|
1. J. R. Hoffman, and M. J. Falvo, Protein–which is best?, Journal of Sports Science & Medicine, 2004, 3 (3), p. 118. 2. M. Mendall, P. Patel, L. Ballam, D. Strachan, and T. Northfield, C reactive protein and its relation to cardiovascular risk factors: a population based cross sectional study, British Medical Journal, 1996, 312 (7038), p. 1061-1065. 3. J. P. Taylor, J. Hardy, and K. H. Fischbeck, Toxic proteins in neurodegenerative disease, Science, 2002, 296 (5575), p. 1991-1995. 4. A. Jahanban-Esfahlan, A. Ostadrahimi, R. Jahanban-Esfahlan, L. Roufegarinejad, M. Tabibiazar, and R. Amarowicz, Recent developments in the detection of bovine serum albumin, International journal of biological macromolecules, 2019, 138, p. 602-617. 5. O. J. McElvaney, G. F. Curley, S. Rose-John, and N. G. McElvaney, Interleukin-6: obstacles to targeting a complex cytokine in critical illness, The Lancet Respiratory Medicine, 2021, 9 (6), p. 643-654. 6. M. Yoshida, N. Hatano, S. Nishiumi, Y. Irino, Y. Izumi, T. Takenawa, and T. Azuma, Diagnosis of gastroenterological diseases by metabolome analysis using gas chromatography–mass spectrometry, Journal of Gastroenterology, 2012, 47, p. 9-20. 7. M. T. Hearn, High–performance liquid chromatography and its application to protein chemistry, Advances in Chromatography, 2021, p. 1-82. 8. J. V. Jorrin-Novo, S. Komatsu, R. Sanchez-Lucas, and L. E. R. de Francisco, Gel electrophoresis-based plant proteomics: Past, present, and future. Happy 10th anniversary Journal of Proteomics!, Journal of Proteomics, 2019, 198, p. 1-10. 9. C. V. Sapan, R. L. Lundblad, and N. C. Price, Colorimetric protein assay techniques, Biotechnology and Applied Biochemistry, 1999, 29 (2), p. 99-108. 10. J. E. Butler, Enzyme-linked immunosorbent assay, Journal of Immunoassay, 2000, 21 (2-3), p. 165-209. 11. A. Singh, A. Sharma, A. Ahmed, A. K. Sundramoorthy, H. Furukawa, S. Arya, and A. Khosla, Recent advances in electrochemical biosensors: Applications, challenges, and future scope, Biosensors, 2021, 11 (9), p. 336. 12. A. L. Ghindilis, P. Atanasov, M. Wilkins, and E. Wilkins, Immunosensors: electrochemical sensing and other engineering approaches, Biosensors and Bioelectronics, 1998, 13 (1), p. 113-131. 13. M. d. Vestergaard, K. Kerman, and E. Tamiya, An overview of label-free electrochemical protein sensors, Sensors, 2007, 7 (12), p. 3442-3458. 14. F. Cui, Z. Zhou, and H. S. Zhou, Molecularly imprinted polymers and surface imprinted polymers based electrochemical biosensor for infectious diseases, Sensors, 2020, 20 (4), p. 996. 15. E. Mazzotta, T. Di Giulio, and C. Malitesta, Electrochemical sensing of macromolecules based on molecularly imprinted polymers: challenges, successful strategies, and opportunities, Analytical and Bioanalytical Chemistry, 2022, 414 (18), p. 5165-5200. 16. P. E. Korenblat, R. M. Rothberg, P. Minden, and R. S. Farr, Immune responses of human adults after oral and parenteral exposure to bovine serum albumin, Journal of Allergy, 1968, 41 (4), p. 226-235. 17. D. R. Persaud, and A. Barranco-Mendoza, Bovine serum albumin and insulin-dependent diabetes mellitus: is cow's milk still a possible toxicological causative agent of diabetes?, Food and Chemical Toxicology, 2004, 42 (5), p. 707-714. 