跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:簡均容
研究生(外文):Chun-Jung Chien
論文名稱:探討內質網蛋白TXNDC5在甲基乙二醛誘發之腹膜纖維化扮演的角色
論文名稱(外文):Investigate the Role of Thioredoxin Domain-Containing Protein 5 (TXNDC5) in Methylglyoxal-induced Peritoneal Fibrosis
指導教授:蔡沛學
指導教授(外文):Pei-Shiue Tsai
口試委員:陳怡婷張惠雯武敬和
口試委員(外文):Yi-Ting ChenHui-Wen ChangChin-Ho Wu
口試日期:2023-06-27
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:獸醫學系
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
論文頁數:53
中文關鍵詞:腹膜透析末期腎病腹膜纖維化間皮間質轉化(MMT)超濾失敗TXNDC5甲基乙二醛次世代定序
外文關鍵詞:peritoneal dialysisend-stage renal diseaseperitoneal fibrosisultrafiltration failuremesothelial-to-mesenchymal transitionthioredoxin domain-containing protein 5methylglyoxalnext-generation sequencing
DOI:10.6342/NTU202302521
相關次數:
  • 被引用被引用:0
  • 點閱點閱:46
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腹膜透析利用腹膜充當半透膜以過濾血液中的廢物和多餘水分,為末期腎病患者的腎臟替代療法之一。然而,腹膜透析液中所含之高濃度葡萄糖會於透析過程產生葡萄糖降解產物,長期暴露於此物質會導致腹膜纖維化。腹膜纖維化會導致腹膜間皮細胞的脫落以及間皮下層的增厚,進而改變腹膜功能並最終造成腹膜透析的超過濾功能喪失。目前雖然已知造成腹膜纖維化的主要機制是由TGF-β及其相關路徑引起的,但對於腹膜透析所導致的腹膜纖維化尚無有效的治療方法。最近,內質網蛋白TXNDC5已被發現可調控心臟、肺、腎和肝之纖維化,因此也被認為可能參與腹膜纖維化的發生。本研究的目的是探討TXNDC5在腹膜透析所導致之腹膜纖維化中的角色。透過腹膜厚度的顯著增加、TGF-β1、膠原蛋白 I 和 α-SMA 蛋白質表現量上升,可得知此甲基乙二醛誘導的wild-type C57BL/6 小鼠腹膜纖維化模型被成功地建立。此外,TXNDC5蛋白質與基因表現在甲基乙二醛誘導的腹膜中也顯著的增加。然而,剔除Txndc5並無法緩解由甲基乙二醛誘導的腹膜纖維化,我們仍觀察到增厚的腹膜及高表現量之α-SMA。次世代定序數據亦顯示,Txndc5剔除不會抑制與甲基乙二醛誘導之腹膜纖維化相關的基因與訊息傳遞路徑,這表明在腹膜透析所導致之腹膜纖維化也許透過不同於其他器官的TGF-β路徑。此外,在wild-type 及Txndc5-/-小鼠中皆有觀察到同時呈現α-SMA及cytokeratin雙重染色的間皮細胞,並且次世代定序分析結果顯示在甲基乙二醛下誘導之小鼠具上升之Snail基因表現量,間接指出發生間皮間質轉化的可能性。在甲基乙二醛誘導的小鼠腹膜上,觀察到Col1a1-GFP陽性細胞的增加,然而人類間皮細胞線在甲基乙二醛的處置下沒有表現出膠原蛋白表現量的變化。綜上所述,雖然TXNDC5 在甲基乙二醛誘導的wild-type小鼠腹膜纖維化中具高表現量,但是Txndc5剔除未能減緩甲基乙二醛誘導之腹膜纖維化。因此未來仍需要更多的研究探討TXNDC5在腹膜纖維化與其他實質器官纖維化之間的差異。
Peritoneal dialysis (PD) is one of the kidney replacement therapies that maintain the lives of patients with end-stage renal disease (ESRD), where the peritoneum acts as a semipermeable membrane to filter waste products and excess water from the blood. However, the high glucose contained in the PD fluid (PDF) leads to the formation of glucose degradation products (GDPs), which can cause peritoneal fibrosis (PF). PF denudes mesothelial cells from the basement membrane and thickens the sub-mesothelial compact zone, which changes the peritoneal function and results in ultrafiltration failure. Mesothelial-to-mesenchymal transition (MMT), a process that considers mesothelial cells as the main progenitors of myofibroblasts in PF, has been doubted in these years. In addition, though PF is known to be mediated by TGF-β and its associated pathways, no effective treatment can be applied. Recently, an endoplasmic reticulum protein, thioredoxin domain-containing protein 5 (TXNDC5), has proven to be a novel mediator in cardiac, pulmonary, renal, and hepatic fibrosis and is also considered involved in PF. The purpose of this study is to investigate the involvement of TXNDC5 in PF. In this study, methylglyoxal (MGO) successfully induced PF as identified by significantly increased peritoneal thickness and the elevation of TGF-β1, collagen I and α-SMA protein expression in wild-type C57BL/6 mice. Furthermore, TXNDC5 expression was upregulated in the MGO-induced peritoneum. However, the deletion