跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳政沛
研究生(外文):Cheng-Pei Wu
論文名稱:電子煙與香菸誘發細胞毒性與發炎反應之研究
論文名稱(外文):Cytotoxicity and inflammatory responses induced by electronic cigarettes and traditional cigarettes
指導教授:陳燕惠陳燕惠引用關係
指導教授(外文):Yen-Hui Chen
口試委員:許麗卿蔡幸真魏璽倫
口試委員(外文):Lih-Ching HsuHsing-Chen TsaiShi-Lun Wei
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:52
中文關鍵詞:香菸電子煙尼古丁高遷移率族蛋白1自噬作用肺上皮細胞巨噬細胞
外文關鍵詞:autophagycigarettese-cigaretteshigh mobility group box 1lung epithelial cellsmacrophagesnicotine
DOI:10.6342/NTU202303311
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
研究背景
吸菸為造成慢性肺阻塞病(chronic obstructive pulmonary disease, COPD)的重要因素之一。高遷移率族蛋白1 (high-mobility group box 1, HMGB1)為存在於大部分細胞中的DNA結合蛋白,被認為可以透過釋放到細胞外作為損傷相關分子模式(damage-associated molecular pattern molecules, DAMPs)誘導發炎相關反應,參與香菸誘導的肺損傷。電子煙做為香菸替代品,然而使用者接觸的有毒化物學物質可能與香菸煙霧中的有毒物質類似,更可能存在未知且有害的物質,而現今研究尚未了解電子煙霧對細胞毒性和發炎相關的機制。
研究目的
本研究探討電子煙霧對肺上皮細胞和肺巨噬細胞的細胞毒性,以及是否能影響細胞HMGB1的表現,並活化巨噬細胞的自噬作用。此外針對兩種煙產品含有的共同成分尼古丁,了解尼古丁是否能改變HMGB1表現和自噬作用的活化。最後探討電子煙液中的主要溶劑、電子煙裝置和煙液中的調味劑對細胞毒性的影響。
研究方法
本研究利用MTT assay分別檢測電子煙蒸氣提取物(e-cigarette vapor extract, EVE)、香菸煙霧提取物(cigarette smoke extract, CSE)和尼古丁對於肺上皮細胞和巨噬細胞的細胞毒性,再利用西方墨點法偵測HMGB1表現和巨噬細胞中自噬作用標記蛋白的表現。
研究結果
研究結果顯示EVE和CSE對A549上皮細胞和THP-1巨噬細胞都具有細胞毒性,而EVE在較低濃度便能引起細胞毒性。隨著給予EVE和CSE的濃度及給予的時間的上升,能使A549肺上皮細胞釋放出的HMGB1蛋白量增加;在THP-1巨噬細胞,HMGB1蛋白釋出和細胞內HMGB1蛋白表現量也隨給予的EVE和CSE濃度及給予的時間的上升而顯著增加,且自噬作用標記蛋白LC3B-II也顯著增加,而EVE在較低濃度就能引起以上的變化。以香菸和電子煙含有的共同成分尼古丁,直接給予THP-1細胞,結果發現尼古丁能促使THP-1巨噬細胞釋放出HMGB1蛋白增加、細胞內HMGB1和LC3B-II表現都顯著增加,但經換算,引發這些表現所需的尼古丁濃度遠大於EVE或CSE所含的尼古丁濃度。此外Propylene glycol (PG)和Vegetable glycerin (VG)之汽化煙霧對細胞毒性較小,且不同的電子煙裝置和含有不同調味劑的煙液所產生的煙霧,對細胞造成的毒性大小也不同。
結論
本研究發現EVE也會對細胞造成毒性,且比CSE造成的細胞毒性更高,也會促使巨噬細胞內HMGB1表現上升和大量釋出,並活化自噬作用,且效果也比CSE明顯。尼古丁也會促使以上現象的發生,但對照EVE或CSE所含之尼古丁尚未達到可引起反應之濃度,暗示EVE或CSE中可能有其他更容易促成巨噬細胞HMGB1蛋白表現上升和自噬作用活化的物質;若在收集更大量的煙霧或長期暴露於煙霧下,尼古丁仍可能參與引發細胞的發炎反應與自噬作用。另外,電子煙裝置或煙液調味劑也可能是影響電子煙霧引起細胞毒性的因素,未來需要更深入研究電子煙的其他成分或汽化後所產生的有毒物質造成的潛在危險。
Background
Smoking is one of the primary factors of chronic obstructive pulmonary disease (COPD). High-mobility group box 1 (HMGB1), a DNA-binding protein expressed in many cells, can serve as a regulator of autophagy and translocate outside the cell acting as a damage-associated molecular pattern molecule (DAMPs) to induce inflammatory responses. HMGB1 participates in cigarettes-smoke (CS) induced lung injury and may mediate the pathogenesis of COPD. E-cigarettes provide nicotine to addicts as alternatives for conventional cigarettes. Nevertheless, e-cigarettes still can be harmful and emit numerous toxicants. The mechanisms of cytotoxicity and inflammation induced by e-cigarettes have not been fully elucidated.
Objective