18. H. Debiec, F. Lefeu, M. J. Kemper, P. Niaudet, G. Deschênes, G. Remuzzi, T. Ulinski, and P. Ronco, Early-childhood membranous nephropathy due to cationic bovine serum albumin, New England Journal of Medicine, 2011, 364 (22), p. 2101-2110. 19. T. Mogues, J. Li, J. Coburn, and D. J. Kuter, IgG antibodies against bovine serum albumin in humans—their prevalence and response to exposure to bovine serum albumin, Journal of Immunological Methods, 2005, 300 (1-2), p. 1-11. 20. J. W. Loughney, C. Lancaster, S. Ha, and R. R. Rustandi, Residual bovine serum albumin (BSA) quantitation in vaccines using automated Capillary Western technology, Analytical Biochemistry, 2014, 461, p. 49-56. 21. L. E. McCrae, W.-T. Ting, and M. M. Howlader, Advancing electrochemical biosensors for interleukin-6 detection, Biosensors and Bioelectronics: X, 2022, p. 100288. 22. P. Du, J. Geng, F. Wang, X. Chen, Z. Huang, and Y. Wang, Role of IL-6 inhibitor in treatment of COVID-19-related cytokine release syndrome, International journal of medical sciences, 2021, 18 (6), p. 1356. 23. P. M. Ridker, and M. Rane, Interleukin-6 signaling and anti-interleukin-6 therapeutics in cardiovascular disease, Circulation Research, 2021, 128 (11), p. 1728-1746. 24. M. Rincon, and C. G. Irvin, Role of IL-6 in asthma and other inflammatory pulmonary diseases, International journal of biological sciences, 2012, 8 (9), p. 1281. 25. A. Ogata, Y. Kato, S. Higa, and K. Yoshizaki, IL-6 inhibitor for the treatment of rheumatoid arthritis: a comprehensive review, Modern rheumatology, 2019, 29 (2), p. 258-267. 26. M. Y. Taher, D. M. Davies, and J. Maher, The role of the interleukin (IL)-6/IL-6 receptor axis in cancer, Biochemical Society Transactions, 2018, 46 (6), p. 1449-1462. 27. H. Kataoka, S. Matsumura, S. Yamamoto, and M. Makita, Capillary gas chromatographic analysis of protein and nonprotein amino acids in biological samples, Amino Acid Analysis Protocols, Totowa, NJ: Humana Press, 2000, C. Cooper, N. Packer and K. Williams, eds., p. 101-122. 28. L. Zolla, A. Timperio, m. G. Testi, M. Bianchetti, R. Bassi, F. Manera, and D. Corradini, Isolation and characterization of chloroplast Photosystem II antenna of spinach by reversed-phase liquid chromatography, Photosynthesis Research, 1999, 61, p. 281-290. 29. H. Murakami, V. Borde, A. Nicolas, and S. Keeney, Gel electrophoresis assays for analyzing DNA double-strand breaks in Saccharomyces cerevisiae at various spatial resolutions, Methods in Molecular Biology, 2009, 557, p. 117-42. 30. M. H. Simonian, and J. A. Smith, Spectrophotometric and colorimetric determination of protein concentration, Current protocols in molecular biology, 2006, 76 (1), p. 10.1. 1-10.1 A. 9. 31. M. Palmieri, M. Vagnini, L. Pitzurra, P. Rocchi, B. Brunetti, A. Sgamellotti, and L. Cartechini, Development of an analytical protocol for a fast, sensitive and specific protein recognition in paintings by enzyme-linked immunosorbent assay (ELISA), Analytical and Bioanalytical Chemistry, 2011, 399, p. 3011-3023. 32. P. B. Lillehoj, M.-C. Huang, N. Truong, and C.-M. Ho, Rapid electrochemical detection on a mobile phone, Lab on a Chip, 2013, 13 (15), p. 2950-2955. 