# 臺灣博碩士論文加值系統

(44.200.142.112) 您好！臺灣時間：2024/08/07 07:03

:::

### 詳目顯示

:

• 被引用:0
• 點閱:32
• 評分:
• 下載:0
• 書目收藏:0
 本研究的內容是一個以多邊形 (PLY) 檔案格式呈現的三維點雲，其中每個點由一組不規則的三維座標和 RGB 全彩屬性組成。在對點雲進行壓縮之前，每個點的 RGB 全彩屬性首先轉換為 YUV 屬性。本文提出了一種基於 Hilbert 曲線掃描順序的排序方法，以遞增的 Hilbert 曲線掃描順序重新排序點雲的不規則 3D 座標和相關的色彩屬性，使得重新排序後的鄰近點之間的空間距離可以減小。接下來，基於抽樣率 $\frac{1}{k}$，將排序後的 Hilbert 曲線掃描順序的點分成 $\lceil\frac{n}{k}\rceil$ 個區塊，其中 $n$ 表示點雲的點數。進一步計算每個區塊中 $k$ 個點的質心，並以區塊中最接近質心的點作為該區塊的抽樣點。最後，將排序後的 Hilbert 曲線掃描順序的座標和抽樣後的 YUV 屬性構成的抽樣點雲送入幾何點雲壓縮 (G-PCC) 標準的編碼器進行點雲屬性壓縮編碼。編碼後的位元流傳入解壓器解碼，本文提出了一種同時考慮距離與亮度的聯合雙邊插值方法重建抽樣點雲。基於典型的點雲數據和在 G-PCC 下進行了全面的實驗，與區域適應性分層轉換 (RAHT) 編碼器和最先進的方法相比，我們的方法在客觀質量、知覺效果和品質位元率權衡方面的優勢已得到充分證明。
 Given a 3D point cloud in polygon (PLY) file format, in which each point consists of an irregular 3D position and the RGB full-color attribute. Prior to compressing the point cloud, the RGB full-color attribute of each point is first transformed into a YUV attribute. In this thesis, a sorted Hilbert curve scan order-based method is proposed to reorder the irregular 3D positions and the associated color attributes of the point cloud in an increasing Hilbert curve scan order such that the spatial distance between two neighboring reordered points can be reduced. Next, based on the downsampling rate, namely $\frac{1}{k}$, the sorted Hilbert curve scan order-based points are partitioned into $\lceil\frac{n}{k}\rceil$ blocks where $n$ denoted the number of points in the point cloud. Further more, the centroid of the $k$ points in each partitioned block is calculated, and taking the centroid as a base, the nearest neighboring point in the block is determined as the downsampled point. Finally, the downsampled point cloud, which consists of the sorted Hilbert curve scan order-based positions and the downsampled YUV attributes, is fed into the encoder of the Geometry-based Point Cloud Compression (G-PCC) standard for point cloud attribute compression. The encoded bitstream is fed into the decoder. In this thesis, a joint bilateral interpolation method that considers distance and luminance is proposed to reconstruct the downsampled point cloud. Based on typical testing point clouds and under G-PCC, comprehensive experimental data have justified the objective quality, perceptual effect, and quality-bitrate tradeoff merits of the proposed method when compared with the region adaptive hierarchical transform (RAHT) encoder and a state-of-the-art method.
 教授推薦書. . . . . . . . . . . . . . . . . . . . . . . . . . . I論文口試委員審定書. . . . . . . . . . . . . . . . . . . . . . . . . II論文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IIIAbstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV誌謝. . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . V目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VI圖目錄. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . VIII表目錄. . . . . . . . . . . .. . . . . . . . . . . . . . . . . . IX第一章緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.1 Sridhara et al. [1] 提出的彩度抽樣方法. . . . . . . . . . . . . . . . . . . 21.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3第二章研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42.1 使用Hilbert 曲線掃描順序對不規則的點雲座標排序. . . . . . . . . . . . 42.2 基於質心最近鄰Centroid-based Nearest Neighbor (C-NN) 的彩度抽樣. . 