跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 22:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李思穎
研究生(外文):Shih-Ying Lee
論文名稱:大嘴鱸魚鰤魚奴卡氏菌感染中生物膜與肉芽腫生成之關聯性
論文名稱(外文):The association between biofilm and granuloma formation in Nocardia seriolae infection in Micropterus salmoides
指導教授:陳媺玫
指導教授(外文):Meei-Mei Chen
口試委員:陳石柱葉光勝
口試委員(外文):Shih-Chu ChenKuang-Sheng Yeh
口試日期:2023-04-07
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:獸醫學系
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:117
中文關鍵詞:大嘴鱸魚鰤魚奴卡氏菌生物膜肉芽腫
外文關鍵詞:largemouth bassNocardia seriolaebiofilmgranuloma
DOI:10.6342/NTU202300725
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Nocardia seriolae引起魚類奴卡氏菌症,其特徵在於系統性肉芽腫形成和皮膚潰瘍,疾病過程表現慢性、潛伏性的感染與復發,在養殖漁業造成極大經濟損失。已有許多文獻指出細菌生物膜的形成會造成慢性感染,在分枝桿菌的研究更指出肉芽腫內有生物膜的存在。關於N. seriolae的研究著重於浮游細菌,同時也缺乏連續長時間致病過程與宿主反應的調查。在本研究中,我們旨在探討N. seriolae生物膜是否與魚類奴卡氏菌症有關,並解析不同時間點肉芽腫形成過程中宿主免疫與代謝等相關反應,以瞭解其致病過程與宿主之交互作用。本研究先在N. seriolae篩選出生物膜生成能力最強之菌株,於體外培養出生物膜,並藉由掃描式電子顯微鏡觀察浮游細菌與生物膜細菌型態。本研究的另一部分為探討體內生物膜的形成,藉由不同診斷方法與組織切片之不同染色方式識別細菌與肉芽腫,並進行免疫組織化學染色觀察不同型態細菌之體內分佈,更進一步透過收集魚隻脾臟萃取RNA,經從頭組裝定序進行免疫與代謝轉錄因子分析。在大嘴鱸魚(Micropterus salmoides)的正式感染試驗中,分為浮游細菌組、生物膜細菌組和PBS控制組三組,分別於感染後第1天、第2天、第4天、第5天、第8天、第11天共6個時間點採樣。結果顯示兩攻毒組於感染後第8天與第11天的時間點都觀察到成熟肉芽腫與溢出肉芽腫,魚隻於第8天的時間點出現明顯臨床症狀與開始死亡,死亡數並於第11天的時間點到達高峰;此外,浮游細菌組與生物膜細菌組感染後的每個時間點都有偵測到生物膜細菌,浮游細菌組在感染後第8天偵測到浮游細菌,生物膜細菌組則在感染後第1天與第8天偵測到浮游細菌。生物膜細菌出現在肉芽腫內和外並在肉芽腫內占主導地位,浮游細菌則分散在肉芽腫外。以上結果表明,N. seriolae需藉由釋出的浮游細菌以建立有效感染與感染擴散,而生物膜生成引起慢性與潛伏性的感染,並與宿主肉芽腫的形成有關。脾臟轉錄因子相關特性分析方面,整個感染期間皆為上調的促炎因子、趨化因子與代謝相關基因表現,感染晚期觀察到下調的適應性免疫相關基因表現。以上結果顯示,在N. seriolae感染中細菌生物膜可能透過調節宿主細胞代謝與免疫促進細菌與肉芽腫的傳播。本研究為魚類奴卡氏菌致病機轉提供一個嶄新的觀點,但未來仍需投入更多關於生物膜的研究,特別是在宿主適應性免疫反應方面,以作為疾病預防與控制的基礎。
Nocardia seriolae has become a threat to the aquaculture industry. It causes chronic, latent and relapse infections characterized by systemic granuloma formation and skin ulceration. Research has pointed out that bacterial biofilms can cause chronic infection, and previous reviews of Mycobacterium indicate the presence of biofilms in granulomas. This study aims to investigate whether biofilms is involved in fish nocardiosis, and explore host immune and metabolic factors at the molecular level. First, a suitable strain was selected and biofilms was cultured in vitro, followed by examination of growth and morphological characteristics. Another part of this study was using immunohistochemical staining to investigate biofilm formation in vivo. In addition, spleens were collected for RNA extraction for de novo transcriptome analysis. In the infection test of largemouth bass (Micropterus salmoides), fish were divided into planktonic-infected group, biofilm-infected group and PBS control group. Samples were taken on days 1, 2, 4, 5, 8 and 11 post-infection(dpi). Mature granulomas and overflow granulomas were observed in both infection groups at 8 dpi and 11 dpi. Diseased fishes were found dead at 8 dpi, with peak mortality at 11 dpi. Biofilms was detected at all time points in both infection groups. In contrast, planktonic cells were detected only in the biofilm group at 1 dpi and in both infection groups at 8 dpi. Biofilms predominated in granulomas, while planktonic cells were scattered outside the granulomas. The results indicate that N. seriolae had to establish active infection and dissemination through the dispersal of planktonic cells, while it caused chronic and latent infection through biofilm formation. Furthermore, we propose that granuloma formation is associated with biofilm formation. Spleen transcriptome analysis revealed upregulation of pro-inflammatory and metabolic-related gene expression throughout the infection, and the downregulation of adaptive immunity-related gene expression in late phase of the infection. In fish nocardiosis, biofilms have been found to potentially stimulate host innate immune response and influence metabolism, leading to granuloma formation and structural changes. In the future, more research related to biofilms and host adaptive immune response induced by biofilms must be carried out as a basis for disease prevention and control.