33. E. Brunelle, A. M. Le, C. Huynh, K. Wingfield, L. Halámková, J. Agudelo, and J. Halámek, Coomassie Brilliant blue G-250 dye: An application for forensic fingerprint analysis, Analytical Chemistry, 2017, 89 (7), p. 4314-4319. 34. L. O. Anagu, and N. E. Andoh, Chapter 4 - Vaccine development: from the laboratory to the field, Vaccinology and Methods in Vaccine Research: Academic Press, 2022, R. Ashfield, A. N. Oli, C. Esimone and L. Anagu, eds., p. 95-131. 35. A. Bogomolova, E. Komarova, K. Reber, T. Gerasimov, O. Yavuz, S. Bhatt, and M. Aldissi, Challenges of electrochemical impedance spectroscopy in protein biosensing, Analytical chemistry, 2009, 81 (10), p. 3944-3949. 36. J. Hirst, and F. A. Armstrong, Fast-scan cyclic voltammetry of protein films on pyrolytic graphite edge electrodes: characteristics of electron exchange, Analytical Chemistry, 1998, 70 (23), p. 5062-5071. 37. Y. Dai, A. Molazemhosseini, and C. C. Liu, A single-use, in vitro biosensor for the detection of T-tau protein, a biomarker of neuro-degenerative disorders, in PBS and human serum using differential pulse voltammetry (DPV), Biosensors, 2017, 7 (1), p. 10. 38. A. Rhouati, G. Catanante, G. Nunes, A. Hayat, and J.-L. Marty, Label-free aptasensors for the detection of mycotoxins, Sensors, 2016, 16 (12), p. 2178. 39. C. Kang, J. Kang, N.-S. Lee, Y. H. Yoon, and H. Yang, DT-diaphorase as a bifunctional enzyme label that allows rapid enzymatic amplification and electrochemical redox cycling, Analytical chemistry, 2017, 89 (15), p. 7974-7980. 40. J. Huang, F. Wei, Y. Cui, L. Hou, and T. Lin, Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection, RSC Advances, 2022, 12 (48), p. 31369-31379. 41. T. Li, and M. Yang, Electrochemical sensor utilizing ferrocene loaded porous polyelectrolyte nanoparticles as label for the detection of protein biomarker IL-6, Sensors and Actuators B: Chemical, 2011, 158 (1), p. 361-365. 42. M. Medina-Sánchez, S. Miserere, E. Morales-Narváez, and A. Merkoçi, On-chip magneto-immunoassay for Alzheimer's biomarker electrochemical detection by using quantum dots as labels, Biosensors and Bioelectronics, 2014, 54, p. 279-284. 43. A. Koyappayil, and M.-H. Lee, Ultrasensitive materials for electrochemical biosensor labels, Sensors, 2020, 21 (1), p. 89. 44. S. Jampasa, P. Lae-Ngee, K. Patarakul, N. Ngamrojanavanich, O. Chailapakul, and N. Rodthongkum, Electrochemical immunosensor based on gold-labeled monoclonal anti-LipL32 for leptospirosis diagnosis, Biosensors and Bioelectronics, 2019, 142, p. 111539. 45. P. Skládal, Advances in electrochemical immunosensors, Electroanalysis, 1997, 9 (10), p. 737-745. 46. S. Hassanpour, and M. Hasanzadeh, Label-free electrochemical-immunoassay of cancer biomarkers: Recent progress and challenges in the efficient diagnosis of cancer employing electroanalysis and based on point of care (POC), Microchemical Journal, 2021, 168, p. 106424. 47. Y. Wei, Q. Zeng, Q. Hu, M. Wang, J. Tao, and L. Wang, Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel, Biosensors and Bioelectronics, 2018, 99, p. 136-141. 48. Y. Wang, Y. Zhou, J. Sokolov, B. Rigas, K. Levon, and M. Rafailovich, A potentiometric protein sensor built with surface molecular imprinting method, Biosensors and Bioelectronics, 2008, 24 (1), p. 162-166. 