跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林新如
研究生(外文):Sin-Ru Lin
論文名稱:含蒽和三蝶烯聚合物的合成及其性質鑑定
論文名稱(外文):Synthesis and Characterization of Anthracene and Triptycene Base Polymers
指導教授:游進陽
指導教授(外文):Chin-Yang Yu
口試委員:施劭儒王丞浩
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:材料科學與工程系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:123
中文關鍵詞:26-蒽26-三蝶烯四苯乙烯三苯胺二苯酮聚集誘導發光
外文關鍵詞:26-anthracene26-triptycenetetraphenylethylenetriphenylaminebenzophenoneaggregation-induced emission
相關次數:
  • 被引用被引用:0
  • 點閱點閱:23
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討含有2, 6位置蒽或三蝶烯和兩種不同構型的四苯乙烯、三苯胺或二苯酮之高分子的合成及性質與鑑定。以鈴木偶合反應做為高分子聚合反應。通過紫外可見吸收光譜和光致發光光譜對高分子進行分析,表明蒽和三蝶烯分別與不同構型的四苯乙烯聚合的四種高分子呈現不同程度的聚集誘導發光特性。而且因為蒽和三蝶烯的平面和立體的特性,他們和不同構型的四苯乙烯聚合所呈現的高分子量子產率的比較是相反的。透過差示掃描量熱儀、熱重分析證明所有不含三苯胺和二苯酮之高分子均表現出良好的熱穩定性,並利用循環伏安法以及原子力顯微鏡對聚合物薄膜進行電化學性質和形貌之分析。
This thesis investigates the synthesis, properties, and characterization of polymers containing 2,6-anthracene or 2,6-triptycene and two different configurations of tetraphenylethylene, triphenylamine, or benzophenone. The polymer was coupling through Suzuki coupling reaction. Analysis of the polymers through UV-visible absorption spectroscopy and photoluminescence spectroscopy revealed that the four polymer combinations of anthracene and tetraphenylethylene with different configurations of triptycene exhibited varying degrees of aggregation-induced emission effects. Moreover, due to the planar and steric characteristics of anthracene and triptycene, their comparisons of polymer quantum yields with different configurations tetraphenylethylene showed opposite trends. Differential scanning calorimetry and thermogravimetric analysis demonstrated excellent thermal stability for all copolymers without triphenylamine and benzophenone. The electrochemical properties and morphology of the polymer films were analyzed using cyclic voltammetry and atomic force microscopy.
Abstract I
中文摘要 II
Acknowledgements III
Table of Content IV
List of Figures VII
List of Schemes XII
List of Tables XII
Chapter 1. Introduction and Aims 12
1.1 Organic Luminophores 12
1.1.1 Fluorescence, Phosphorescence and Jablonski Diagram 12
1.1.2 Relative Fluorescence Quantum Yield (QY) 12
1.2 Aggregation-Caused Quenching (ACQ) and Aggregation-Induced Emission (AIE) Phenomenon 12
1.2.1 Introduction and General Mechanism of ACQ and AIE 12
1.2.2 Tetraphenylethylene (TPE) 12
1.3 Anthracene Derivatives 12
1.4 Triptycene Derivatives (or Homoconjugation) 12
1.5 Suzuki Coupling Reaction 12
1.5.1 Mechanism of Borylation Reaction 12
1.5.2 Mechanism of Suzuki Coupling Reaction 12
1.6 Aim of Project 12
Chapter 2. Synthesis and Characterization 12
2.1 Precursors and Monomers 12
2.1.1 Synthesis and Characterization of 2,6-dibromoanthracene 12
2.1.2 Synthesis and Characterization of 2,6- dibromotriptycene 12
2.1.3 Synthesis and Characterization of (E, Z) 1,2-diphenyl-1,2-bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethene 12
2.1.4 Synthesis and Characterization of 2,2'-((2,2-diphenylethene-1,1-diyl)bis(4,1-phenylene))bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) 12
2.1.5 Synthesis and Characterization of N-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-N-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)aniline 12
2.1.6 Synthesis and Characterization of bis(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)methanone 12
2.2 Polymers 12
2.2.1 Synthesis and Characterization of P1 12
2.2.2 Synthesis and Characterization of P2 12
2.2.3 Synthesis and Characterization of P3 12
2.2.4 Synthesis and Characterization of P4 12
2.2.5 Synthesis and Characterization of P5 12
2.2.6 Synthesis and Characterization of P6 12
Chapter 3. Results and Discussion 12
3.1 Optical Properties 12
3.2 Thermal Properties 12
3.3 Electrochemical Properties 12
3.4 Morphology 12
Chapter 4. Conclusion 12
Chapter 5. Experimental Section 12
5.1 General Procedures 12
5.2 Synthesis of Precursors and Monomers 12
5.3 Synthesis of Polymers 12
Chapter 6. References 12
Appendix xii
AI. 13C NMR Spectrum xii
AII. MS Spectrum xii
[1] W. Lu, J. Kuwabara, T. Iijima, H. Higashimura, H. Hayashi, T. Kanbara, Macromolecules 2012, 45, 4128.