口試委員會審定書 i
摘要 ii
Abstract iv
目錄 vi
第一章 緒論 1
第二章 文獻回顧 3
第一節 細菌生物膜 3
2.1.1 生物膜的形成 3
2.1.2 生物膜的生長週期 3
2.1.3 生物膜細菌的休眠、再活化與擴散 4
2.1.4 生物膜引起的宿主免疫反應 5
第二節 魚的細菌性肉芽腫病 7
2.2.1 肉芽腫的形成 7
2.2.2 海洋分枝桿菌肉芽腫相關研究 7
第三節 分枝桿菌生物膜與肉芽腫關聯性研究 14
2.3.1 肉芽腫的生長週期:以結核分枝桿菌(Mycobacterium tuberculosis)為例 14
2.3.2 初始肉芽腫(Incipient granuloma) 15
2.3.3 成熟肉芽腫(Mature granuloma) 17
2.3.4 溢出肉芽腫(Overflowing granuloma) 20
2.3.5 生物膜與肉芽腫之關聯性 21
第三章 材料方法 25
第一節 生物膜體外培養 26
3.1.1 N. seriolae菌株收集與鑑定 26
3.1.2 生物膜生成能力分析與篩選 29
3.1.3 篩選菌株懸浮培養定量與生長曲線 30
3.1.4 掃描式電子顯微鏡(SEM)型態觀察 30
第二節 生物膜體外偵測 32
3.2.1 偵測浮游細菌(planktonic cells)之多株抗體製備 32
3.2.2 偵測生物膜細菌(biofilm cells)之多株抗體製備 32
3.2.3 免疫細胞化學雙染色 33
第三節 體內生物膜與肉芽腫生成之時間進程 35
3.3.1 攻毒感染預試驗 36
3.3.2 攻毒感染試驗 38
3.3.3 浮游細菌與生物膜細菌感染大嘴鱸魚後脾臟轉錄組分析 39
第四章 結果 40
第一節 生物膜體外培養 40
4.1.1 N. seriolae菌株收集與鑑定 40
4.1.2 生物膜生成能力分析與篩選 40
4.1.3 篩選菌株懸浮培養之生長曲線 40
4.1.4 掃描式電子顯微鏡型態觀察 41
第二節 體外與體內生物膜偵測 41
4.2.1 免疫細胞化學雙染色偵測 41
4.2.2 攻毒感染預試驗結果 41
4.2.3 免疫組織化學雙染色偵測 41
第三節 體內生物膜與肉芽腫生成之時間進程 42
4.3.1 攻毒感染試驗結果 42
4.3.2 生物膜與肉芽腫生成之時間點分析 43
第四節 浮游細菌與生物膜細菌感染大嘴鱸魚後之相關基因表現 44
4.4.1 脾臟轉錄組之從頭組裝與功能註釋 44
4.4.2 不同時間點脾臟轉錄組之差異表現基因分析 45
4.4.3 不同時間點脾臟轉錄組之功能富集分析 46
4.4.4 脾臟轉錄組譜(transcriptome profile)之免疫與代謝特性 47
第五章 討論 49
第一節 生物膜生成與型態分析 49
5.1.1 生物膜生成能力分析 49
5.1.2 懸浮培養之生物膜生長週期分析 49
5.1.3 掃描式電子顯微鏡型態觀察 50
第二節 生物膜與肉芽腫之關聯性 51
5.2.1 體內感染之生物膜生長週期分析 51
5.2.2 體內肉芽腫之生長週期分析 51
5.2.3 生物膜與肉芽腫型態之異質性 52
5.2.4 組織切片染色觀察 52
5.2.5 生物膜生長週期與肉芽腫生成之關聯性 53
第三節 大嘴鱸魚對浮游細菌與生物膜細菌感染反應之轉錄組分析 55
5.3.1 不同階段反應分析 55
5.3.2 生物膜細菌所引發之宿主先天免疫相關基因表現 55
5.3.3 生物膜細菌感染後所引發之宿主適應性免疫相關基因表現 57
5.3.4 生物膜細菌感染後所引發之宿主免疫代謝(immunometabolism)相關基因表現 58
5.3.5 肉芽腫的壞死空腔與傳播 60
5.3.6 肉芽腫的生長週期與相關基因表現 60
第六章 結論 62
第七章 參考文獻 103
Ackart, D. F., Hascall-Dove, L., Caceres, S. M., Kirk, N. M., Podell, B. K., Melander, C., Orme, I. M., Leid, J. G., Nick, J. A., & Basaraba, R. J. (2014). Expression of antimicrobial drug tolerance by attached communities of Mycobacterium tuberculosis. Pathogens and Disease, 70(3), 359-369.
Agius, C., & Roberts, R. (2003). Melano‐macrophage centres and their role in fish pathology. Journal of Fish Diseases, 26(9), 499-509.
Al Akhrass, F., Hachem, R., Mohamed, J. A., Tarrand, J., Kontoyiannis, D. P., Chandra, J., Ghannoum, M., Haydoura, S., Chaftari, A. M., & Raad, I. (2011). Central venous catheter–associated Nocardia bacteremia in cancer patients. Emerging Infectious Diseases, 17(9), 1651.
Ayrapetyan, M., Williams, T., & Oliver, J. D. (2018). Relationship between the viable but nonculturable state and antibiotic persister cells. Journal of Bacteriology, 200(20).
Barker, L. P., George, K. M., Falkow, S., & Small, P. (1997). Differential trafficking of live and dead Mycobacterium marinum organisms in macrophages. Infection and Immunity, 65(4), 1497-1504.
Barry, C. E., Boshoff, H. I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., Schnappinger, D., Wilkinson, R. J., & Young, D. (2009). The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nature Reviews Microbiology, 7(12), 845-855.
Bartek, I., Rutherford, R., Gruppo, V., Morton, R., Morris, R., Klein, M., Visconti, K., Ryan, G., Schoolnik, G., & Lenaerts, A. (2009). The DosR regulon of M. tuberculosis and antibacterial tolerance. Tuberculosis, 89(4), 310-316.
Basaraba, R. J., & Ojha, A. K. (2017). Mycobacterial biofilms: revisiting tuberculosis bacilli in extracellular necrotizing lesions. Microbiology Spectrum, 5(3), 5.3. 15.
Beaman, B. L., & Beaman, L. (1994). Nocardia species: host-parasite relationships. Clinical Microbiology Reviews, 7(2), 213-264.
Benard, E., Rougeot, J., Racz, P., Spaink, H., & Meijer, A. (2016). Transcriptomic approaches in the zebrafish model for tuberculosis—insights into host-and pathogen-specific determinants of the innate immune response. Advances in Genetics, 95, 217-251.
Berg, R. D., & Ramakrishnan, L. (2012). Insights into tuberculosis from the zebrafish model. Trends in Molecular Medicine, 18(12), 689-690.