49. W. Zhao, B. Li, S. Xu, X. Huang, J. Luo, Y. Zhu, and X. Liu, Electrochemical protein recognition based on macromolecular self-assembly of molecularly imprinted polymer: a new strategy to mimic antibody for label-free biosensing, Journal of Materials Chemistry B, 2019, 7 (14), p. 2311-2319. 50. L. M. Goncalves, Electropolymerized molecularly imprinted polymers: Perceptions based on recent literature for soon-to-be world-class scientists, Current Opinion in Electrochemistry, 2021, 25, p. 100640. 51. Y. Fuchs, O. Soppera, and K. Haupt, Photopolymerization and photostructuring of molecularly imprinted polymers for sensor applications—A review, Analytica Chimica Acta, 2012, 717, p. 7-20. 52. D. Duan, H. Yang, Y. Ding, D. Ye, L. Li, and G. Ma, Three-dimensional molecularly imprinted electrochemical sensor based on Au NPs@ Ti-based metal-organic frameworks for ultra-trace detection of bovine serum albumin, Electrochimica Acta, 2018, 261, p. 160-166. 53. Y. Wang, M. Han, G. Liu, X. Hou, Y. Huang, K. Wu, and C. Li, Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin, Biosensors and Bioelectronics, 2015, 74, p. 792-798. 54. B. B. Prasad, A. Prasad, and M. P. Tiwari, Multiwalled carbon nanotubes-ceramic electrode modified with substrate-selective imprinted polymer for ultra-trace detection of bovine serum albumin, Biosensors and Bioelectronics, 2013, 39 (1), p. 236-243. 55. C. Yang, X.-F. Ji, W.-Q. Cao, J. Wang, Q. Zhang, T.-L. Zhong, and Y. Wang, Molecularly imprinted polymer based sensor directly responsive to attomole bovine serum albumin, Talanta, 2019, 196, p. 402-407. 56. G. Ertürk, D. Berillo, M. Hedström, and B. Mattiasson, Microcontact-BSA imprinted capacitive biosensor for real-time, sensitive and selective detection of BSA, Biotechnology Reports, 2014, 3, p. 65-72. 57. H.-J. Chen, Z.-H. Zhang, L.-J. Luo, and S.-Z. Yao, Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin, Sensors and Actuators B: Chemical, 2012, 163 (1), p. 76-83. 58. S. Beyazit, B. Tse Sum Bui, K. Haupt, and C. Gonzato, Molecularly imprinted polymer nanomaterials and nanocomposites by controlled/living radical polymerization, Progress in Polymer Science, 2016, 62, p. 1-21. 59. J. Erdőssy, V. Horváth, A. Yarman, F. W. Scheller, and R. E. Gyurcsányi, Electrosynthesized molecularly imprinted polymers for protein recognition, TrAC Trends in Analytical Chemistry, 2016, 79, p. 179-190. 60. Y. Tugce Yaman, O. Akbal Vural, G. Bolat, and S. Abaci, Peptide nanotubes/self-assembled polydopamine molecularly imprinted biochip for the impedimetric detection of human Interleukin-6, Bioelectrochemistry, 2022, 145, p. 108053. 61. N. Özcan, C. Karaman, N. Atar, O. Karaman, and M. L. Yola, A novel molecularly imprinting biosensor including graphene quantum dots/multi-walled carbon nanotubes composite for interleukin-6 detection and electrochemical biosensor validation, ECS Journal of Solid State Science and Technology, 2020, 9 (12), p. 121010. 62. M. d. L. Gonçalves, L. A. N. Truta, M. G. F. Sales, and F. T. C. Moreira, Electrochemical point-of care (PoC) determination of interleukin-6 (IL-6) using a pyrrole (Py) molecularly imprinted polymer (MIP) on a carbon-screen printed electrode (C-SPE), Analytical Letters, 2021, 54 (16), p. 2611-2623. 