of Txndc5 did not ameliorate the MGO-induced PF, as the thickened sub-mesothelial compact zone with collagen accumulation and high α-SMA expression were still observed. Next-generation sequencing (NGS) data revealed that Txndc5 knockout did not suppress genes associated with MGO-induced peritoneal fibrosis, suggesting distinctive signaling pathways that differed from other organs might be involved in MGO-induced PF. In addition, mesothelial-to-mesenchymal transition (MMT), a process that considers mesothelial cells as the main progenitors of myofibroblasts, might occur upon MGO-induced peritoneal fibrosis, as evidenced by double positive cells of cytokeratin and α-SMA shown in immunofluorescence staining. This is further supported by RNAseq analysis showing an increased Snail gene expression. An increase in Col1a1-GFP positive cells was also observed on the surface of the MGO-induced peritoneum in mice. However, MeT5A cells, a human mesothelial cell line, did not show changes in collagen I protein expression under MGO treatment in vitro. In conclusion, apart from the high expression of TXNDC5 in MGO-induced peritoneal fibrosis in wild-type mice, the deletion of Txndc5 failed to prevent MGO-induced PF. Further studies are needed to explore the differences in TXNDC5 involvement between PF and fibrosis in other solid organs.
誌謝 i
中文摘要 ii
Abstract iv
Contents vii
List of figures ix
List of tables xi
Chapter 1 Introduction 1
1.1. Peritoneal dialysis (PD) 1
1.2. Long-term PD and its damaging consequences 3
1.2.1. Peritoneum anatomy 3
1.2.2. Peritoneal fibrosis (PF) 4
1.2.3. Mesothelial-to-mesenchymal transition (MMT) 5
1.2.4. PF-related molecular mechanism 6
1.2.5. Animal models for PF 8
1.3. Thioredoxin domain-containing 5 (TXNDC5) 9
1.3.1. General function of TXNDC5 9
1.3.2. The mechanism of TXNDC5 in fibrotic disease 9
1.4. Aim of this project 10
Chapter 2 Material and Methods 12
2.1 Animals 12
2.2 MGO-induced PF mouse model 13
2.3 Cell culture 14
2.4 Collagen secreting evaluation of MeT-5A 15
2.5 Histological and indirect immunofluorescent (IFA) staining 15
2.6 Quantification of peritoneal thickness 17
2.7 Immunoblot analysis 18
2.8 Next-generation sequencing (RNA-seq) 20
2.9 Bio-informatic analyses 20
2.10 Statistical analysis 21
Chapter 3 Results 22
3.1 MGO administration did not affect body weight in wild-type mice. 22
3.2 MGO induction caused ascites, abdominal adhesion, and thickened peritoneum in wild-type mice. 23
3.3 Fibrosis-related signaling pathways were upregulated in MGO-induced peritoneum of WT mice. 25
3.4 TXNDC5 expression was upregulated in the MGO-induced peritoneum of WT mice. 28
3.5 Characterizations of MGO-induced fibrosis in Txndc5-/- mice. 30
3.6 Fibrosis-related factors were upregulated in MGO-induced Txndc5-/- mice. 32
3.7 NGS revealed that the deletion of Txndc5 did not suppress genes associated with MGO-induced peritoneal fibrosis. 36
3.8 Collagen secreting capability of MGO-induced MeT-5A did not increase compared to the vehicle control. 41
Chapter 4 Discussion 43
References 50
1.Agarwal, R., Defining end-stage renal disease in clinical trials: a framework for adjudication. Nephrology Dialysis Transplantation, 2016. 31(6): p. 864-867.