Birkness, K. A., Guarner, J., Sable, S. B., Tripp, R. A., Kellar, K. L., Bartlett, J., & Quinn, F. D. (2007). An in vitro model of the leukocyte interactions associated with granuloma formation in Mycobacterium tuberculosis infection. Immunology and Cell Biology, 85(2), 160-168.
Boles, B. R., & Horswill, A. R. (2008). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS pathogens, 4.
Boyd, A., & Chakrabarty, A. M. (1994). Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Applied and Environmental Microbiology, 60(7), 2355-2359.
Bussi, C., & Gutierrez, M. G. (2019). Mycobacterium tuberculosis infection of host cells in space and time. FEMS Microbiology Reviews, 43(4), 341-361.
Byadgi, O. V., Chen, C., Wang, P., Tsai, M., & Chen, S. (2016). De Novo Transcriptome Analysis of Differential Functional Gene Expression in Largemouth Bass (Micropterus salmoides) after Challenge with Nocardia seriolae. International Journal of Molecular Sciences, 17(8).
Cambier, C., Takaki, K. K., Larson, R. P., Hernandez, R. E., Tobin, D. M., Urdahl, K. B., Cosma, C. L., & Ramakrishnan, L. (2014). Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature, 505(7482), 218-222.
Chakraborty, P., Bajeli, S., Kaushal, D., Radotra, B. D., & Kumar, A. (2021). Biofilm formation in the lung contributes to virulence and drug tolerance of Mycobacterium tuberculosis. Nature Communications, 12(1), 1-17.
Chakraborty, P., & Kumar, A. (2019). The extracellular matrix of mycobacterial biofilms: could we shorten the treatment of mycobacterial infections? Microbial Cell, 6(2), 105.
Chirakos, A. E., Balaram, A., Conrad, W., & Champion, P. A. (2020). Modeling tubercular ESX-1 secretion using Mycobacterium marinum. Microbiology and Molecular Biology Reviews, 84(4).
Ciszek-Lenda, M., Strus, M., Walczewska, M., Majka, G., Machul-Żwirbla, A., Mikołajczyk, D., Górska, S., Gamian, A., Chain, B., & Marcinkiewicz, J. (2019). Pseudomonas aeruginosa biofilm is a potent inducer of phagocyte hyperinflammation. Inflammation Research, 68, 397-413.
Clay, H., Davis, J. M., Beery, D., Huttenlocher, A., Lyons, S. E., & Ramakrishnan, L. (2007). Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. Cell Host & Microbe, 2(1), 29-39.
Clay, H., Volkman, H. E., & Ramakrishnan, L. (2008). Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. Immunity, 29(2), 283-294.
Comas, I., Chakravartti, J., Small, P. M., Galagan, J., Niemann, S., Kremer, K., Ernst, J. D., & Gagneux, S. (2010). Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nature Genetics, 42(6), 498-503.
Cooper, A. M. (2009). Cell mediated immune responses in tuberculosis. Annual Review of Immunology, 27, 393.
Cronan, M. R., Beerman, R. W., Rosenberg, A. F., Saelens, J. W., Johnson, M. G., Oehlers, S. H., Sisk, D. M., Jurcic Smith, K. L., Medvitz, N., Miller, S. E., Trinh, L. A., Fraser, S. E., Madden, J. F., Turner, J., Stout, J. E., Lee, S., & Tobin, D. M. (2016). Macrophage epithelial reprogramming underlies mycobacterial granuloma formation and promotes infection. Immunity, 45(4), 861-876.
Cronan, M. R., Hughes, E. J., Brewer, W. J., Viswanathan, G., Hunt, E. G., Singh, B., Mehra, S., Oehlers, S. H., Gregory, S. G., Kaushal, D., & Tobin, D. M. (2021). A non-canonical type 2 immune response coordinates tuberculous granuloma formation and epithelialization. Cell, 184(7), 1757-1774.
Damen, M. P., Meijers, A. S., Keizer, E. M., Piersma, S. R., Jimenez, C. R., Kuijl, C. P., Bitter, W., & Houben, E. N. (2022). The ESX-1 Substrate PPE68 Has a Key Function in ESX-1-Mediated Secretion in Mycobacterium marinum. mBio, 13(6).
Dannenberg, A. M., & Collins, F. M. (2001). Progressive pulmonary tuberculosis is not due to increasing numbers of viable bacilli in rabbits, mice and guinea pigs, but is due to a continuous host response to mycobacterial products. Tuberculosis, 81(3), 229-242.
Davis, J. M., Clay, H., Lewis, J. L., Ghori, N., Herbomel, P., & Ramakrishnan, L. (2002). Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity, 17(6), 693-702.
Davis, J. M., & Ramakrishnan, L. (2009). The role of the granuloma in expansion and dissemination of early tuberculous infection. Cell, 136(1), 37-49.
Del Rio-Rodriguez, R. E., Ramirez-Paredes, J. G., Soto-Rodriguez, S. A., Shapira, Y., Huchin-Cortes, M. D., Ruiz-Hernandez, J., Gomez-Solano, M. I., & Haydon, D. J. (2021). First evidence of fish nocardiosis in Mexico caused by Nocardia seriolae in farmed red drum (Sciaenops ocellatus, Linnaeus). Journal of Fish Disease, 44(8), 1117-1130.
Despuig, A., Fonseca, K. L., Habgood-Coote, D., Del Río-Álvarez, Á., Carrillo-Reixach, J., Arias, L., Gogichadze, N., Goff, A., Wildner, L. M., Gogishvili, S., Nikolaishvili, K., Shubladze, N., Avaliani, Z., Cardona, P., Martinón-Torres, F., Salas, A., Gómez-Carballa, A., Waddell, S. J., Armengol, C., Vashakidze, S., Kaforou, M., & Vilaplana, C. (2022). Unravelling the transcriptome of the human tuberculosis lesion and its clinical implications. medRxiv.
Egen, J. G., Rothfuchs, A. G., Feng, C. G., Horwitz, M. A., Sher, A., & Germain, R. N. (2011). Intravital imaging reveals limited antigen presentation and T cell effector function in mycobacterial granulomas. Immunity, 34(5), 807-819.
Ehlers, S. (2010). TB or not TB? Fishing for molecules making permissive granulomas. Cell Host & Microbe, 7(1), 6-8.
Ehlers, S., & Schaible, U. E. (2013). The granuloma in tuberculosis: dynamics of a host–pathogen collusion. Frontiers in Immunology, 3, 411.