63. D. Oliveira, B. P. Correia, S. Sharma, and F. T. C. Moreira, Molecular imprinted polymers on microneedle arrays for point of care transdermal sampling and sensing of inflammatory biomarkers, ACS Omega, 2022, 7 (43), p. 39039-39044. 64. E. Verheyen, J. P. Schillemans, M. Van Wijk, M.-A. Demeniex, W. E. Hennink, and C. F. Van Nostrum, Challenges for the effective molecular imprinting of proteins, Biomaterials, 2011, 32 (11), p. 3008-3020. 65. T. Chow, Wetting of rough surfaces, Journal of Physics: Condensed Matter, 1998, 10 (27), p. L445. 66. R. Danzl, F. Helmli, and S. Scherer, Focus variation–a new technology for high resolution optical 3D surface metrology, in The 10th international conference of the slovenian society for non-destructive testing, 2009, p. 484-491. 67. B. Sredanović, G. Globocki-Lakić, D. Kramar, and F. Pušavec, Influence of workpiece hardness on tool wear in profile micro-milling of hardened tool steel, Tribology in Industry, 2018, 40 (1), p. 100. 68. D. Semnani, 7 - Geometrical characterization of electrospun nanofibers, Electrospun Nanofibers: Woodhead Publishing, 2017, M. Afshari, ed., p. 151-180. 69. J. Schmitt, and H.-C. Flemming, FTIR-spectroscopy in microbial and material analysis, International Biodeterioration & Biodegradation, 1998, 41 (1), p. 1-11. 70. M. Khan, Q. Wang, and M. E. Fitzpatrick, Atomic force microscopy (AFM) for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods: Elsevier, 2016, p. 1-16. 71. J. Epp, X-ray diffraction (XRD) techniques for materials characterization, Materials Characterization Using Nondestructive Evaluation (NDE) Methods: Elsevier, 2016, p. 81-124. 72. N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, A practical beginner’s guide to cyclic voltammetry, Journal of Chemical Education, 2018, 95 (2), p. 197-206. 73. A. P. Brown, and F. C. Anson, Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface, Analytical Chemistry, 1977, 49 (11), p. 1589-1595. 74. Y. Govindaraj, and S. Parida, Autogenous chemical and structural transition and the wettability of electropolymerized PANI surface, Applied Surface Science, 2019, 481, p. 174-183. 75. Q. Wang, B. Zhang, X. Lin, and W. Weng, Hybridization biosensor based on the covalent immobilization of probe DNA on chitosan–mutiwalled carbon nanotubes nanocomposite by using glutaraldehyde as an arm linker, Sensors and Actuators B: Chemical, 2011, 156 (2), p. 599-605. 76. I. Migneault, C. Dartiguenave, M. J. Bertrand, and K. C. Waldron, Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking, BioTechniques, 2004, 37 (5), p. 790-802. 77. N. V. Blinova, J. Stejskal, M. Trchová, and J. Prokeš, Control of polyaniline conductivity and contact angles by partial protonation, Polymer International, 2008, 57 (1), p. 66-69. 78. A. Diarisso, M. Fall, and N. Raouafi, Elaboration of a chemical sensor based on polyaniline and sulfanilic acid diazonium salt for highly sensitive detection nitrite ions in acidified aqueous media, Environmental Science: Water Research & Technology, 2018, 4 (7), p. 1024-1034. 79. J. H. Kim, J. H. Lee, R. R. Palem, M.-S. Suh, H. H. Lee, and T. J. Kang, Iron (II/III) perchlorate electrolytes for electrochemically harvesting low-grade thermal energy, Scientific Reports, 2019, 9 (1), p. 8706. 