[2] S. Rochat, T. M. Swager, ACS Appl. Mater. Interfaces 2013, 5, 4488.
[3] H. Lin, H. Bai, Z. Yang, Q. Shen, M. Li, Y. Huang, F. Lv, S. Wang, Chem. Commun. 2022, 58, 7232.
[4] B. Valeur, M. N. Berberan-Santos, J. Chem. Educ. 2011, 88, 731.
[5] D. Frackowiak, Journal of Photochemistry and Photobiology B-Biology 1988, 2, 399.
[6] K. Rurack, M. Spieles, Anal. Chem. 2011, 83, 1232.
[7] G. A. Crosby, J. N. Demas, J. Phys. Chem. 1971, 75, 991.
[8] J. Luo, Z. Xie, J. W. Lam, L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, D. Zhu, B. Z. Tang, Chem. Commun. 2001, 1740.
[9] C. Zhu, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, ACS Appl. Bio Mater. 2018, 1, 1768.
[10] H. Ma, M. Yang, C. Zhang, Y. Ma, Y. Qin, Z. Lei, L. Chang, L. Lei, T. Wang, Y. Yang, J. Mater. Chem. B. 2017, 5, 8525.
[11] J. Wang, J. Zhang, C. Jiang, C. Yao, X. Xi, ACS Appl. Mater. Interfaces 2021, 13, 57713.
[12] Y. Hong, J. W. Lam, B. Z. Tang, Chem. Soc. Rev. 2011, 5361.
[13] H. Zhang, Y. Nie, J. Miao, D. Zhang, Y. Li, G. Liu, G. Sun, X. Jiang, J. Mater. Chem. C 2019, 7, 3306.
[14] Y. Li, Y. Dong, L. Cheng, C. Qin, H. Nian, H. Zhang, Y. Yu, L. Cao, J. Am. Chem. Soc. 2019, 141, 8412.
[15] L. Pan, Y. Cai, H. Wu, F. Zhou, A. Qin, Z. Wang, B. Z. Tang, Mater. Chem. Front. 2018, 2, 1310.
[16] S. Y. Chen, Y. W. Chiu, G. S. Liou, Nanoscale 2019, 11, 8597.
[17] K. H. Ong, B. Liu, Molecules 2017, 22, 897.
[18] Y. Zang, Y. Li, B. Li, H. Li, Y. Yang, RSC Adv. 2015, 5, 38690.
[19] S. Riebe, C. Vallet, F. van der Vight, D. Gonzalez-Abradelo, C. Wolper, C. A. Strassert, G. Jansen, S. Knauer, J. Voskuhl, Chemistry 2017, 23, 13660.
[20] M. H. Chua, K. W. Shah, H. Zhou, J. Xu, Molecules 2019, 24, 2711.
[21] N. L. Leung, N. Xie, W. Yuan, Y. Liu, Q. Wu, Q. Peng, Q. Miao, J. W. Lam, B. Z. Tang, Chemistry 2014, 20, 15349.
[22] K. S. Sharath Kumar, Y. R. Girish, M. Ashrafizadeh, S. Mirzaei, K. P. Rakesh, M. Hossein Gholami, A. Zabolian, K. Hushmandi, G. Orive, F. B. Kadumudi, A. Dolatshahi-Pirouz, V. K. Thakur, A. Zarrabi, P. Makvandi, K. S. Rangappa, Coord. Chem. Rev. 2021, 447, 214135.
