|
[1] F. Pakdaman, M. A. Adelimanesh, M. Gabbouj, and M. R. Hashemi, “Complexity analysis of next-generation VVC encoding and decoding,” CoRR, vol. abs/2005.10801, 2020. [2] A. Browne, Y. Y. J. Chen, and S. H. Kim, “Algorithm description for Versatile Video Coding and Test Model 17 (VTM 17),” 2022. [3] H. Gao, S. Esenlik, E. Alshina, and E. Steinbach, “Geometric partitioning mode in versatile video coding: Algorithm review and analysis,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 9, pp. 3603–3617, 2021. [4] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” in Computer Vision – ECCV 2014, pp. 346–361, Springer International Publishing, 2014. [5] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. E. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” CoRR, vol. abs/ 1409.4842, 2014. [6] S. Woo, J. Park, J. Lee, and I. S. Kweon, “CBAM: convolutional block attention module,” CoRR, vol. abs/1807.06521, 2018. [7] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000. [8] Y. Liu, M. Abdoli, T. Guionnet, C. Guillemot, and A. Roumy, “Light-weight cnn-based vvc inter partitioning acceleration,” in 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), pp. 1–5, 2022. [9] Z. Pan, P. Zhang, B. Peng, N. Ling, and J. Lei, “A cnn-based fast inter coding method for vvc,” IEEE Signal Processing Letters, vol. 28, pp. 1260–1264, 2021. [10] Y.-H. Huang, J.-J. Chen, and Y.-H. Tsai, “Speed up h.266/qtmt intra-coding based on predictions of resnet and random forest classifier,” in 2021 IEEE International Conference on Consumer Electronics (ICCE), pp. 1–6, 2021. [11] J. Zhao, A. Wu, B. Jiang, and Q. Zhang, “Resnet-based fast cu partition decision algorithm for vvc,” IEEE Access, vol. 10, pp. 100337–100347, 2022. [12] N. Tang, J. Cao, F. Liang, J. Wang, H. Liu, X. Wang, and X. Du, “Fast CTU partition decision algorithm for VVC intra and inter coding,” in 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), pp. 361–364, 2019. [13] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the high efficiency video coding (hevc) standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, 2012. [14] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-R. Ohm, “Overview of the versatile video coding (VVC) standard and its applications,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 31, no. 10, pp. 3736–3764, 2021. [15] H. Gao, R.-L. Liao, K. Reuzé, S. Esenlik, E. Alshina, Y. Ye, J. Chen, J. Luo, C.-C. Chen, H. Huang, W.-J. Chien, V. Seregin, and M. Karczewicz, “Advanced geometricbased inter prediction for versatile video coding,” in 2020 Data Compression Conference (DCC), pp. 93–102, 2020. [16] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” CoRR, vol. abs/ 1804.02767, 2018. [17] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” CoRR, vol. abs/2004.10934, 2020. [18] Z. Zivkovic, “Improved adaptive gaussian mixture model for background subtraction,” in Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004., vol. 2, pp. 28–31 Vol.2, 2004. [19] Z. Jin, P. An, C. Yang, and L. Shen, “Fast qtbt partition algorithm for intra frame coding through convolutional neural network,” IEEE Access, vol. 6, pp. 54660–54673, 2018. [20] J. Li, S. Zhang, and F. Yang, “Random forest accelerated cu partition for inter prediction in h.266/vvc,” in 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 01–06, 2022. [21] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, and G. Jiang, “Low-complexity ctu partition structure decision and fast intra mode decision for versatile video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 6, pp. 1668–1682, 2020. [22] Z. Liu, H. Qian, and M. Zhang, “A fast multi-tree partition algorithm based on spatialtemporal correlation for vvc,” in 2022 Data Compression Conference (DCC), pp. 468– 468, 2022. [23] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “VTM common test conditions and software reference configurations for SDR video,” 2020. [24] A. Mercat, M. Viitanen, and J. Vanne, “Uvg dataset: 50/120fps 4k sequences for video codec analysis and development,” in Proceedings of the 11th ACM Multimedia Systems Conference, MMSys ’20, (New York, NY, USA), p. 297–302, Association for Computing Machinery, 2020. [25] Xiph.org, “Xiph.org video test media,” 2019. [26] L. Shen, Z. Zhang, and Z. Liu, “Adaptive inter-mode decision for hevc jointly utilizing inter-level and spatiotemporal correlations,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 24, no. 10, pp. 1709–1722, 2014. [27] M. Xu, T. Li, Z. Wang, X. Deng, R. Yang, and Z. Guan, “Reducing complexity of hevc: A deep learning approach,” IEEE Transactions on Image Processing, vol. 27, no. 10, pp. 5044–5059, 2018. [28] S.-H. Park and J.-W. Kang, “Fast affine motion estimation for versatile video coding (vvc) encoding,” IEEE Access, vol. 7, pp. 158075–158084, 2019. [29] G. Bjontegaard, “Improvements of the bd-psnr model,” 2008. [30] G. Bjøntegaard, “Calculation of average psnr differences between rd-curves,” 2001. [31] Y. Li, F. Luo, and Y. Zhu, “Temporal prediction model-based fast inter cu partition for versatile video coding,” Sensors, vol. 22, no. 20, 2022.
|