2Levey, A.S., et al., The definition, classification, and prognosis of chronic kidney disease: a KDIGO Controversies Conference report. Kidney International, 2011. 80(1): p. 17-28.
3https://www.bmj.com/content/367/bmj.l5873.long.
4Hsu, C.-C., et al., Achievements and challenges in chronic kidney disease care in Taiwan. Journal of the Formosan Medical Association, 2022. 121: p. S3-S4.
5Bello, A.K., et al., Epidemiology of peritoneal dialysis outcomes. Nature Reviews Nephrology, 2022. 18(12): p. 779-793.
6Djurdjevic-Mirkovic, T., Peritoneal dialysis - experiences. Medical review, 2010. 63(11-12): p. 753-757.
7Karopadi, A.N., et al., Cost of peritoneal dialysis and haemodialysis across the world. Nephrology Dialysis Transplantation, 2013. 28(10): p. 2553-2569.
8Cameron, J.I., et al., Differences in quality of life across renal replacement therapies: A meta-analytic comparison. American Journal of Kidney Diseases, 2000. 35(4): p. 629-637.
9Devuyst, O. and B. Rippe, Water transport across the peritoneal membrane. Kidney International, 2014. 85(4): p. 750-758.
10Masola, V., et al., Fibrosis of Peritoneal Membrane as Target of New Therapies in Peritoneal Dialysis. International Journal of Molecular Sciences, 2022. 23(9): p. 4831.
11Usman, M., C. Yeoungjee, and W.J. David, Peritoneal Dialysis Solutions, in Some Special Problems in Peritoneal Dialysis, E. Robert, Editor. 2016, IntechOpen: Rijeka. p. Ch. 2.
12Healy, J.C. and R.H. Reznek, The peritoneum, mesenteries and omenta: normal anatomy and pathological processes. European Radiology, 1998. 8(6): p. 886-900.
13van Baal, J.O.A.M., et al., The histophysiology and pathophysiology of the peritoneum. Tissue and Cell, 2017. 49(1): p. 95-105.
14Zhao, X., et al., New insights into fibrosis from the ECM degradation perspective: the macrophage-MMP-ECM interaction. Cell & Bioscience, 2022. 12(1).
15Klingberg, F., B. Hinz, and E.S. White, The myofibroblast matrix: implications for tissue repair and fibrosis. The Journal of Pathology, 2013. 229(2): p. 298-309.
16Margetts, P.J., et al., Transient Overexpression of TGF-β1 Induces Epithelial Mesenchymal Transition in the Rodent Peritoneum. Journal of the American Society of Nephrology, 2005. 16(2).
17Patel, P., et al., Platelet derived growth factor B and epithelial mesenchymal transition of peritoneal mesothelial cells. Matrix Biology, 2010. 29(2): p. 97-106.
18Yang, A.H., J.Y. Chen, and J.K. Lin, Myofibroblastic conversion of mesothelial cells. Kidney International, 2003. 63(4): p. 1530-1539.
19Wong, T.Y.H., et al., Glucose-mediated induction of TGF-β1 and MCP-1 in mesothelial cells in vitro is osmolality and polyol pathway dependent. Kidney International, 2003. 63(4): p. 1404-1416.
20Chen, Y.T., et al., Lineage tracing reveals distinctive fates for mesothelial cells and submesothelial fibroblasts during peritoneal injury. J Am Soc Nephrol, 2014. 25(12): p. 2847-58.
21Grgic, I., J.S. Duffield, and B.D. Humphreys, The origin of interstitial myofibroblasts in chronic kidney disease. Pediatr Nephrol, 2012. 27(2): p. 183-93.
22Humphreys, B.D., et al., Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol, 2010. 176(1): p. 85-97.
23LeBleu, V.S., et al., Origin and function of myofibroblasts in kidney fibrosis. Nat Med, 2013. 19(8): p. 1047-53.
24Lee, S.H., et al., The monocyte chemoattractant protein-1 (MCP-1)/CCR2 system is involved in peritoneal dialysis-related epithelial-mesenchymal transition of peritoneal mesothelial cells. Lab Invest, 2012. 92(12): p. 1698-711.
25Yung, S. and T.M. Chan, Pathophysiological changes to the peritoneal membrane during PD-related peritonitis: the role of mesothelial cells. Mediators Inflamm, 2012. 2012: p. 484167.
