|
[1] S. Mura, J. Nicolas, P. Couvreur, Stimuli-responsive nanocarriers for drug delivery, Nature materials 12(11) (2013) 991-1003. [2] B. Tian, Y. Liu, J. Liu, Smart stimuli-responsive drug delivery systems based on cyclodextrin: A review, Carbohydrate polymers 251 (2021) 116871. [3] C.M. Wells, M. Harris, L. Choi, V.P. Murali, F.D. Guerra, J.A. Jennings, Stimuli-responsive drug release from smart polymers, Journal of functional biomaterials 10(3) (2019) 34. [4] T. Jariwala, G. Ico, Y. Tai, H. Park, N.V. Myung, J. Nam, Mechano-responsive piezoelectric nanofiber as an on-demand drug delivery vehicle, ACS applied bio materials 4(4) (2021) 3706-3715. [5] Z. Ma, Y. Zhang, Y. Zhang, Q. An, H. Dong, H. Fu, H. Zhang, S. Zhang, W. Tong, Bifunctional Self‐Powered Drug Delivery System to Promote the Release and Transdermal Delivery of Polar Molecules, ChemistrySelect 6(14) (2021) 3322-3330. [6] W. Gao, J.M. Chan, O.C. Farokhzad, pH-responsive nanoparticles for drug delivery, Molecular pharmaceutics 7(6) (2010) 1913-1920. [7] M. Kanamala, W.R. Wilson, M. Yang, B.D. Palmer, Z. Wu, Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review, Biomaterials 85 (2016) 152-167. [8] G. Saravanakumar, J. Kim, W.J. Kim, Reactive‐oxygen‐species‐responsive drug delivery systems: promises and challenges, Advanced Science 4(1) (2017) 1600124. [9] C.-Q. Luo, L. Xing, P.-F. Cui, J.-B. Qiao, Y.-J. He, B.-A. Chen, L. Jin, H.-L. Jiang, Curcumin-coordinated nanoparticles with improved stability for reactive oxygen species-responsive drug delivery in lung cancer therapy, International Journal of Nanomedicine (2017) 855-869. [10] X.-Z. Zhang, R.-X. Zhuo, J.-Z. Cui, J.-T. Zhang, A novel thermo-responsive drug delivery system with positive controlled release, International journal of pharmaceutics 235(1-2) (2002) 43-50. [11] A. Raza, U. Hayat, T. Rasheed, M. Bilal, H.M. Iqbal, “Smart” materials-based near-infrared light-responsive drug delivery systems for cancer treatment: a review, Journal of Materials Research and Technology 8(1) (2019) 1497-1509. [12] K. Entzian, A. Aigner, Drug delivery by ultrasound-responsive nanocarriers for cancer treatment, Pharmaceutics 13(8) (2021) 1135. [13] M.S. Aw, J. Addai-Mensah, D. Losic, Magnetic-responsive delivery of drug-carriers using titania nanotube arrays, Journal of Materials Chemistry 22(14) (2012) 6561-6563. [14] Y. Zhang, Q. An, W. Tong, H. Li, Z. Ma, Y. Zhou, T. Huang, Y. Zhang, A new way to promote molecular drug release during medical treatment: a polyelectrolyte matrix on a piezoelectric–dielectric energy conversion substrate, Small 14(37) (2018) 1802136. [15] F. Duck, ‘The electrical expansion of quartz’by Jacques and Pierre Curie, Ultrasound 17(4) (2009) 197-203. [16] R.M. Martin, Piezoelectricity, Physical Review B 5(4) (1972) 1607. [17] F.-C. Kao, P.-Y. Chiu, T.-T. Tsai, Z.