This study aims to investigate the cytotoxicity and inflammatory response of e-cigarettes vapor on lung epithelial cells and lung macrophages. We examine the expression of inflammation marker HMGB1 and its potential to activate the autophagy in macrophages. Furthermore, we assess the impact of nicotine, a common component in cigarettes and e-cigarettes, on the expression of HMGB1 and the activation of autophagy. Lastly, we evaluate the effects of main solvents in e-liquids, e-cigarette devices and flavorings in e-liquids on cytotoxicity.
Methods
EVE and CSE were exposed to A549 lung epithelial cells and THP-1 macrophages. Cytotoxicity in response to EVE, CSE and nicotine was measured by MTT assay in A549 cells and THP-1 cells, respectively. Inflammatory responses were measured by the levels of released and intracellular HMGB1 using Western blot. In addition, the autophagy marker, LC3B-II, was assessed following THP-1 cells exposed to CSE, EVE or nicotine.
Results
Although EVE and CSE induced cellular toxicity in both A549 cells and THP-1 cells, EVE can induce cytotoxicity in lower concentration than CSE. EVE increased either intracellular or released HMGB1 protein levels in THP-1 cells. Similar effects were observed with CSE. LC3B-II protein levels were also significantly elevated after EVE or CSE exposure. Additionally, EVE can cause inflammatory responses at lower concentrations compared to CSE. While the protein levels of HMBG1 and LC3B-II in THP-1 cells were influenced by direct treatment of nicotine, the required nicotine concentration is much higher than that contained in EVE or CSE, indicating that the extracts may contain other toxicants which are more likely to induce cellular responses than nicotine. The aerosolized propylene glycol and vegetable glycerin showed lower toxicity to THP-1 cells than EVE or CSE. In addition, different e-cigarette devices and e-liquid with different flavorings affect the e-cigarette induced cytotoxicity.
Conclusion
E-cigarettes vapor can induce cytotoxicity and HMGB1 release in both A549 cell and THP-1 cells, as well as the elevation of intracellular of HMGB1 and autophagy activation in THP-1 macrophages. It implies the harmful effect of e-cigarettes on lung injury. Although there might be other potent factors in EVE or CSE, nicotine may still be involved in triggering inflammatory responses and autophagy by treated with a larger amount of smoke or vapor collected samples or treated in longer exposure time. The choice of e-cigarette devices and various flavorings may impact the cytotoxicity of e-cigarettes. Other toxic substances generated by vaporization of e-cigarettes should be further studied in the future.