[23] D. D. La, S. V. Bhosale, L. A. Jones, S. V. Bhosale, ACS Appl. Mater. Interfaces 2018, 10, 12189.
[24] M. Donnier-Marechal, S. Abdullayev, M. Bauduin, Y. Pascal, M. Q. Fu, X. P. He, E. Gillon, A. Imberty, E. Kipnis, R. Dessein, S. Vidal, Org. Biomol. Chem. 2018, 16, 8804.
[25] M. Chen, L. Yan, Y. Zhao, I. Murtaza, H. Meng, W. Huang, J. Mater. Chem. C 2018, 6, 7416.
[26] D. Udhayakumari, S. Velmathi, P. Venkatesan, S. P. Wu, J. Lumin. 2015, 161, 411.
[27] K. Duraimurugan, M. Harikrishnan, J. Madhavan, A. Siva, S. J. Lee, J. Theerthagiri, M. Y. Choi, Environ. Res. 2021, 194, 110741.
[28] Q. Li, Q. Zhang, Z. Z. Xue, J. X. Hu, G. M. Wang, Inorg. Chem. 2022, 61, 10792.
[29] R. Wang, Y. Liang, G. Liu, S. Pu, RSC Adv. 2020, 10, 2170.
[30] R. Wang, L. Diao, J. Zhang, Z. Chen, S. Pu, Dyes Pigm. 2020, 175, 108112.
[31] Đ. Škalamera, J. Veljković, L. Ptiček, M. Sambol, K. Mlinarić-Majerski, N. Basarić, Tetrahedron 2017, 73, 5892.
[32] Q. Sun, H. Wang, X. Xu, Y. Lu, S. Xue, H. Zhang, W. Yang, Dyes Pigm. 2018, 149, 407.
[33] P. I. Shih, C. Y. Chuang, C. H. Chien, E. W. G. Diau, C. F. Shu, Adv. Funct. Mater. 2007, 17, 3141.
[34] Z. Zhao, P. Lu, J. W. Y. Lam, Z. Wang, C. Y. K. Chan, H. H. Y. Sung, I. D. Williams, Y. Ma, B. Z. Tang, Chem. Sci. 2011, 2, 672.
[35] S. K. Kim, S. Y. Oh, J. W. Park, Thin Solid Films 2008, 517, 1349.
[36] S. K. Kim, Y. I. Park, I. N. Kang, J. W. Park, J. Mater. Chem. 2007, 17, 4670.
[37] S. Zhang, J.-F. Chen, G. Hu, N. Zhang, N. Wang, X. Yin, P. Chen, Organometallics 2021, 41, 99.
[38] Y.-F. Wang, C. Chen, L. Cui, J.-M. Teng, M. Li, H.-Y. Lu, C.-F. Chen, Org. Electron. 2021, 99, 106355.
[39] Y. Huang, D.-H. Zhang, X.-D. Tao, Z. Wei, S. Jiang, L. Meng, M.-X. Yang, X.-L. Chen, C.-Z. Lu, Dyes Pigm. 2022, 204, 110397.
[40] J. Lv, W. Li, J. Li, Z. Zhu, A. Dong, H. Lv, P. Li, B. Wang, Angew. Chem., Int. Ed. 2023, 62, e202217958.
[41] F. K. Leung, F. Ishiwari, Y. Shoji, T. Nishikawa, R. Takeda, Y. Nagata, M. Suginome, Y. Uozumi, Y. M. A. Yamada, T. Fukushima, ACS Omega 2017, 2, 1930.
[42] S. Mondal, N. Das, J. Mater. Chem. A 2015, 3, 23577.
[43] A. Suzuki, Angew. Chem., Int. Ed. 2011, 50, 6722.
[44] N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Letters 1979, 20, 3437.
[45] N. Miyaura, A. Suzuki, J. Chem. Soc., Chem. Commun. 1979, 866.
[46] N. Miyaura, A. Suzuki, Chem. Rev. 2002, 95, 2457.
[47] R. Akhtar, A. F. Zahoor, N. Rasool, M. Ahmad, K. G. Ali, Mol. Divers. 2022, 26, 1837.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