S., 2012. Foot-and-mouth disease virus 3C protease cleaves NEMO to impair innate immune signaling. J Virol 86, 9311-9322.
Wang, D., Fang, L., Li, P., Sun, L., Fan, J., Zhang, Q., Luo, R., Liu, X., Li, K., Chen, H., Chen, Z., Xiao, S., 2011a. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J Virol 85, 3758-3766.
Wang, G., Wang, Y., Shang, Y., Zhang, Z., Liu, X., 2015. How foot-and-mouth disease virus receptor mediates foot-and-mouth disease virus infection. Virol J 12, 9.
Wang, H., Zhao, L., Li, W., Zhou, G., Yu, L., 2011b. Identification of a conformational epitope on the VP1 G-H Loop of type Asia1 foot-and-mouth disease virus defined by a protective monoclonal antibody. Vet Microbiol 148, 189-199.
Wang, J., Du, J., Jin, Q., 2014. Class I ADP-ribosylation factors are involved in enterovirus 71 replication. PLoS One 9, e99768.
Wessels, E., Duijsings, D., Lanke, K.H., van Dooren, S.H., Jackson, C.L., Melchers, W.J., van Kuppeveld, F.J., 2006a. Effects of picornavirus 3A Proteins on Protein Transport and GBF1-dependent COP-I recruitment. J Virol 80, 11852-11860.
Wessels, E., Duijsings, D., Niu, T.K., Neumann, S., Oorschot, V.M., de Lange, F., Lanke, K.H., Klumperman, J., Henke, A., Jackson, C.L., Melchers, W.J., van Kuppeveld, F.J., 2006b. A viral protein that blocks Arf1-mediated COP-I assembly by inhibiting the guanine nucleotide exchange factor GBF1. Dev Cell 11, 191-201.
Wolff, G., Limpens, R., Zevenhoven-Dobbe, J.C., Laugks, U., Zheng, S., de Jong, A.W.M., Koning, R.I., Agard, D.A., Grunewald, K., Koster, A.J., Snijder, E.J., Barcena, M., 2020. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369, 1395-1398.
Xie, Q.C., McCahon, D., Crowther, J.R., Belsham, G.J., McCullough, K.C., 1987. Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. J Gen Virol 68 ( Pt 6), 1637-1647.
Yamayoshi, S., Noda, T., Ebihara, H., Goto, H., Morikawa, Y., Lukashevich, I.S., Neumann, G., Feldmann, H., Kawaoka, Y., 2008. Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport. Cell Host Microbe 3, 168-177.
Yang, M., Xu, W., Goolia, M., Zhang, Z., 2014. Characterization of monoclonal antibodies against foot-and-mouth disease virus serotype O and application in identification of antigenic variation in relation to vaccine strain selection. Virol J 11, 136.
Yang, W., Li, D., Ru, Y., Bai, J., Ren, J., Zhang, J., Li, L., Liu, X., Zheng, H., 2020. Foot-and-Mouth Disease Virus 3A Protein Causes Upregulation of Autophagy-Related Protein LRRC25 To Inhibit the G3BP1-Mediated RIG-Like Helicase-Signaling Pathway. J Virol 94.
Ye, X., Pan, T., Wang, D., Fang, L., Ma, J., Zhu, X., Shi, Y., Zhang, K., Zheng, H., Chen, H., Li, K., Xiao, S., 2018. Foot-and-Mouth Disease Virus Counteracts on Internal Ribosome Entry Site Suppression by G3BP1 and Inhibits G3BP1-Mediated Stress Granule Assembly via Post-Translational Mechanisms. Front Immunol 9, 1142.
Ypma-Wong, M.F., Dewalt, P.G., Johnson, V.H., Lamb, J.G., Semler, B.L., 1988. Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166, 265-270.
Yuan, L., Kenny, S.J., Hemmati, J., Xu, K., Schekman, R., 2018. TANGO1 and SEC12 are copackaged with procollagen I to facilitate the generation of large COPII carriers. Proc Natl Acad Sci U S A 115, E12255-E12264.
Zanetti, G., Pahuja, K.B., Studer, S., Shim, S., Schekman, R., 2011. COPII and the regulation of protein sorting in mammals. Nat Cell Biol 14, 20-28.
Zheng, Q., Zhu, R., Xu, L., He, M., Yan, X., Liu, D., Yin, Z., Wu, Y., Li, Y., Yang, L., Hou, W., Li, S., Li, Z., Chen, Z., Li, Z., Yu, H., Gu, Y., Zhang, J., Baker, T.S., Zhou, Z.H., Graham, B.S., Cheng, T., Li, S., Xia, N., 2019. Atomic structures of enterovirus D68 in complex with two monoclonal antibodies define distinct mechanisms of viral neutralization. Nat Microbiol 4, 124-133.
Zhu, R., Antoku, S., Gundersen, G.G., 2017. Centrifugal Displacement of Nuclei Reveals Multiple LINC Complex Mechanisms for Homeostatic Nuclear Positioning. Curr Biol 27, 3097-3110 e3095.
Zhu, Z., Yang, F., Cao, W., Liu, H., Zhang, K., Tian, H., Dang, W., He, J., Guo, J., Liu, X., Zheng, H., 2019. The Pseudoknot Region of the 5' Untranslated Region Is a Determinant of Viral Tropism and Virulence of Foot-and-Mouth Disease Virus. J Virol 93.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top