-H. Lin, The application of nanogenerators and piezoelectricity in osteogenesis, Science and Technology of Advanced Materials 20(1) (2019) 1103-1117. [18] R.F. Tinder, Third-and Fourth-Rank Tensor Properties—Symmetry Considerations, Tensor Properties of Solids: Phenomenological Development of the Tensor Properties of Crystals, Springer2007, pp. 95-122. [19] Y. Wu, Y. Ma, H. Zheng, S. Ramakrishna, Piezoelectric materials for flexible and wearable electronics: A review, Materials & Design 211 (2021) 110164. [20] S. Egusa, Z. Wang, N. Chocat, Z. Ruff, A. Stolyarov, D. Shemuly, F. Sorin, P. Rakich, J. Joannopoulos, Y. Fink, Multimaterial piezoelectric fibres, Nature materials 9(8) (2010) 643-648. [21] H. Parangusan, D. Ponnamma, M.A.A. Al-Maadeed, Stretchable electrospun PVDF-HFP/Co-ZnO nanofibers as piezoelectric nanogenerators, Scientific reports 8(1) (2018) 754. [22] J.E. Trevino, S. Mohan, A.E. Salinas, E. Cueva, K. Lozano, Piezoelectric properties of PVDF‐conjugated polymer nanofibers, Journal of Applied Polymer Science 138(28) (2021) 50665. [23] K. Polat, Energy harvesting from a thin polymeric film based on PVDF-HFP and PMMA blend, Applied Physics A 126 (2020) 1-8. [24] Y. Zhang, Z. Ma, Y. Zhang, B. Li, M. Feng, Y. Zhao, Q. An, Biofriendly molecular and protein release substrate with integrated piezoelectric motivation and anti-oxidative stress capabilities, Nanoscale 13(18) (2021) 8481-8489. [25] J. Cai, N. Hu, L. Wu, Y. Liu, Y. Li, H. Ning, X. Liu, L. Lin, Preparing carbon black/graphene/PVDF-HFP hybrid composite films of high piezoelectricity for energy harvesting technology, Composites Part A: Applied Science and Manufacturing 121 (2019) 223-231. [26] H.C. Bidsorkhi, A.G. D’Aloia, G. De Bellis, A. Proietti, A. Rinaldi, M. Fortunato, P. Ballirano, M.P. Bracciale, M.L. Santarelli, M.S. Sarto, Nucleation effect of unmodified graphene nanoplatelets on PVDF/GNP film composites, Materials Today Communications 11 (2017) 163-173. [27] A. Gayen, D. Mondal, D. Roy, P. Bandyopadhyay, S. Manna, R. Basu, S. Das, D. Bhar, B. Paul, P. Nandy, Improvisation of electrical properties of PVDF-HFP: use of novel metallic nanoparticles, Journal of Materials Science: Materials in Electronics 28(19) (2017) 14798-14808. [28] K. Huang, H. Ning, N. Hu, X. Wu, S. Wang, S. Weng, W. Yuan, L. Wu, Y. Liu, Synergistic effect of CB and MWCNT on the strain-induced DC and AC electrical properties of PVDF-HFP composites, Carbon 144 (2019) 509-518. [29] M.A. Rahman, G.-S. Chung, Synthesis of PVDF-graphene nanocomposites and their properties, Journal of Alloys and Compounds 581 (2013) 724-730. [30] K. Sabira, P. Saheeda, M. Divyasree, S. Jayalekshmi, Impressive nonlinear optical response exhibited by Poly (vinylidene fluoride)(PVDF)/reduced graphene oxide (RGO) nanocomposite films, Optics & Laser Technology 97 (2017) 77-83. [31] H.H. Singh, S. Singh, N. Khare, Design of flexible PVDF/NaNbO3/RGO nanogenerator and understanding the role of nanofillers in the output voltage signal, Composites Science and Technology 149 (2017) 127-133. [32] W. Tong, Y. Zhang, Q. Zhang, X. Luan, Y. Duan, S. Pan, F. Lv, Q. An, Achieving significantly enhanced dielectric performance of reduced graphene oxide/polymer composite by covalent modification of graphene oxide surface, Carbon 94 (2015) 590-598. [33] Y.-H. Chang, S.-R. Tseng, C.-Y. Chen, H.-F. Meng, E.-C. Chen, S.-F. Horng, C.