80. H. Hou, H. He, and Y. Wang, Effects of SDS on the activity and conformation of protein tyrosine phosphatase from thermus thermophilus HB27, Scientific Reports, 2020, 10 (1), p. 3195. 81. S. H. Lee, and E. Ruckenstein, Adsorption of proteins onto polymeric surfaces of different hydrophilicities—a case study with bovine serum albumin, Journal of Colloid and Interface Science, 1988, 125 (2), p. 365-379. 82. E. A. El-Hefian, and A. H. Yahaya, Investigation on some properties of SDS solutions, Australian Journal of Basic and Applied Sciences, 2011, 5 (7), p. 1221-1227. 83. R. Kurrat, J. E. Prenosil, and J. J. Ramsden, Kinetics of human and bovine serum albumin adsorption at silica-titania surfaces, Journal of Colloid and Interface Science, 1997, 185 (1), p. 1-8. 84. K. Milakin, A. Korovin, E. Moroz, K. Levon, A. Guiseppi‐Elie, and V. Sergeyev, Polyaniline‐based sensor material for potentiometric determination of ascorbic acid, Electroanalysis, 2013, 25 (5), p. 1323-1330. 85. H. Larsericsdotter, S. Oscarsson, and J. Buijs, Structure, stability, and orientation of BSA adsorbed to silica, Journal of Colloid and Interface Science, 2005, 289 (1), p. 26-35. 86. R. C. Patil, S. F. Patil, I. S. Mulla, and K. Vijayamohanan, Effect of protonation media on chemically and electrochemically synthesized polyaniline, Polymer international, 2000, 49 (2), p. 189-196. 87. M. Sanchis, V. Blanes, M. Blanes, D. Garcia, and R. Balart, Surface modification of low density polyethylene (LDPE) film by low pressure O2 plasma treatment, European Polymer Journal, 2006, 42 (7), p. 1558-1568. 88. S. C. Wang, K. S. Chang, and C. J. Yuan, Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment, Electrochimica Acta, 2009, 54 (21), p. 4937-4943. 89. Y. Yang, Y. Qing, X. Hao, C. Fang, P. Ouyang, H. Li, Z. Wang, Y. Liao, H. Fang, and J. Du, APTES-modified remote self-assembled DNA-based electrochemical biosensor for human papillomavirus DNA detection, Biosensors, 2022, 12 (7), p. 449. 90. N. S. K. Gunda, M. Singh, L. Norman, K. Kaur, and S. K. Mitra, Optimization and characterization of biomolecule immobilization on silicon substrates using (3-aminopropyl) triethoxysilane (APTES) and glutaraldehyde linker, Applied Surface Science, 2014, 305, p. 522-530. 91. M. E. Abdelsalam, P. N. Bartlett, T. Kelf, and J. Baumberg, Wetting of regularly structured gold surfaces, Langmuir, 2005, 21 (5), p. 1753-1757. 92. A. Pistone, C. Scolaro, C. Celesti, and A. Visco, Study of protective layers based on crosslinked glutaraldehyde/3-aminopropyltriethoxysilane, Polymers, 2022, 14 (4), p. 801. 93. J.-P. Sylvestre, S. Poulin, A. V. Kabashin, E. Sacher, M. Meunier, and J. H. Luong, Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media, The Journal of Physical Chemistry B, 2004, 108 (43), p. 16864-16869. 94. M. Moshfegh, H. Forootanfar, B. Zare, A. Shahverdi, G. Zarrini, and M. Faramarzi, Biological synthesis of Au, Ag and Au-Ag bimetallic nanoparticles by α-amylase, Digest Journal of Nanomaterials and Biostructures, 2011, 6, p. 1419-1426. 95. D. Zhang, H. E. Hegab, Y. Lvov, L. Dale Snow, and J. Palmer, Immobilization of cellulase on a silica gel substrate modified using a 3-APTES self-assembled monolayer, SpringerPlus, 2016, 5 (1), p. 1-20. 