El-Etr, S. H., Yan, L., & Cirillo, J. D. (2001). Fish monocytes as a model for mycobacterial host-pathogen interactions. Infection and Immunity, 69(12), 7310-7317.
Elkesh, A., Kantham, K. P., Shinn, A. P,, Crumlish, M., & Richards, R. H. (2013). Systemic nocardiosis in a Mediterranean population of cultured meagre, Argyrosomus regius Asso (Perciformes: Sciaenidae). Journal of Fish Diseases, 36(2), 141-149.
Elks, P. M., Brizee, S., van der Vaart, M., Walmsley, S. R., van Eeden, F. J., Renshaw, S. A., & Meijer, A. H. (2013). Hypoxia inducible factor signaling modulates susceptibility to mycobacterial infection via a nitric oxide dependent mechanism. PLoS Pathogens, 9(12).
Elzen, P. J., Garg, S., León, L., Brigl, M., Leadbetter, E. A., Gumperz, J. E., Dascher, C. C., Cheng, T., Sacks, F. M., Illarionov, P., Besra, G. S., Kent, S. C., Moody, D. B., & Brenner, M. B. (2005). Apolipoprotein-mediated pathways of lipid antigen presentation. Nature, 437(7060), 906-910.
Esteban, J., & García-Coca, M. (2018). Mycobacterium biofilms. Frontiers in Microbiology, 8.
Eum, S., Kong, J., Hong, M., Lee, Y., Kim, J., Hwang, S., Cho, S., Via, L. E., & Barry, C. E. (2010). Neutrophils are the predominant infected phagocytic cells in the airways of patients with active pulmonary TB. Chest, 137(1), 122-128.
Fleming, D., & Rumbaugh, K. (2018). The consequences of biofilm dispersal on the host. Scientific Reports, 8(1), 10738.
Gao, L., Guo, S., McLaughlin, B., Morisaki, H., Engel, J. N., & Brown, E. J. (2004). A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT‐6 secretion. Molecular Microbiology, 53(6), 1677-1693.
Geisel, R. E., Sakamoto, K., Russell, D. G., & Rhoades, E. R. (2005). In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guerin is due principally to trehalose mycolates. The Journal of Immunology, 174(8), 5007-5015.
González, J. F., Hahn, M. M., & Gunn, J. S. (2018). Chronic biofilm-based infections: skewing of the immune response. Pathogens and Disease, 76(3).
Hammarén, M. M., Luukinen, H., Sillanpää, A., Remans, K., Lapouge, K., Custódio, T., Löw, C., Montonen, T., Myllymäki, H., & Seeger, M. (2022). Proteomic analysis of mycobacterial biofilm matrix and development of biofilm-binding synthetic nanobodies. Retrieved from https://www.researchsquare.com/
Hammarén, M. M., Oksanen, K., Nisula, H. M., Luukinen, B. V., Pesu, M., Rämet, M., & Parikka, M. (2014). Adequate Th2-type response associates with restricted bacterial growth in latent mycobacterial infection of zebrafish. PLoS Pathogens, 10(6).
Herbomel, P., Thisse, B., & Thisse, C. (1999). Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development, 126(17), 3735-3745.
Ho, P., Byadgi, O. V., Wang, P., Tsai, M., Liaw, L., & Chen, S. (2016). Identification, molecular cloning of IL-1β and its expression profile during Nocardia seriolae infection in largemouth bass, Micropterus salmoides. International Journal of Molecular Sciences, 17(10), 1670.
Hoff, D. R., Ryan, G. J., Driver, E. R., Ssemakulu, C. C., De Groote, M. A., Basaraba, R. J., & Lenaerts, A. J. (2011). Location of intra-and extracellular M. tuberculosis populations in lungs of mice and guinea pigs during disease progression and after drug treatment. PLoS One, 6(3).
Høiby, N., Ciofu, O., Johansen, H. K., Song, Z., Moser, C. E., Jensen, P. Ø., Molin, S., Givskov, M., Tolker-Nielsen, T., & Bjarnsholt, T. (2011). The clinical impact of bacterial biofilms. International Journal of Oral Science, 3(2), 55-65. https://doi.org/10.4248/IJOS11026
Hortle, E., Johnson, K. E., Johansen, M. D., Nguyen, T., Shavit, J. A., Britton, W. J., Tobin, D. M., & Oehlers, S. H. (2019). Thrombocyte inhibition restores protective immunity to mycobacterial infection in zebrafish. The Journal of Infectious Diseases, 220(3), 524-534.
Hosseini, R., Lamers, G. E., Soltani, H. M., Meijer, A. H., Spaink, H. P., & Schaaf, M. J. (2016). Efferocytosis and extrusion of leukocytes determine the progression of early mycobacterial pathogenesis. Journal of Cell Science, 129(18), 3385-3395.
Huang, S., Lai, K., Su, S., Shei, M., & Chen, S. (2004). Isolation and characterization of the pathogenic bacterium, Nocardia seriolae, from female broodstock of Striped Mullet (Mugil cephalus). Journal of Taiwan Fisheries Research, 12, 61-69.
Hunter, R. L., Olsen, M. R., Jagannath, C., & Actor, J. K. (2006). Multiple roles of cord factor in the pathogenesis of primary, secondary, and cavitary tuberculosis, including a revised description of the pathology of secondary disease. Annals of Clinical & Laboratory Science, 36(4), 371-386.
Jamal, M., Ahmad, W., Andleeb, S., Jalil, F., Imran, M., Nawaz, M. A., Hussain, T., Ali, M., Rafiq, M., & Kamil, M. A. (2018). Bacterial biofilm and associated infections. Journal of the Chinese Medical Association: JCMA, 81(1), 7-11.
Jayaraman, P., Sada-Ovalle, I., Nishimura, T., Anderson, A. C., Kuchroo, V. K., Remold, H. G., & Behar, S. M. (2013). IL-1β promotes antimicrobial immunity in macrophages by regulating TNFR signaling and caspase-3 activation. The Journal of Immunology, 190(8), 4196-4204.
Jiang, Q., Gennaro, M. L., & Shi, L. (2020). HIF-1α as a Potential Therapeutic Target for Tuberculosis Treatment. Advances in Host-Directed Therapies Against Tuberculosis, 41-59.