中文摘要 I
英文摘要 III
目錄 V
圖目錄 VIII
表目錄 IX
縮寫對照表 X
第一章 緒論 1
1-1 香菸引起的慢性阻塞性肺病(Chronic obstructive pulmonary disease, COPD) 1
1-1-1 慢性阻塞性肺病(COPD) 1
1-1-2 香菸煙霧 (Cigarette smoke, CS) 1
1-1-3 上皮細胞與巨噬細胞在COPD之角色 2
1月2日 電子煙 (Electronic cigarette) 3
1-2-1 電子煙的主要成分與潛在危害 3
1-2-2 電子煙霧造成的急性肺損傷 5
1-2-3 電子煙霧造成的慢性肺發炎 5
1-3 高遷移率族蛋白1 (High mobility group box 1, HMGB1) 6
1-3-1 HMGB1的功能 6
1-3-2 HMGB1與慢性阻塞性肺病(COPD)之關聯 6
1-3-3 HMGB1與nicotine之關聯 7
1月4日 自噬作用(Autophagy) 8
1-4-1 自噬作用與COPD之關聯 8
1-4-2 自噬作用與HMGB1之關聯 8
1-4-3 自噬作用與nicotine之關聯 9
1月5日 研究目的 9
第二章 材料與研究方法 10
2月1日 實驗儀器 10
2月2日 實驗材料 11
2002/2/1 細胞株 11
2002/2/2 實驗藥品與材料試劑 11
2月3日 實驗方法 12
2002/3/1 細胞培養基與緩衝溶液之配製 12
2002/3/2 水性氣溶膠提取物(Aqueous aerosol extracts, Aae)之製備 14
2002/3/3 細胞培養 (Cell culture) 15
2002/3/4 THP-1 巨噬細胞之分化 15
2002/3/5 細胞存活分析 (MTT assay) 15
2002/3/6 西方墨點法 (Western blot) 16
2002/3/7 統計檢定 19
第三章 實驗結果 21
3月1日 EVE誘發A549上皮細胞毒性和HMGB1釋放 21
3月2日 EVE誘發THP-1巨噬細胞毒性、HMGB1釋放量增加、細胞內HMGB1和LC3B蛋白表現變化 22
3月3日 尼古丁(Nicotine)促進THP-1巨噬細胞HMGB1釋放、細胞HMGB1和LC3B蛋白表現量上升 24
3月4日 保濕劑、電子煙裝置和調味劑對THP-1巨噬細胞毒性的影響 25
第四章 討論 38
4月1日 上皮細胞和巨噬細胞的HMGB1大量釋放可能參與香菸煙霧和電子煙霧引起的肺損傷 38
4月2日 巨噬細胞的自噬作用可能涉及香菸煙霧和電子煙霧造成的肺損傷 39
4月3日 尼古丁可能為引起細胞毒性、HMGB1大量釋放和自噬作用的物質之一 40
4月4日 電子煙的組成對細胞毒性的影響 41
第五章 結論與未來展望 45
參考文獻 46
1.Barnes PJ, Burney PG, Silverman EK, Celli BR, Vestbo J, Wedzicha JA, Wouters EF. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015 Dec 3;1:15076.
2Rabe KF, Watz H. Chronic obstructive pulmonary disease. Lancet. 2017 May 13;389(10082):1931-1940.
3Christenson SA, Smith BM, Bafadhel M, Putcha N. Chronic obstructive pulmonary disease. Lancet. 2022 Jun 11;399(10342):2227-2242. doi: 10.1016/S0140-6736(22)00470-6. Epub 2022 May 6.
4Ejike CO, Woo H, Galiatsatos P, Paulin LM, Krishnan JA, Cooper CB, Couper DJ, Kanner RE, Bowler RP, Hoffman EA, Comellas AP, Criner GJ, Barr RG, Martinez FJ, Han MK, Martinez CH, Ortega VE, Parekh TM, Christenson SA, Thakur N, Baugh A, Belz DC, Raju S, Gassett AJ, Kaufman JD, Putcha N, Hansel NN. Contribution of Individual and Neighborhood Factors to Racial Disparities in Respiratory Outcomes. Am J Respir Crit Care Med. 2021 Apr 15;203(8):987-997.