52.3 基於聯合雙邊插植Joint Bilateral interpolation-based (JBI-based) 的彩度上採樣. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6第三章實驗設計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9第四章實驗結果與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114.1 客觀品質比較與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 114.2 主觀品質比較與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . 124.3 實際抽樣率討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144.4 亮度點雲與彩度點雲經G-PCC 壓縮器編碼後的位元數討論. . . . . . . . 154.5 品質-位元率權衡表現. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164.6 執行時間討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21第五章結論與後續工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.1 結論. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . 235.2 後續工作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
 [1] S. N. Sridhara, E. Pavez, A. Ortega, R. Watanabe, and K. Nonaka, “Point cloud attributecompression via chroma subsampling,” in ICASSP 2022-2022 IEEE InternationalConference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2579–2583, IEEE, 2022.[2] G. Sandri, R. L. de Queiroz, and P. A. Chou, “Compression of plenoptic pointclouds,” IEEE Transactions on Image Processing, vol. 28, no. 3, pp. 1419–1427,2018.[3] D. C. Garcia, C. Dorea, R. U. Ferreira, D. R. Freitas, R. L. de Queiroz, R. Higa,I. Seidel, and V. Testoni, “Differential transform for video-based plenoptic pointcloud coding,” IEEE Transactions on Image Processing, vol. 31, pp. 1994–2003,2022.[4] S. Schwarz, M. Preda, V. Baroncini, M. Budagavi, P. Cesar, P. A. Chou, R. A. Cohen,M. Krivokuća, S. Lasserre, Z. Li, et al., “Emerging mpeg standards for pointcloud compression,” IEEE Journal on Emerging and Selected Topics in Circuits andSystems, vol. 9, no. 1, pp. 133–148, 2018.[5] E. S. Jang, M. Preda, K. Mammou, A. M. Tourapis, J. Kim, D. B. Graziosi, S. Rhyu,and M. Budagavi, “Video-based point-cloud-compression standard in mpeg: Fromevidence collection to committee draft [standards in a nutshell],” IEEE Signal ProcessingMagazine, vol. 36, no. 3, pp. 118–123, 2019.[6] M. Krivokuća, P. A. Chou, and M. Koroteev, “A volumetric approach to point cloudcompression–part ii: Geometry compression,” IEEE Transactions on Image Processing,vol. 29, pp. 2217–2229, 2020.[7] K. Mammou, “Pcc test model category 2 v0,” ISO/IEC JTC1/SC29/WG11 MPEG,document N17248, Macau, China, 2017.[8] “G-pcc test model v12,” ISO/IEC JTC1/SC29/WG7 MPEG 3D Graphics Coding,document N0151, 2020.[9] P. Chou, O. Nakagami, and E. Jang, “Point cloud compressiontest model for category1 v0,” ISO/IEC JTC1/SC29/WG11 MPEG, document N17223, Macau, China, 2017.[10] K. Mammou, “Pcc test model category 3 v0,” ISO/IEC JTC1/SC29/WG11 MPEG,document N17249, Macau, China, 2017.[11] D. Graziosi, O. Nakagami, S. Kuma, A. Zaghetto, T. Suzuki, and A. Tabatabai,“An overview of ongoing point cloud compression standardization activities: Videobased(v-pcc) and geometry-based (g-pcc),” APSIPA Transactions on Signal and InformationProcessing, vol. 9, p. e13, 2020.[12] H. Liu, H. Yuan, Q. Liu, J. Hou, and J. Liu, “A comprehensive study and comparisonof core technologies for mpeg 3-d point cloud compression,” IEEE Transactions onBroadcasting, vol. 66, no. 3, pp. 701–717, 2019.