Johansen, M. D., Kasparian, J. A., Hortle, E., Britton, W. J., Purdie, A. C., & Oehlers, S. H. (2018). Mycobacterium marinum infection drives foam cell differentiation in zebrafish infection models. Developmental & Comparative Immunology, 88, 169-172.
Kaplan, J. B. (2010). Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. Journal of Dental Research, 89(3), 205-218.
Kapoor, N., Pawar, S., Sirakova, T. D., Deb, C., Warren, W. L., & Kolattukudy, P. E. (2013). Human granuloma in vitro model, for TB dormancy and resuscitation. PLoS One, 8(1).
Karakousis, P. C., Yoshimatsu, T., Lamichhane, G., Woolwine, S. C., Nuermberger, E. L., Grosset, J. H., & Bishai, W. R. (2004). Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice. The Journal of Experimental Medicine, 200(5), 647-657.
Kennedy, G. M., Hooley, G. C., Champion, M. M., Mba Medie, F., & Champion, P. A. (2014). A novel ESX-1 locus reveals that surface-associated ESX-1 substrates mediate virulence in Mycobacterium marinum. Journal of Bacteriology, 196(10), 1877-1888.
Kenyon, A., Gavriouchkina, D., Zorman, J., Napolitani, G., Cerundolo, V., & Sauka-Spengler, T. (2017). Active nuclear transcriptome analysis reveals inflammasome-dependent mechanism for early neutrophil response to Mycobacterium marinum. Scientific Reports, 7(1), 1-14.
Kim, M., Wainwright, H. C., Locketz, M. L., Bekker, L., Walther, G. B., Dittrich, C. M., Visser, A., Wang, W., Hsu, F., Wiehart, U. I., Tsenova, L., Kaplan, G., & Russell, D. G. (2010). Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Molecular Medicine, 2(7), 258-274.
Kolloli, A., Singh, P., & Subbian, S. (2018). Granulomatous response to Mycobacterium tuberculosis infection. Understanding the Host Immune Response Against Mycobacterium tuberculosis Infection, 41-66.
Koo, H., Allan, R. N., Howlin, R. P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology, 15(12), 740-755. https://doi.org/10.1038/nrmicro.2017.99
Ladel, C. H., Blum, C. A., Dreher, A., Reifenberg, K., Kopf, M., & Kaufmann, S. H. (1997). Lethal tuberculosis in interleukin-6-deficient mutant mice. Infection and immunity, 65(11), 4843-4849.
Lai, L., Lin, T., Chen, Y., Hsieh, P., & Wang, J. (2018). Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Frontiers Microbiolpgy, 9, 1160. https://doi.org/10.3389/fmicb.2018.01160
Lalvani, A., & Millington, K. A. (2008). T cells and tuberculosis: beyond interferon-γ. The Journal of Infectious Diseases, 197(7), 941-943.
Lam, S. H., Chua, H. L., Gong, Z., Lam, T., & Sin, Y. M. (2004). Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Developmental & Comparative Immunology, 28(1), 9-28.
Lee, W. B., Kang, J., Yan, J., Lee, M. S., Jeon, B., Cho, S., & Kim, Y. (2012). Neutrophils promote mycobacterial trehalose dimycolate-induced lung inflammation via the Mincle pathway. PLoS Pathogens, 8(4).
Leid, J. G. (2009). Bacterial biofilms resist key host defenses. Microbe, 4(2), 66-70.
Leid, J. G., Willson, C. J., Shirtliff, M. E., Hassett, D. J., Parsek, M. R., & Jeffers, A. K. (2005). The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. The Journal of Immunology, 175(11), 7512-7518.
Lenaerts, A. J., Hoff, D. R., Aly, S., Ehlers, S., Andries, K., Cantarero, L. A., Orme, I. M., & Basaraba, R. J. (2007). Location of persisting mycobacteria in a Guinea pig model of tuberculosis revealed by R207910. Antimicrobial Agents and Chemotherapy, 51(9), 3338-3345.
Lieschke, G. J., Oates, A. C., Crowhurst, M. O., Ward, A. C., & Layton, J. E. (2001). Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. Blood, 98(10), 3087-3096.
Liu, Y., Chen, G., Xia, L., & Lu, Y. (2022). A review on the pathogenic bacterium Nocardia seriolae: aetiology, pathogenesis, diagnosis and vaccine development. Reviews in Aquaculture. https://doi.org/10.1111/raq.12691
Maekawa, S., Yoshida, T., Wang, P., & Chen, S. (2018). Current knowledge of nocardiosis in teleost fish. Journal of Fish Diseases, 41(3), 413-419. https://doi.org/10.1111/jfd.12782
Mann, E., Rice, K. C., Boles, B. R., Endres, J. L., Ranjit, D., Chandramohan, L., Tsang, L. H., Smeltzer, M. S., Horswill, A. R., & Bayles, K. W. (2009). Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One, 4(6).
Marić, S., & Vraneš, J. (2007). Characteristics and significance of microbial biofilm formation. Periodicum Biologorum, 109(2).
Martinez-Lara, P., Martinez-Porchas, M., Gollas-Galvan, T., Hernandez-Lopez, J., & Robles-Porchas, G. R. (2021). Granulomatosis in fish aquaculture: a mini review. Reviews in Aquaculture, 13(1), 259-268. https://doi.org/10.1111/raq.12472
McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D., & Kjelleberg, S. (2012). Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nature Reviews Microbiology, 10(1), 39-50.
Medzhitov, R., & Janeway, C. A. (2000). Innate immunity. The New England Journal of Medicine, 343(5), 338-344.
Mehra, S., Pahar, B., Dutta, N. K., Conerly, C. N., Philippi-Falkenstein, K., Alvarez, X., & Kaushal, D. (2010). Transcriptional reprogramming in nonhuman primate (Rhesus macaque) tuberculosis granulomas. PLoS One, 5(8).
Meijer, A. H., Verbeek, F., Salas-Vidal, E., Corredor-Adámez, M., Bussman, J., van der Sar, A. M., Otto, G. W., Geisler, R., & Spaink, H. P. (2005). Transcriptome profiling of adult zebrafish at the late stage of chronic tuberculosis due to Mycobacterium marinum infection. Molecular Immunology, 42(10), 1185-1203.