96. I. G. Subramani, V. Perumal, S. C. Gopinath, N. M. Mohamed, N. Joshi, M. Ovinis, and L. L. Sze, 3D nanoporous hybrid nanoflower for enhanced non-faradaic redox-free electrochemical impedimetric biodetermination, Journal of the Taiwan Institute of Chemical Engineers, 2020, 116, p. 26-35. 97. N. Majoul, S. Aouida, and B. Bessaïs, Progress of porous silicon APTES-functionalization by FTIR investigations, Applied Surface Science, 2015, 331, p. 388-391. 98. O. Zabihi, H. Khayyam, B. L. Fox, and M. Naebe, Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling, New Journal of Chemistry, 2015, 39 (3), p. 2269-2278. 99. J. B. Gilbert, M. F. Rubner, and R. E. Cohen, Depth-profiling X-ray photoelectron spectroscopy (XPS) analysis of interlayer diffusion in polyelectrolyte multilayers, Proceedings of the National Academy of Sciences, 2013, 110 (17), p. 6651-6656. 100. S. H. Kim, S. W. Na, N. E. Lee, Y. W. Nam, and Y.-H. Kim, Effect of surface roughness on the adhesion properties of Cu/Cr films on polyimide substrate treated by inductively coupled oxygen plasma, Surface and Coatings Technology, 2005, 200 (7), p. 2072-2079. 101. J. Chen, J. Pei, and H. Zhao, Effect of oxygen plasma treatment on the structure and mechanical properties of bilayer graphene studied by molecular dynamics simulation, The Journal of Physical Chemistry C, 2021, 125 (35), p. 19345-19352. 102. S.-J. Park, K.-S. Cho, and S.-K. Ryu, Filler–elastomer interactions: influence of oxygen plasma treatment on surface and mechanical properties of carbon black/rubber composites, Carbon, 2003, 41 (7), p. 1437-1442. 103. Z. Liu, J. Li, and X. Liu, Novel functionalized BN nanosheets/epoxy composites with advanced thermal conductivity and mechanical properties, ACS Applied Materials & Interfaces, 2020, 12 (5), p. 6503-6515. 104. Y. Sun, M. Yanagisawa, M. Kunimoto, M. Nakamura, and T. Homma, Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering, Applied Surface Science, 2016, 363, p. 572-577. 105. E. Ranjit, S. Hamlet, and R. M. Love, Keratin coated titanium as an aid to osseointegration: Physicochemical and mechanical properties, Surface and Coatings Technology, 2023, 462, p. 129457. 106. A. D. Gelinas, D. R. Davies, T. E. Edwards, J. C. Rohloff, J. D. Carter, C. Zhang, S. Gupta, Y. Ishikawa, M. Hirota, Y. Nakaishi, T. C. Jarvis, and N. Janjic, Crystal structure of interleukin-6 in complex with a modified nucleic acid ligand, Journal of Biological Chemistry, 2014, 289 (12), p. 8720-8734. 107. A. Ganash, Anticorrosive properties of poly (o-phenylenediamine)/ZnO nanocomposites coated stainless steel, Journal of Nanomaterials, 2014, 2014, p. 40-40. 108. C. Su, J. Ma, B. Han, and L. Xu, Preparation of graphene oxide/poly (o-phenylenediamine) hybrid composite via facile in situ assembly and post-polymerization technology for the anode material of lithium ion battery, Journal of Solid State Electrochemistry, 2021, 25, p. 535-544. 109. M. S. Zoromba, M. Abdel-Aziz, M. Bassyouni, H. Bahaitham, and A. Al-Hossainy, Poly (o-phenylenediamine) thin film for organic solar cell applications, Journal of Solid State Electrochemistry, 2018, 22, p. 3673-3687. 