5Barnes PJ. Cellular and molecular mechanisms of chronic obstructive pulmonary disease. Clin Chest Med. 2014 Mar;35(1):71-86. doi: 10.1016/j.ccm.2013.10.004. Epub 2013 Dec 12.
6Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest. 2009 Jan;135(1):173-180.
7Kirkham PA, Barnes PJ. Oxidative stress in COPD. Chest. 2013 Jul;144(1):266-273.
8Wedzicha JA, Seemungal TA. COPD exacerbations: defining their cause and prevention. Lancet. 2007 Sep 1;370(9589):786-96.
9Singh D, Agusti A, Anzueto A, Barnes PJ, Bourbeau J, Celli BR, Criner GJ, Frith P, Halpin DMG, Han M, López Varela MV, Martinez F, Montes de Oca M, Papi A, Pavord ID, Roche N, Sin DD, Stockley R, Vestbo J, Wedzicha JA, Vogelmeier C. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2019. Eur Respir J. 2019 May 18;53(5):1900164.
10Crystal RG. Airway basal cells. The "smoking gun" of chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2014 Dec 15;190(12):1355-62.
11Borgerding M, Klus H. Analysis of complex mixtures--cigarette smoke. Exp Toxicol Pathol. 2005 Jul;57 Suppl 1:43-73.
12Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008 Mar;8(3):183-92.
13McEachern EK, Hwang JH, Sladewski KM, Nicatia S, Dewitz C, Mathew DP, Nizet V, Crotty Alexander LE. Analysis of the effects of cigarette smoke on staphylococcal virulence phenotypes. Infect Immun. 2015 Jun;83(6):2443-52.
14Stabbert R, Dempsey R, Diekmann J, Euchenhofer C, Hagemeister T, Haussmann HJ, Knorr A, Mueller BP, Pospisil P, Reininghaus W, Roemer E, Tewes FJ, Veltel DJ. Studies on the contributions of smoke constituents, individually and in mixtures, in a range of in vitro bioactivity assays. Toxicol In Vitro. 2017 Aug;42:222-246.
15Soleimani F, Dobaradaran S, De-la-Torre GE, Schmidt TC, Saeedi R. Content of toxic components of cigarette, cigarette smoke vs cigarette butts: A comprehensive systematic review. Sci Total Environ. 2022 Mar 20;813:152667.
16Liu A, Zhang X, Li R, Zheng M, Yang S, Dai L, Wu A, Hu C, Huang Y, Xie M, Chen Q. Overexpression of the SARS-CoV-2 receptor ACE2 is induced by cigarette smoke in bronchial and alveolar epithelia. J Pathol. 2021 Jan;253(1):17-30.
17Cipollina C, Bruno A, Fasola S, Cristaldi M, Patella B, Inguanta R, Vilasi A, Aiello G, La Grutta S, Torino C, Pace E. Cellular and Molecular Signatures of Oxidative Stress in Bronchial Epithelial Cell Models Injured by Cigarette Smoke Extract. Int J Mol Sci. 2022 Feb 4;23(3):1770.
18Aghapour M, Raee P, Moghaddam SJ, Hiemstra PS, Heijink IH. Airway Epithelial Barrier Dysfunction in Chronic Obstructive Pulmonary Disease: Role of Cigarette Smoke Exposure. Am J Respir Cell Mol Biol. 2018 Feb;58(2):157-169.
19Brusselle GG, Joos GF, Bracke KR. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 2011 Sep 10;378(9795):1015-26.
20Yamasaki K, Eeden SFV. Lung Macrophage Phenotypes and Functional Responses: Role in the Pathogenesis of COPD. Int J Mol Sci. 2018 Feb 15;19(2):582.
21Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy. 2014 Feb;10(2):192-200.
22Lugg ST, Scott A, Parekh D, Naidu B, Thickett DR. Cigarette smoke exposure and alveolar macrophages: mechanisms for lung disease. Thorax. 2022 Jan;77(1):94-101.