Mirzaei, R., Mohammadzadeh, R., Sholeh, M., Karampoor, S., Abdi, M., Dogan, E., Moghadam, M. S., Kazemi, S., Jalalifar, S., Dalir, A., Yousefimashouf, R., Mirzaei, E., Khodavirdipour, A., & Alikhani, M. Y. (2020). The importance of intracellular bacterial biofilm in infectious diseases. Microbial Pathogenesis, 147, 104393.
Miyoshi, Y., & Suzuki, S. (2003). A PCR method to detect Nocardia seriolae in fish samples. Fish Pathology, 38(3), 93-97.
Mor, N. (1985). Multiplication of Mycobacterium marinum within phagolysosomes of murine macrophages. Infection and Immunity, 48(3), 850-852.
Moser, C. E., Kjaergaard, S., Pressler, T., Kharazmi, A., Koch, C., & Høiby, N. (2000). The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type. APMIS, 108(5), 329-335.
Myllymäki, H., Bäuerlein, C. A., & Rämet, M. (2016). The zebrafish breathes new life into the study of tuberculosis. Frontiers in Immunology, 7.
Nayak, S. K., Shibasaki, Y., & Nakanishi, T. (2014). Immune responses to live and inactivated Nocardia seriolae and protective effect of recombinant interferon gamma (rIFN γ) against nocardiosis in ginbuna crucian carp, Carassius auratus langsdorfii. Fish & Shellfish Immunology, 39(2), 354-364.
Ndlovu, H., & Marakalala, M. J. (2016). Granulomas and inflammation: host-directed therapies for tuberculosis. Frontiers in Immunology, 7.
Noda, G. S., Barrios, M. F., & Díaz, Y. R. (2018). Evasion of the immune system by Mycobacterium tuberculosis: molecular mechanisms. Revista Cubana de Tecnología de la Salud, 9(2), 191-204.
Oehlers, S. H., Cronan, M. R., Scott, N. R., Thomas, M. I., Okuda, K. S., Walton, E. M., Beerman, R. W., Crosier, P. S., & Tobin, D. M. (2015). Interception of host angiogenic signalling limits mycobacterial growth. Nature, 517(7536), 612-615.
Ogryzko, N. V., Lewis, A., Wilson, H. L., Meijer, A. H., Renshaw, S. A., & Elks, P. M. (2019). Hif-1α–induced expression of Il-1β protects against mycobacterial infection in zebrafish. The Journal of Immunology, 202(2), 494-502.
Ojha, A. K., Baughn, A. D., Sambandan, D., Hsu, T., Trivelli, X., Guérardel, Y., Alahari, A., Kremer, L., Jacobs, W. R., & Hatfull, G. F. (2008). Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug‐tolerant bacteria. Molecular Microbiology, 69(1), 164-174.
Ojha, A. K., Trivelli, X., Guérardel, Y., Kremer, L., & Hatfull, G. F. (2010). Enzymatic hydrolysis of trehalose dimycolate releases free mycolic acids during mycobacterial growth in biofilms. The Journal of Biological Chemistry, 285, 17380 - 17389.
Orme, I. M. (2014). A new unifying theory of the pathogenesis of tuberculosis. Tuberculosis, 94(1), 8-14.
Osman, M. M., Shanahan, J. K., Chu, F., Takaki, K. K., Pinckert, M. L., Pagan, A. J., Brosch, R., Conrad, W. H., & Ramakrishnan, L. (2022). The C terminus of the mycobacterium ESX-1 secretion system substrate ESAT-6 is required for phagosomal membrane damage and virulence. Proceedings of the National Academy of Science, 119(11). https://doi.org/10.1073/pnas.2122161119
Pagán, A. J., & Ramakrishnan, L. (2018). The formation and function of granulomas. Annual Review of Immunology, 36, 639-665.
Pandey, A. K., & Sassetti, C. M. (2008). Mycobacterial persistence requires the utilization of host cholesterol. Proceedings of the National Academy of Sciences, 105(11), 4376-4380.
Parikka, M., Hammaren, M. M., Harjula, S. E., Halfpenny, N. J., Oksanen, K., Lahtinen, M., Pajula, E. T., Iivanainen, A., Pesu, M., & Rämet, M. (2012). Mycobacterium marinum causes a latent infection that can be reactivated by gamma irradiation in adult zebrafish. PLoS Pathogens, 8.
Peeters, E., Nelis, H. J., & Coenye, T. (2008). Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. Journal of Microbiological Methods, 72(2), 157-165.
Peyron, P., Vaubourgeix, J., Poquet, Y., Levillain, F., Botanch, C., Bardou, F., Daffé, M., Emile, J., Marchou, B., Cardona, P., de Chastellier, C., & Altare, F. (2008). Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence. PLoS Pathogens, 4(11).
Pisu, D., Huang, L., Grenier, J. K., & Russell, D. G. (2020). Dual RNA-Seq of Mtb-infected macrophages in vivo reveals ontologically distinct host-pathogen interactions. Cell Reports, 30(2), 335-350.
Prabhakara, R., Harro, J. M., Leid, J. G., Harris, M., & Shirtliff, M. E. (2011). Murine immune response to a chronic Staphylococcus aureus biofilm infection. Infection and Immunity, 79(4), 1789-1796.
Prabhakara, R., Harro, J. M., Leid, J. G., Keegan, A. D., Prior, M. L., & Shirtliff, M. E. (2011). Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infection and Immunity, 79(12), 5010-5018.
Preda, V. G., & Săndulescu, O. (2019). Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries, 7(3). https://doi.org/10.15190/d.2019.13
Qian, X., Ba, Y., Zhuang, Q., & Zhong, G. (2014). RNA-Seq technology and its application in fish transcriptomics. OMICS: A Journal of Integrative Biology, 18(2), 98-110.
Rajme-Manzur, D., Gollas-Galvan, T., Vargas-Albores, F., Martinez-Porchas, M., Hernandez-Onate, M. A., & Hernandez-Lopez, J. (2021). Granulomatous bacterial diseases in fish: An overview of the host's immune response. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 261, 111058.
Ramakrishnan, L. (2012). Revisiting the role of the granuloma in tuberculosis. Nature Reviews Immunology, 12(5), 352-366.
Redente, E. F., Higgins, D. M., Dwyer‐Nield, L. D., Orme, I. M., Gonzalez‐Juarrero, M., & Malkinson, A. M. (2010). Differential polarization of alveolar macrophages and bone marrow‐derived monocytes following chemically and pathogen‐induced chronic lung inflammation. Journal of Leukocyte Biology, 88(1), 159-168.