[13] Y. Feng, S. Liu, and Y. Zhu, “Real-time spatio-temporal lidar point cloud compression,”in 2020 IEEE/RSJ international conference on intelligent robots and systems(IROS), pp. 10766–10773, IEEE, 2020.[14] W. Zhu, Y. Xu, D. Ding, Z. Ma, and M. Nilsson, “Lossy point cloud geometry compressionvia region-wise processing,” IEEE Transactions on Circuits and Systemsfor Video Technology, vol. 31, no. 12, pp. 4575–4589, 2021.[15] X. Zhang and W. Gao, “Adaptive geometry partition for point cloud compression,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 12,pp. 4561–4574, 2021.[16] Z. Wang, S. Wan, and L. Wei, “Local geometry-based intra prediction for octreestructuredgeometry coding of point clouds,” IEEE Transactions on Circuits andSystems for Video Technology, vol. 33, no. 2, pp. 886–896, 2022.[17] D. E. Tzamarias, K. Chow, I. Blanes, and J. Serra-Sagristà, “Fast run-length compressionof point cloud geometry,” IEEE Transactions on Image Processing, vol. 31,pp. 4490–4501, 2022.[18] X. Sheng, L. Li, D. Liu, and Z. Xiong, “Attribute artifacts removal for geometrybasedpoint cloud compression,” IEEE Transactions on Image Processing, vol. 31,pp. 3399–3413, 2022.[19] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the h. 264/avc video coding standard,” IEEE Transactions on circuits and systems for videotechnology, vol. 13, no. 7, pp. 560–576, 2003.[20] G. Pastuszak and A. Abramowski, “Algorithm and architecture design of the h. 265/hevc intra encoder,” IEEE Transactions on circuits and systems for video technology,vol. 26, no. 1, pp. 210–222, 2015.[21] “Vtm-16.2,” 2022. Available: https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-16.2.[22] R. I.-R. BT et al., “Studio encoding parameters of digital television for standard4: 3 and wide-screen 16: 9 aspect ratios,” Int. Radio Consultative Committee Int.Telecommun. Union, Switzerland, CCIR Rep, pp. 624–4, 2011.[23] L. Jia, B. Liang, M. Li, Y. Liu, Y. Chen, and J. Ding, “Efficient 3d hilbert curveencoding and decoding algorithms,” Chinese Journal of Electronics, vol. 31, no. 2,pp. 277–284, 2022.[24] M. Krivokuca, P. A. Chou, and P. Savill, “8i voxelized surface light field (8ivslf)dataset,” ISO/IEC JTC1/SC29/WG11 MPEG, input document m42914, 2018.[25] X. Shang, J. Liang, G. Wang, H. Zhao, C. Wu, and C. Lin, “Color-sensitivity-basedcombined psnr for objective video quality assessment,” IEEE Transactions on Circuitsand Systems for Video Technology, vol. 29, no. 5, pp. 1239–1250, 2018.[26] G. Bjontegaard, “Calculation of average psnr differences between rd-curves,” ITUSG16 Doc. VCEG-M33, 2001.
 電子全文(網際網路公開日期：20260616)
 連結至畢業學校之論文網頁點我開啟連結註: 此連結為研究生畢業學校所提供，不一定有電子全文可供下載，若連結有誤，請點選上方之〝勘誤回報〞功能，我們會盡快修正，謝謝！
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 利用基於視訊點雲壓縮器(VPCC)資訊之區塊歸零演算法及其在高效率視訊編碼器(HEVC)之降低位元率演算法

 無相關期刊

 1 Bayer CFA 影像的壓縮：文獻回顧和性能比較 2 基於特徵一致共面對的快速穩健點雲配准法 3 針對卷積神經網路之光場影像超解析度基於抽樣一致性校正的品質增強 4 社區藝術課程設計促進創意老化之研究 5 虛擬實境學習對於英語學習者在描述性寫作上之影響 6 越南的法律領域對英文需求分析 7 通過英語輔導老師與學生的線上互動和修訂來研究英語作為外語之寫作：在線上英語輔導課程中對多語寫作者的案例研究 8 大學生英語聽力學習動機之探討 9 銅摻雜二氧化鈦為主之觸媒其光催化產氫及機制探討 10 N-乙烯基-2-吡咯烷酮對矽水膠隱形眼鏡之眼科性能的影響 11 界面活性劑與無碳造孔劑濃度對噴霧乾燥生物活性玻璃微球性質影響之研究 12 填充次級材料於閉孔超材料之多材料積層製造技術 13 紊流中並列雙圓柱的渦引致振動被動增強方法研究 14 植基於快速動態時間規整與短時距傅立葉轉換之配電系統故障分類資料預處理方法 15 機器學習應用於惡意PDF文件檢測與特徵組合分析

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室