23https://www.hpa.gov.tw/1718/9913/n
24https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=4576&pid=16031
25Cornelius ME, Wang TW, Jamal A, Loretan CG, Neff LJ. Tobacco Product Use Among Adults - United States, 2019. MMWR Morb Mortal Wkly Rep. 2020 Nov 20;69(46):1736-1742.
26El-Toukhy S, Sabado M, Choi K. Trends in Tobacco Product Use Patterns Among U.S. Youth, 1999-2014. Nicotine Tob Res. 2018 May 3;20(6):690-697.
27Gordon T, Karey E, Rebuli ME, Escobar YH, Jaspers I, Chen LC. E-Cigarette Toxicology. Annu Rev Pharmacol Toxicol. 2022 Jan 6;62:301-322.
28Jackler RK, Ramamurthi D. Nicotine arms race: JUUL and the high-nicotine product market. Tob Control. 2019 Nov;28(6):623-628.
29Goniewicz ML, Kuma T, Gawron M, Knysak J, Kosmider L. Nicotine levels in electronic cigarettes. Nicotine Tob Res. 2013 Jan;15(1):158-66.
30Woodall M, Jacob J, Kalsi KK, Schroeder V, Davis E, Kenyon B, Khan I, Garnett JP, Tarran R, Baines DL. E-cigarette constituents propylene glycol and vegetable glycerin decrease glucose uptake and its metabolism in airway epithelial cells in vitro. Am J Physiol Lung Cell Mol Physiol. 2020 Dec 1;319(6):L957-L967.
31Varughese S, Teschke K, Brauer M, Chow Y, van Netten C, Kennedy SM. Effects of theatrical smokes and fogs on respiratory health in the entertainment industry. Am J Ind Med. 2005 May;47(5):411-8.
32Laino T, Tuma C, Moor P, Martin E, Stolz S, Curioni A. Mechanisms of propylene glycol and triacetin pyrolysis. J Phys Chem A. 2012 May 10;116(18):4602-9.
33Díaz E, Sad ME, Iglesia E. Homogeneous oxidation reactions of propanediols at low temperatures. ChemSusChem. 2010 Sep 24;3(9):1063-70.
34Ogunwale MA, Li M, Ramakrishnam Raju MV, Chen Y, Nantz MH, Conklin DJ, Fu XA. Aldehyde Detection in Electronic Cigarette Aerosols. ACS Omega. 2017 Mar 31;2(3):1207-1214.
35Dinu V, Kilic A, Wang Q, Ayed C, Fadel A, Harding SE, Yakubov GE, Fisk ID. Policy, toxicology and physicochemical considerations on the inhalation of high concentrations of food flavour. NPJ Sci Food. 2020 Oct 7;4:15.
36Clapp PW, Jaspers I. Electronic Cigarettes: Their Constituents and Potential Links to Asthma. Curr Allergy Asthma Rep. 2017 Oct 5;17(11):79.
37Stefaniak AB, LeBouf RF, Ranpara AC, Leonard SS. Toxicology of flavoring- and cannabis-containing e-liquids used in electronic delivery systems. Pharmacol Ther. 2021 Aug;224:107838.
38Cooper SY, Akers AT, Henderson BJ. Flavors Enhance Nicotine Vapor Self-administration in Male Mice. Nicotine Tob Res. 2021 Feb 16;23(3):566-572.
39Rebuli ME, Rose JJ, Noël A, Croft DP, Benowitz NL, Cohen AH, Goniewicz ML, Larsen BT, Leigh N, McGraw MD, Melzer AC, Penn AL, Rahman I, Upson D, Crotty Alexander LE, Ewart G, Jaspers I, Jordt SE, Kligerman S, Loughlin CE, McConnell R, Neptune ER, Nguyen TB, Pinkerton KE, Witek TJ Jr. The E-cigarette or Vaping Product Use-Associated Lung Injury Epidemic: Pathogenesis, Management, and Future Directions: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc. 2023 Jan;20(1):1-17.