-S. Hsu, Polymer solar cell by blade coating, Organic Electronics 10(5) (2009) 741-746. [34] P. Schilinsky, C. Waldauf, C.J. Brabec, Performance analysis of printed bulk heterojunction solar cells, Advanced Functional Materials 16(13) (2006) 1669-1672. [35] M. Eslamian, F. Soltani-Kordshuli, Development of multiple-droplet drop-casting method for the fabrication of coatings and thin solid films, Journal of Coatings Technology and Research 15(2) (2018) 271-280. [36] A. Kumar, M. Shkir, H. Somaily, K. Singh, B. Choudhary, S. Tripathi, A simple, low-cost modified drop-casting method to develop high-quality CH3NH3PbI3 perovskite thin films, Physica B: Condensed Matter 630 (2022) 413678. [37] M. Tyona, A theoritical study on spin coating technique, Advances in materials Research 2(4) (2013) 195. [38] N. Sahu, B. Parija, S. Panigrahi, Fundamental understanding and modeling of spin coating process: A review, Indian Journal of Physics 83(4) (2009) 493-502. [39] H.A.M. Mustafa, D.A. Jameel, Modeling and the main stages of spin coating process: A review, Journal of Applied Science and Technology Trends 2(03) (2021) 91-95. [40] D.S. Coelho, B. Veleirinho, T. Alberti, A. Maestri, R. Yunes, P.F. Dias, M. Maraschin, Electrospinning technology: designing nanofibers toward wound healing application, Nanomaterials-Toxicity, Human Health and Environment (2018) 1-19. [41] M. Dubský, Š. Kubinová, J. Širc, L. Voska, R. Zajíček, A. Zajícová, P. Lesný, A. Jirkovská, J. Michálek, M. Munzarová, Nanofibers prepared by needleless electrospinning technology as scaffolds for wound healing, Journal of Materials Science: Materials in Medicine 23 (2012) 931-941. [42] A. Keirouz, M. Chung, J. Kwon, G. Fortunato, N. Radacsi, 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 12(4) (2020) e1626. [43] W. Lu, J. Sun, X. Jiang, Recent advances in electrospinning technology and biomedical applications of electrospun fibers, Journal of Materials Chemistry B 2(17) (2014) 2369-2380. [44] N. Ditaranto, F. Basoli, M. Trombetta, N. Cioffi, A. Rainer, Electrospun nanomaterials implementing antibacterial inorganic nanophases, Applied Sciences 8(9) (2018) 1643. [45] N.S. Abd Halim, M.D.H. Wirzal, S.M. Hizam, M.R. Bilad, N.A.H.M. Nordin, N.S. Sambudi, Z.A. Putra, A.R.M. Yusoff, Recent development on electrospun nanofiber membrane for produced water treatment: a review, Journal of Environmental Chemical Engineering 9(1) (2021) 104613. [46] C.J. Mortimer, C.J. Wright, The fabrication of iron oxide nanoparticle‐nanofiber composites by electrospinning and their applications in tissue engineering, Biotechnology journal 12(7) (2017) 1600693. [47] K.S. Ogueri, C.T. Laurencin, Nanofiber technology for regenerative engineering, ACS nano 14(8) (2020) 9347-9363. [48] A.J. Cadotte, T.B. DeMarse, Poly-HEMA as a drug delivery device for in vitro neural networks on micro-electrode arrays, Journal of neural engineering 2(4) (2005) 114. [49] N. Ramalingam, T. Natarajan, S. Rajiv, Preparation and characterization of electrospun curcumin loaded poly (2‐hydroxyethyl methacrylate) nanofiber—A biomaterial for multidrug resistant organisms, Journal of Biomedical Materials Research Part A 103(1) (2015) 16-24. [50] S. Mansouri, F.M. Winnik, M. Tabrizian, Modulating the release kinetics through the control of the permeability of the layer-by-layer assembly: a review, Expert Opinion on Drug Delivery 6(6) (2009) 585-597. [51] M.-X. Chen, B.-K. Li, D.-K. Yin, J. Liang, S.-S. Li, D.-Y. Peng, Layer-by-layer assembly of chitosan stabilized multilayered liposomes for paclitaxel delivery, Carbohydrate polymers 111 (2014) 298-304. [52] Q. Wang, B.