Rens, C., Chao, J. D., Sexton, D. L., Tocheva, E. I., & Av-Gay, Y. (2021). Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. Microbiology, 167(3).
Roca, F. J., & Ramakrishnan, L. (2013). TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species. Cell, 153(3), 521-534.
Rohde, K. H., Veiga, D. F., Caldwell, S., Balázsi, G., & Russell, D. G. (2012). Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. PLoS Pathogens, 8(6).
Ruggiero, A., Tizzano, B., Pedone, E., Pedone, C., Wilmanns, M., & Berisio, R. (2009). Crystal structure of the resuscitation-promoting factor (ΔDUF)RpfB from M. tuberculosis. Journal of Molecular Biology, 385(1), 153-162.
Russell, D. G., Cardona, P., Kim, M., Allain, S., & Altare, F. (2009). Foamy macrophages and the progression of the human tuberculosis granuloma. Nature Immunology, 10(9), 943-948.
Ryan, G. J., Shapiro, H. M., & Lenaerts, A. J. (2014). Improving acid-fast fluorescent staining for the detection of mycobacteria using a new nucleic acid staining approach. Tuberculosis, 94(5), 511-518.
Salgame, P. (2011). MMPs in tuberculosis: granuloma creators and tissue destroyers. The Journal of Clinical Investigation, 121(5), 1686-1688.
Sallin, M. A., Kauffman, K. D., Riou, C., Du Bruyn, E., Foreman, T. W., Sakai, S., Hoft, S. G., Myers, T. G., Gardina, P. J., Sher, A., Moore, R., Wilder-Kofie, T., Moore, I. N., Sette, A., Lindestam Arlehamn, C. S., Wilkinson, R. J., & Barber, D. L. (2018). Host resistance to pulmonary Mycobacterium tuberculosis infection requires CD153 expression. Nature Microbiology, 3(11), 1198-1205.
Sandor, M., Weinstock, J. V., & Wynn, T. A. (2003). Granulomas in schistosome and mycobacterial infections: a model of local immune responses. Trends in Immunology, 24(1), 44-52.
Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biology, 4(6).
Schreiber, H. A., Harding, J. S., Hunt, O., Altamirano, C. J., Hulseberg, P. D., Stewart, D., Fabry, Z., & Sandor, M. (2011). Inflammatory dendritic cells migrate in and out of transplanted chronic mycobacterial granulomas in mice. The Journal of Clinical Investigation, 121(10), 3902-3913.
Shafiani, S., Tucker-Heard, G. s., Kariyone, A., Takatsu, K., & Urdahl, K. B. (2010). Pathogen-specific regulatory T cells delay the arrival of effector T cells in the lung during early tuberculosis. The Journal of Experimental Medicine, 207(7), 1409-1420.
Shaler, C. R., Horvath, C. N., Jeyanathan, M., & Xing, Z. (2013). Within the enemy’s camp: contribution of the granuloma to the dissemination, persistence and transmission of Mycobacterium tuberculosis. Frontiers in Immunology, 4.
Shaler, C. R., Kugathasan, K., McCormick, S. M., Damjanovic, D., Horvath, C. N., Small, C. L., Jeyanathan, M., Chen, X., Yang, P., & Xing, Z. (2011). Pulmonary mycobacterial granuloma: increased IL-10 production contributes to establishing a symbiotic host–microbe microenvironment. The American Journal of Pathology, 178(4), 1622-1634.
Shi, L., Eugenin, E. A., & Subbian, S. (2016). Immunometabolism in tuberculosis. Frontiers in Immunology, 7, 150.
Shimahara, Y., Huang, Y., Tsai, M., Wang, P., Yoshida, T., Lee, J., & Chen, S. (2009). Genotypic and phenotypic analysis of fish pathogen, Nocardia seriolae, isolated in Taiwan. Aquaculture, 294(3-4), 165-171. https://doi.org/10.1016/j.aquaculture.2009.06.017
Spellberg, B., & Edwards, J. E. (2001). Type 1/Type 2 immunity in infectious diseases. Clinical Infectious Diseases, 32(1), 76-102.
Stamm, L. M., Morisaki, J. H., Gao, L., Jeng, R. L., McDonald, K., Roth, R., Takeshita, S., Heuser, J. E., Welch, M. D., & Brown, E. J. (2003). Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. The Journal of Experimental Medicine, 198(9), 1361-1368.
Steinel, N. C., & Bolnick, D. I. (2017). Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. Frontiers in Immunology, 8, 827.
Sternlicht, M. D., & Werb, Z. (2001). How matrix metalloproteinases regulate cell behavior. Annual Review of Cell and Developmental Biology, 17(1), 463-516.
Swaim, L. E., Connolly, L. E., Volkman, H. E., Humbert, O., Born, D. E., & Ramakrishnan, L. (2006). Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity. Infection and Immunity, 74(11), 6108-6117.
Talaat, A. M., Reimschuessel, R., Wasserman, S. S., & Trucksis, M. (1998). Goldfish, Carassius auratus, a novel animal model for the study of Mycobacterium marinum pathogenesis. Infection and Immunity, 66(6), 2938-2942.
Tanekhy, M., Matsuda, S., Itano, T., Kawakami, H., Kono, T., & Sakai, M. (2010). Expression of cytokine genes in head kidney and spleen cells of Japanese flounder (Paralichthys olivaceus) infected with Nocardia seriolae. Veterinary Immunology and Immunopathology, 134(3-4), 178-183.
Thurlow, L. R., Hanke, M. L., Fritz, T. M., Angle, A., Aldrich, A. J., Williams, S. H., Engebretsen, I. L., Bayles, K. W., Horswill, A. R., & Kielian, T. L. (2011). Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. The Journal of Immunology, 186(11), 6585-6596.
Tobian, A. A., Potter, N. S., Ramachandra, L., Pai, R. K., Convery, M. E., Boom, W. H., & Harding, C. V. (2003). Alternate class I MHC antigen processing is inhibited by toll-like receptor signaling pathogen-associated molecular patterns: Mycobacterium tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide. The Journal of Immunology, 171(3), 1413-1422.
Tobin, D. M., & Ramakrishnan, L. (2008). Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cellular Microbiology, 10(5), 1027-1039.