40Layden JE, Ghinai I, Pray I, Kimball A, Layer M, Tenforde MW, Navon L, Hoots B, Salvatore PP, Elderbrook M, Haupt T, Kanne J, Patel MT, Saathoff-Huber L, King BA, Schier JG, Mikosz CA, Meiman J. Pulmonary Illness Related to E-Cigarette Use in Illinois and Wisconsin - Final Report. N Engl J Med. 2020 Mar 5;382(10):903-916.
41Blount BC, Karwowski MP, Shields PG, Morel-Espinosa M, Valentin-Blasini L, Gardner M, Braselton M, Brosius CR, Caron KT, Chambers D, Corstvet J, Cowan E, De Jesús VR, Espinosa P, Fernandez C, Holder C, Kuklenyik Z, Kusovschi JD, Newman C, Reis GB, Rees J, Reese C, Silva L, Seyler T, Song MA, Sosnoff C, Spitzer CR, Tevis D, Wang L, Watson C, Wewers MD, Xia B, Heitkemper DT, Ghinai I, Layden J, Briss P, King BA, Delaney LJ, Jones CM, Baldwin GT, Patel A, Meaney-Delman D, Rose D, Krishnasamy V, Barr JR, Thomas J, Pirkle JL; Lung Injury Response Laboratory Working Group. Vitamin E Acetate in Bronchoalveolar-Lavage Fluid Associated with EVALI. N Engl J Med. 2020 Feb 20;382(8):697-705.
42Matsumoto S, Fang X, Traber MG, Jones KD, Langelier C, Hayakawa Serpa P, Calfee CS, Matthay MA, Gotts JE. Dose-Dependent Pulmonary Toxicity of Aerosolized Vitamin E Acetate. Am J Respir Cell Mol Biol. 2020 Dec;63(6):748-757.
43Wang Z, May SM, Charoenlap S, Pyle R, Ott NL, Mohammed K, Joshi AY. Effects of secondhand smoke exposure on asthma morbidity and health care utilization in children: a systematic review and meta-analysis. Ann Allergy Asthma Immunol. 2015 Nov;115(5):396-401.e2.
44Strong DR, Myers MG, Pulvers K, Noble M, Brikmanis K, Doran N. Marijuana use among US tobacco users: Findings from wave 1 of the population assessment of tobacco health (PATH) study. Drug Alcohol Depend. 2018 May 1;186:16-22.
45Ding J, Cui X, Liu Q. Emerging role of HMGB1 in lung diseases: friend or foe. J Cell Mol Med. 2017 Jun;21(6):1046-1057.
46Yang H, Wang H, Andersson U. Targeting Inflammation Driven by HMGB1. Front Immunol. 2020 Mar 20;11:484.
47Liu Y, Yan W, Tohme S, Chen M, Fu Y, Tian D, Lotze M, Tang D, Tsung A. Hypoxia induced HMGB1 and mitochondrial DNA interactions mediate tumor growth in hepatocellular carcinoma through Toll-like receptor 9. J Hepatol. 2015 Jul;63(1):114-21.
48Xue J, Suarez JS, Minaai M, Li S, Gaudino G, Pass HI, Carbone M, Yang H. HMGB1 as a therapeutic target in disease. J Cell Physiol. 2021 May;236(5):3406-3419.
49Ko HK, Hsu WH, Hsieh CC, Lien TC, Lee TS, Kou YR. High expression of high-mobility group box 1 in the blood and lungs is associated with the development of chronic obstructive pulmonary disease in smokers. Respirology. 2014 Feb;19(2):253-261.
50Cheng Y, Wang D, Wang B, Li H, Xiong J, Xu S, Chen Q, Tao K, Yang X, Zhu Y, He S. HMGB1 translocation and release mediate cigarette smoke-induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway. Mol Biol Cell. 2017 Jan 1;28(1):201-209.