110. S. Sayyah, A. Khaliel, A. A. Aboud, and S. Mohamed, Chemical polymerization kinetics of poly-o-phenylenediamine and characterization of the obtained polymer in aqueous hydrochloric acid solution using K2Cr2O7 as oxidizing agent, International Journal of Polymer Science, 2014, 2014, p. 111. U. Olgun, and M. Gülfen, Doping of poly (o-phenylenediamine): spectroscopy, voltammetry, conductivity and band gap energy, Reactive and Functional Polymers, 2014, 77, p. 23-29. 112. N. M. Martyak, P. McAndrew, J. E. McCaskie, and J. Dijon, Electrochemical polymerization of aniline from an oxalic acid medium, Progress in Organic Coatings, 2002, 45 (1), p. 23-32. 113. B. S. Vishnugopi, F. Hao, A. Verma, and P. P. Mukherjee, Surface diffusion manifestation in electrodeposition of metal anodes, Physical Chemistry Chemical Physics, 2020, 22 (20), p. 11286-11295. 114. E. Sibert, F. Ozanam, F. Maroun, R. Behm, and O. Magnussen, Diffusion-limited electrodeposition of ultrathin Au films on Pt (1 1 1), Surface Science, 2004, 572 (1), p. 115-125. 115. G. Zhao, J. Liu, M. Liu, X. Han, Y. Peng, X. Tian, J. Liu, and S. Zhang, Synthesis of molecularly imprinted polymer via emulsion polymerization for application in solanesol separation, Applied Sciences, 2020, 10 (8), p. 2868. 116. Z. Mazouz, S. Rahali, N. Fourati, C. Zerrouki, N. Aloui, M. Seydou, N. Yaakoubi, M. M. Chehimi, A. Othmane, and R. Kalfat, Highly selective polypyrrole MIP-based gravimetric and electrochemical sensors for picomolar detection of glyphosate, Sensors, 2017, 17 (11), p. 2586. 117. T. Young, M. Monclus, T. Burnett, W. Broughton, S. Ogin, and P. Smith, The use of the PeakForceTM quantitative nanomechanical mapping AFM-based method for high-resolution Young's modulus measurement of polymers, Measurement Science and Technology, 2011, 22 (12), p. 125703. 118. J. Konnerth, W. Gindl, and U. Müller, Elastic properties of adhesive polymers. I. Polymer films by means of electronic speckle pattern interferometry, Journal of Applied Polymer Science, 2007, 103 (6), p. 3936-3939. 119. J. Adamcik, C. Lara, I. Usov, J. S. Jeong, F. S. Ruggeri, G. Dietler, H. A. Lashuel, I. W. Hamley, and R. Mezzenga, Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method, Nanoscale, 2012, 4 (15), p. 4426-4429. 120. A. Ikai, Local rigidity of a protein molecule, Biophysical Chemistry, 2005, 116 (3), p. 187-191. 121. Q. Zhao, A. K. Whittaker, and X. S. Zhao, Polymer electrode materials for sodium-ion batteries, Materials, 2018, 11 (12), p. 2567. 122. A. Ehsani, H. Parsimehr, H. Nourmohammadi, R. Safari, and S. Doostikhah, Environment‐friendly electrodes using biopolymer chitosan/poly ortho aminophenol with enhanced electrochemical behavior for use in energy storage devices, Polymer Composites, 2019, 40 (12), p. 4629-4637. 123. J. Liu, and Q. Peng, Protein-gold nanoparticle interactions and their possible impact on biomedical applications, Acta biomaterialia, 2017, 55, p. 13-27. 124. M. Cui, R. Liu, Z. Deng, G. Ge, Y. Liu, and L. Xie, Quantitative study of protein coronas on gold nanoparticles with different surface modifications, Nano Research, 2014, 7, p. 345-352. 125. Y. Kong, X. Shan, J. Ma, M. Chen, and Z. Chen, A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly(o-phenylenediamine-co-o-aminophenol), Analytica Chimica Acta, 2014, 809, p. 54-60.
|