26Hu, H.-H., et al., New insights into TGF-β/Smad signaling in tissue fibrosis. Chemico-Biological Interactions, 2018. 292: p. 76-83.
27Shi, Y. and J. Massagué, Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus. Cell, 2003. 113(6): p. 685-700.
28Balzer, M.S., Molecular pathways in peritoneal fibrosis. Cellular Signalling, 2020. 75: p. 109778.
29Padwal, M., et al., WNT signaling is required for peritoneal membrane angiogenesis. Am J Physiol Renal Physiol, 2018. 314(6): p. F1036-f1045.
30Zhang, F., et al., New insights into the pathogenesis and treatment of peritoneal fibrosis: A potential role of Wnt/β-catenin induced epithelial to mesenchymal transition and stem cells for therapy. Medical Hypotheses, 2013. 81(1): p. 97-100.
31Chang, M.Y., et al., A Mice Model of Chlorhexidine Gluconate-Induced Peritoneal Damage. J Vis Exp, 2022(182).
32Margetts, P.J., et al., Transforming growth factor β-induced peritoneal fibrosis is mouse strain dependent. Nephrol Dial Transplant, 2013. 28(8): p. 2015-27.
33Li, L., et al., Inhibiting core fucosylation attenuates glucose-induced peritoneal fibrosis in rats. Kidney International, 2018. 93(6): p. 1384-1396.
34Nagai, T., et al., Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice. PLoS One, 2016. 11(8): p. e0160993.
35Kanemura, S., et al., PDI Family Members as Guides for Client Folding and Assembly. Int J Mol Sci, 2020. 21(24).
36Wang, X., H. Li, and X. Chang, The role and mechanism of TXNDC5 in diseases. Eur J Med Res, 2022. 27(1): p. 145.
37Shih, Y.C., et al., Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation. Circ Res, 2018. 122(8): p. 1052-1068.
38Chen, Y.T., et al., Endoplasmic reticulum protein TXNDC5 promotes renal fibrosis by enforcing TGF-β signaling in kidney fibroblasts. J Clin Invest, 2021. 131(5).
39Hung, C.T., et al., Targeting ER protein TXNDC5 in hepatic stellate cell mitigates liver fibrosis by repressing non-canonical TGFβ signalling. Gut, 2022. 71(9): p. 1876-1891.
40Lee, T.H., et al., Fibroblast-enriched endoplasmic reticulum protein TXNDC5 promotes pulmonary fibrosis by augmenting TGFβ signaling through TGFBR1 stabilization. Nat Commun, 2020. 11(1): p. 4254.
41Hung, C.T., et al., The novel role of ER protein TXNDC5 in the pathogenesis of organ fibrosis: mechanistic insights and therapeutic implications. J Biomed Sci, 2022. 29(1): p. 63.
42Lin, S.L., et al., Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol, 2008. 173(6): p. 1617-27.
43Kitamura, M., et al., Epigallocatechin gallate suppresses peritoneal fibrosis in mice. Chem Biol Interact, 2012. 195(1): p. 95-104.
44Tamura, R., et al., Inhibition of the H3K4 methyltransferase SET7/9 ameliorates peritoneal fibrosis. PLoS One, 2018. 13(5): p. e0196844.
45López-Cabrera, M., Mesenchymal Conversion of Mesothelial Cells Is a Key Event in the Pathophysiology of the Peritoneum during Peritoneal Dialysis. Advances in Medicine, 2014. 2014.
46Margetts, P.J., et al., Transient overexpression of TGF-{beta}1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol, 2005. 16(2): p. 425-36.
47Namvar, S., et al., Functional molecules in mesothelial-to-mesenchymal transition revealed by transcriptome analyses. J Pathol, 2018. 245(4): p. 491-501.
48Krenkel, O., et al., Single Cell RNA Sequencing Identifies Subsets of Hepatic Stellate Cells and Myofibroblasts in Liver Fibrosis. Cells, 2019. 8(5).
49Shi, P., et al., The antioxidative effects of empagliflozin on high glucose‑induced epithelial-mesenchymal transition in peritoneal mesothelial cells via the Nrf2/HO-1 signaling. Ren Fail, 2022. 44(1): p. 1528-1542.
50Yang, X., et al., STAT3/HIF-1α signaling activation mediates peritoneal fibrosis induced by high glucose. J Transl Med, 2021. 19(1): p. 283.
電子全文 電子全文(網際網路公開日期:20280802)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