51Lin L, Li J, Song Q, Cheng W, Chen P. The role of HMGB1/RAGE/TLR4 signaling pathways in cigarette smoke-induced inflammation in chronic obstructive pulmonary disease. Immun Inflamm Dis. 2022 Nov;10(11):e711.
52Rowell TR, Tarran R. Will chronic e-cigarette use cause lung disease? Am J Physiol Lung Cell Mol Physiol. 2015 Dec 15;309(12):L1398-409.
53Wang H, Liao H, Ochani M, Justiniani M, Lin X, Yang L, Al-Abed Y, Wang H, Metz C, Miller EJ, Tracey KJ, Ulloa L. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med. 2004 Nov;10(11):1216-21.
54Waldum HL, Nilsen OG, Nilsen T, Rørvik H, Syversen V, Sanvik AK, Haugen OA, Torp SH, Brenna E. Long-term effects of inhaled nicotine. Life Sci. 1996;58(16):1339-46.
55Chen YC, Statt S, Wu R, Chang HT, Liao JW, Wang CN, Shyu WC, Lee CC. High mobility group box 1-induced epithelial mesenchymal transition in human airway epithelial cells. Sci Rep. 2016 Jan 7;6:18815.
56Garcia-Arcos I, Geraghty P, Baumlin N, Campos M, Dabo AJ, Jundi B, Cummins N, Eden E, Grosche A, Salathe M, Foronjy R. Chronic electronic cigarette exposure in mice induces features of COPD in a nicotine-dependent manner. Thorax. 2016 Dec;71(12):1119-1129.
57Pouwels SD, Heijink IH, ten Hacken NH, Vandenabeele P, Krysko DV, Nawijn MC, van Oosterhout AJ. DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol. 2014 Mar;7(2):215-26.
58Liao SX, Sun PP, Gu YH, Rao XM, Zhang LY, Ou-Yang Y. Autophagy and pulmonary disease. Ther Adv Respir Dis. 2019 Jan-Dec;13:1753466619890538.
59Wu Y, Xu B, He X, Wu B, Li Y, Yu G, Tan C, Wang H. Correlation between autophagy levels in peripheral blood mononuclear cells and clinical parameters in patients with chronic obstructive pulmonary disease. Mol Med Rep. 2018 Jun;17(6):8003-8009.
60Chen P, Cescon M, Bonaldo P. Autophagy-mediated regulation of macrophages and its applications for cancer. Autophagy. 2014 Feb;10(2):192-200.
61Pickles S, Vigié P, Youle RJ. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol. 2018 Feb 19;28(4):R170-R185.
62Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT. Endogenous HMGB1 regulates autophagy. J Cell Biol. 2010 Sep 6;190(5):881-92.
63Lee SA, Kwak MS, Kim S, Shin JS. The role of high mobility group box 1 in innate immunity. Yonsei Med J. 2014 Sep;55(5):1165-76.
64Kim YH, Kwak MS, Lee B, Shin JM, Aum S, Park IH, Lee MG, Shin JS. Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy. 2021 Sep;17(9):2345-2362.
65Xing R, Cheng X, Qi Y, Tian X, Yan C, Liu D, Han Y. Low-dose nicotine promotes autophagy of cardiomyocytes by upregulating HO-1 expression. Biochem Biophys Res Commun. 2020 Feb 19;522(4):1015-1021.
66Bodas M, Van Westphal C, Carpenter-Thompson R, K Mohanty D, Vij N. Nicotine exposure induces bronchial epithelial cell apoptosis and senescence via ROS mediated autophagy-impairment. Free Radic Biol Med. 2016 Aug;97:441-453.
67Le Y, Wang Y, Zhou L, Xiong J, Tian J, Yang X, Gai X, Sun Y. Cigarette smoke-induced HMGB1 translocation and release contribute to migration and NF-κB activation through inducing autophagy in lung macrophages. J Cell Mol Med. 2020 Jan;24(2):1319-1331.