-m.Z. Newby, Layer-by-layer polyelectrolyte coating of alginate microgels for sustained release of sodium benzoate and zosteric acid, Journal of drug delivery science and technology 46 (2018) 46-54. [53] L. Yang, L. Li, H. Li, T. Wang, X. Ren, Y. Cheng, Y. Li, Q. Huang, Layer‐by‐Layer Assembled Smart Antibacterial Coatings via Mussel‐Inspired Polymerization and Dynamic Covalent Chemistry, Advanced Healthcare Materials 11(12) (2022) 2200112. [54] X. Hu, J. Ji, Covalent layer-by-layer assembly of hyperbranched polyether and polyethyleneimine: multilayer films providing possibilities for surface functionalization and local drug delivery, Biomacromolecules 12(12) (2011) 4264-4271. [55] Y. Wang, Q. An, Y. Zhou, Y. Niu, R. Akram, Y. Zhang, F. Shi, Post-infiltration and subsequent photo-crosslinking strategy for layer-by-layer fabrication of stable dendrimers enabling repeated loading and release of hydrophobic molecules, Journal of Materials Chemistry B 3(4) (2014) 562-569. [56] J. Zhu, X. Shi, Dendrimer-based nanodevices for targeted drug delivery applications, Journal of Materials Chemistry B 1(34) (2013) 4199-4211. [57] K. Sato, J.-i. Anzai, Dendrimers in layer-by-layer assemblies: Synthesis and applications, Molecules 18(7) (2013) 8440-8460. [58] P. Martins, A. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): Determination, processing and applications, Progress in polymer science 39(4) (2014) 683-706. [59] H. Shaik, S. Rachith, K. Rudresh, A.S. Sheik, K. Thulasi Raman, P. Kondaiah, G. Mohan Rao, Towards β-phase formation probability in spin coated PVDF thin films, Journal of Polymer Research 24 (2017) 1-6. [60] Q. An, K. Nie, Y. Zhang, Y. Wang, Y. Hu, V. Dutschk, X. Luan, PAH/DAS covalently cross-linked layer-by-layer multilayers: A “nano-net” superstratum immobilizes nanoparticles and remains permeable to small molecules, Soft Matter 11(34) (2015) 6859-6865. [61] F. Ji, Y. Zhang, Y. Geng, Y. Zong, L. Wang, Fabrication of covalently linked PAH/PVS layer-by-layer assembled multilayers via a post-photochemical cross-linking strategy, Chemical Research in Chinese Universities 32 (2016) 493-498. [62] C. Eouani, P. Piccerelle, P. Prinderre, E. Bourret, J. Joachim, In-vitro comparative study of buccal mucoadhesive performance of different polymeric films, European journal of pharmaceutics and biopharmaceutics 52(1) (2001) 45-55. [63] G.K. Abilova, D.B. Kaldybekov, E.K. Ozhmukhametova, A.Z. Saimova, D.S. Kazybayeva, G.S. Irmukhametova, V.V. Khutoryanskiy, Chitosan/poly (2-ethyl-2-oxazoline) films for ocular drug delivery: Formulation, miscibility, in vitro and in vivo studies, European Polymer Journal 116 (2019) 311-320. [64] T.A. Arica, M. Guzelgulgen, A.A. Yildiz, M.M. Demir, Electrospun GelMA fibers and p (HEMA) matrix composite for corneal tissue engineering, Materials Science and Engineering: C 120 (2021) 111720. [65] J. Che, L. Shen, Y. Xiao, A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion, Journal of Materials Chemistry 20(9) (2010) 1722-1727. [66] L. Zhang, Z. Lu, Q. Zhao, J. Huang, H. Shen, Z. Zhang, Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI‐grafted graphene oxide, Small 7(4) (2011) 460-464. [67] C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets, ACS nano 4(4) (2010) 2429-2437. [68] M. Fortunato, D. Cavallini, G. De Bellis, F. Marra, A. Tamburrano, F. Sarto, M.S. Sarto, Phase inversion in PVDF films with enhanced piezoresponse through spin-coating and quenching, Polymers 11(7) (2019) 1096.
|