Tobin, D. M., Roca, F. J., Oh, S. F., McFarland, R., Vickery, T. W., Ray, J. P., Ko, D. C., Zou, Y., Bang, N. D., Chau, T. T., Vary, J. C., Hawn, T. R., Dunstan, S. J., Farrar, J. J., Thwaites, G. E., King, M., Serhan, C. N., & Ramakrishnan, L. (2012). Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections. Cell, 148(3), 434-446.
Tobin, D. M., Vary, J. C., Ray, J. P., Walsh, G. S., Dunstan, S. J., Bang, N. D., Hagge, D. A., Khadge, S., King, M., Hawn, T. R., Moens, C. B., & Ramakrishnan, L. (2010). The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell, 140(5), 717-730.
Torraca, V., Cui, C., Boland, R., Bebelman, J. P., van der Sar, A. M., Smit, M. J., Siderius, M., Spaink, H. P., & Meijer, A. H. (2015). The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection. Disease Models & Mechanisms, 8(3), 253-269.
Torrado, E., & Cooper, A. M. (2010). IL-17 and Th17 cells in tuberculosis. Cytokine & Growth Factor Reviews, 21(6), 455-462.
Tote, K., Berghe, D. V., Maes, L., & Cos, P. (2008). A new colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Letters in Applied Microbiology, 46(2), 249-254.
Trivedi, A., Mavi, P. S., Bhatt, D., & Kumar, A. (2016). Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nature Communications, 7(1).
van der Sar, A. M., Spaink, H. P., Zakrzewska, A., Bitter, W., & Meijer, A. H. (2009). Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. Molecular Immunology, 46(11-12), 2317-2332.
van der Vaart, M., Korbee, C. J., Lamers, G. E., Tengeler, A. C., Hosseini, R., Haks, M. C., Ottenhoff, T. H., Spaink, H. P., & Meijer, A. H. (2014). The DNA damage-regulated autophagy modulator DRAM1 links mycobacterial recognition via TLR-MYD88 to autophagic defense. Cell Host & Microbe, 15(6), 753-767.
van der Vaart, M., van Soest, J. J., Spaink, H. P., & Meijer, A. H. (2013). Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system. Disease Models & Mechanisms, 6(3), 841-854.
Kooyk, Y. V., & Geijtenbeek, T. B. (2003). DC-SIGN: escape mechanism for pathogens. Nature Reviews Immunology, 3(9), 697-709.
Vemula, M. H., Medisetti, R., Ganji, R., Jakkala, K., Sankati, S., Chatti, K., & Banerjee, S. (2016). Mycobacterium tuberculosis zinc metalloprotease-1 assists mycobacterial dissemination in zebrafish. Frontiers in Microbiology, 7, 1347.
Volkman, H. E., Clay, H., Beery, D., Chang, J. C., Sherman, D. R., & Ramakrishnan, L. (2004). Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. PLoS Biology, 2(11).
Volkman, H. E., Pozos, T. C., Zheng, J., Davis, J. M., Rawls, J. F., & Ramakrishnan, L. (2010). Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science, 327(5964), 466-469.
Wang, F., Wang, X., Liu, C., Chang, O., Feng, Y., Jiang, L., & Li, K. (2017). Nocardia seriolae infection in cultured jade perch, Scortum barcoo. Aquaculture International, 25, 2201-2212.
Wang, F., Wang, X. G., Liu, C., Chang, O. Q., Feng, Y. Y., Jiang, L., & Li, K. B. (2017). Transparent Tiger barb Puntius tetrazona, a fish model for in vivo analysis of nocardial infection. Veterinary Microbiology, 211, 67-73. https://doi.org/10.1016/j.vetmic.2017.10.003
Wang, W., Huang, X., Xin, H., Fu, M., Xue, A., & Wu, Z. (2015). TRAF family member-associated NF-κB activator (TANK) inhibits genotoxic nuclear factor κB activation by facilitating deubiquitinase USP10-dependent deubiquitination of TRAF6 ligase. Journal of Biological Chemistry, 290(21), 13372-13385.
Webb, J. S., Thompson, L. S., James, S., Charlton, T. S., Tolker-Nielsen, T., Koch, B., Givskov, M., & Kjelleberg, S. (2003). Cell death in Pseudomonas aeruginosa biofilm development. Journal of Bacteriology, 185(15), 4585-4592.
Welin, A., Raffetseder, J., Eklund, D., Stendahl, O., & Lerm, M. (2011). Importance of phagosomal functionality for growth restriction of Mycobacterium tuberculosis in primary human macrophages. Journal of Innate Immunity, 3(5), 508-518.
Wolf, A. J., Desvignes, L., Linas, B., Banaiee, N., Tamura, T., Takatsu, K., & Ernst, J. D. (2008). Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. The Journal of Experimental Medicine, 205(1), 105-115.
Wong, K., & Jacobs, W. R. (2016). Postprimary tuberculosis and macrophage necrosis: is there a big conNECtion? mBio, 7(1).
Wright, C. C., Hsu, F. F., Arnett, E., Dunaj, J. L., Davidson, P. M., Pacheco, S. A., Harriff, M. J., Lewinsohn, D. M., Schlesinger, L. S., & Purdy, G. E. (2017). The Mycobacterium tuberculosis mmpl11 cell wall lipid transporter is important for biofilm formation, intracellular growth, and nonreplicating persistence. Infection and Immunity, 85(8). https://doi.org/10.1128/IAI.00131-17
Yamasaki, S., Ishikawa, E., Sakuma, M., Hara, H., Ogata, K., & Saito, T. (2008). Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nature Immunology, 9(10), 1179-1188.
Yang, C., Cambier, C. J., Davis, J. M., Hall, C. J., Crosier, P. S., & Ramakrishnan, L. (2012). Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages. Cell Host & Microbe, 12(3), 301-312.
Yasuike, M., Nishiki, I., Iwasaki, Y., Nakamura, Y., Fujiwara, A., Shimahara, Y., Kamaishi, T., Yoshida, T., Nagai, S., Kobayashi, T., & Katoh, M. (2017). Analysis of the complete genome sequence of Nocardia seriolae UTF1, the causative agent of fish nocardiosis: The first reference genome sequence of the fish pathogenic Nocardia species. PLoS One, 12(3). https://doi.org/10.1371/journal.pone.0173198
電子全文 電子全文(網際網路公開日期:20280414)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top