68Saranyutanon S, Acharya S, Deshmukh SK, Khan MA, Singh S, Singh AP. Nicotine causes alternative polarization of macrophages via Src-mediated STAT3 activation: Potential pathobiological implications. J Cell Physiol. 2022 Feb;237(2):1486-1497.
69Chen R, Kang R, Tang D. The mechanism of HMGB1 secretion and release. Exp Mol Med. 2022 Feb;54(2):91-102. doi: 10.1038/s12276-022-00736-w. Epub 2022 Feb 25.
70Bai X, Stitzel JA, Bai A, Zambrano CA, Phillips M, Marrack P, Chan ED. Nicotine Impairs Macrophage Control of Mycobacterium tuberculosis. Am J Respir Cell Mol Biol. 2017 Sep;57(3):324-333.
71Byrne AJ, Mathie SA, Gregory LG, Lloyd CM. Pulmonary macrophages: key players in the innate defence of the airways. Thorax. 2015 Dec;70(12):1189-96. doi: 10.1136/thoraxjnl-2015-207020. Epub 2015 Aug 18.
72Cheng T. Chemical evaluation of electronic cigarettes. Tob Control. 2014 May;23 Suppl 2(Suppl 2):ii11-7.
73McGrath-Morrow SA, Gorzkowski J, Groner JA, Rule AM, Wilson K, Tanski SE, Collaco JM, Klein JD. The Effects of Nicotine on Development. Pediatrics. 2020 Mar;145(3):e20191346.
74Lawson GM, Hurt RD, Dale LC, Offord KP, Croghan IT, Schroeder DR, Jiang NS. Application of serum nicotine and plasma cotinine concentrations to assessment of nicotine replacement in light, moderate, and heavy smokers undergoing transdermal therapy. J Clin Pharmacol. 1998 Jun;38(6):502-9.
75Kleinstreuer C, Feng Y. Lung deposition analyses of inhaled toxic aerosols in conventional and less harmful cigarette smoke: a review. Int J Environ Res Public Health. 2013 Sep 23;10(9):4454-85.
76Weiss D, Tomasallo CD, Meiman JG, Creswell PD, Melstrom PC, Gummin DD, Patel DJ, Michaud NT, Sebero HA, Anderson HA. Electronic Cigarette Exposure: Calls to Wisconsin Poison Control Centers, 2010–2015. WMJ. 2016 Dec;115(6):306-10.
77Ogunwale MA, Li M, Ramakrishnam Raju MV, Chen Y, Nantz MH, Conklin DJ, Fu XA. Aldehyde Detection in Electronic Cigarette Aerosols. ACS Omega. 2017 Mar 31;2(3):1207-1214.
78Miyashita L, Foley G. E-cigarettes and respiratory health: the latest evidence. J Physiol. 2020 Nov;598(22):5027-5038.
79Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M, Kurek J, Goniewicz ML. Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob Res. 2014 Oct;16(10):1319-26.
80Chun LF, Moazed F, Calfee CS, Matthay MA, Gotts JE. Pulmonary toxicity of e-cigarettes. Am J Physiol Lung Cell Mol Physiol. 2017 Aug 1;313(2):L193-L206.
81Gerloff J, Sundar IK, Freter R, Sekera ER, Friedman AE, Robinson R, Pagano T, Rahman I. Inflammatory Response and Barrier Dysfunction by Different e-Cigarette Flavoring Chemicals Identified by Gas Chromatography-Mass Spectrometry in e-Liquids and e-Vapors on Human Lung Epithelial Cells and Fibroblasts. Appl In Vitro Toxicol. 2017 Mar 1;3(1):28-40.
82Bitzer ZT, Goel R, Reilly SM, Elias RJ, Silakov A, Foulds J, Muscat J, Richie JP Jr. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols. Free Radic Biol Med. 2018 May 20;120:72-79.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