跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/05 08:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳峻鴻
論文名稱:優化QuEChERS方法分析八甲紅茶農藥殘留之研究
論文名稱(外文):Study of Pesticide Residues for the Analysis in Bajia Black Tea by the Optimization of the QuEChERS Method
指導教授:劉鳳錦
指導教授(外文):Liu Feng-Jiin
口試委員:洪儒熙劉鳳錦張漢威
口試委員(外文):Hung JustinLiu Feng-JiinChang Han-Wei
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立聯合大學
系所名稱:化學工程學系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:80
中文關鍵詞:農藥殘留檢測氣相層析串聯質譜儀液相層析串聯質譜儀
外文關鍵詞:pesticide residue detectionQuEChERSGC/MS/MSLC/MS/MS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
茶葉中的農藥殘留量對茶葉所含有的農藥多寡是大多數人們所在意的問題,尤其是農藥對於農業耕作普遍使用,而這就會延伸出農藥的食安問題,本研究希望研發一種高效且精確的可靠方法,用於檢測茶葉中的農藥殘留量,對茶葉樣品中常見的農藥種類進行評估和分析。茶葉是一種廣泛消費用的飲品,因此確保茶葉中農藥殘留量的高低對於茶葉的安全性和品質至關重要。
本研究透過利用液相層析串聯質譜儀以及氣相層析串聯質譜儀檢測茶葉中的殘留農藥種類與濃度,進行茶葉中農藥的定性和定量分析,並以 QuEChERS 前處理方法的步驟進行最佳化的改良,把每
個步驟單獨進行改變。在研究過程中將茶葉的農藥殘留濃度對於含水量的變化,及萃取溶劑的改變,回溶溶劑的不同,還有改變檢量線的溶劑來進行探討。
結果顯示茶葉對於含水量的下降會使農藥的萃取效果變得更好,而萃取溶劑需要和回溶溶劑一起改變才能使萃取農藥的效果提高,並發現萃取溶劑還有回溶溶劑的種類需要一致才能有效果,而最後改變檢量線的溶劑時將其他的溶劑都更改為同一種類,這使得農藥的萃取效果變得比原本的方法效果更好。
本研究成功提供了一種高效且精確的可靠方法用於監測茶葉中的農藥殘留濃度以及種類,並且為了茶葉的消費者以及茶葉的生產者提供了重要的參考以及數據,並且確保茶葉的品質以及安全性來
保護消費者。

Pesticide residues in tea leaves raise significant concerns for many
people, especially as pesticides are widely used in agricultural activities,
which sometimes contradict to food safety. This study aims to develop an
efficient and accurate method to analyze pesticide residue for pesticides
that are commonly used in tea leaves. Considering the populous
consumption of tea as a beverage, pesticide residue in tea leaves is
important as it reflects on its quality and safety for consumption.
In this study, utilization of liquid chromatography-tandem mass
spectrometry (LC/MS/MS) and gas chromatography-tandem mass
spectrometry (GC/MS/MS) for both qualitative and quantitative analysis
with the aim of identifying the type and concentration of pesticide residues
in tea leaves. Furthermore, the optimization of the QuEChERS method is
achieved by modifying each step. During the course of the study, changes
in the concentration of pesticide residues in tea leaves with respect to
different water contents, changes in extraction solvents, changes in redissolve solvents, and changes in solvents for the calibration curve are
examined.
iv
The results show that reducing water contents during pre-treatment of
the analysis improves the extraction of pesticides; the extraction solvent
needs to be changed together with the re-dissolving solvent to improve the
pesticide extraction efficiency, and it is found that the type of extraction
solvent and re-dissolving solvent must be identical to be effective. In
addition, the solvent of the calibration curve corresponding to all other
solvents will give better pesticide extraction efficiency than the original
method.
This study has successfully provided an efficient, accurate, and reliable
method to monitor the concentration and type of pesticide residues in tea
leaves while providing valuable references and information to consumers
and tea manufacturers to ensure quality and safety in tea consumption,
which safeguards consumers from potential risks.

第一章 緒論………………………………………………………..……1
1.1 研究動機……………………………………………………...……1
1.2 研究目的………………………………………………...…………2
第 2 章 文獻回顧……………………………………………..…………3
2.1 茶葉介紹………………………………...…………………………3
2.1.1 茶葉的品種………………………………………………….3
2.1.2 茶葉製作流程……………………………………………….5
2.2 農藥簡介…………………………………………...………………7
2.2.1 農藥的分類………………………………………………….8
2.2.2 農藥的類型………………..………………………….……..9
2.3 農藥降解原理………………….…………………………………11
2.4 樣品前處理技術(QuEChERS 法)………..………………………12
2.5 質譜分析技術…….………………………………………………17
2.5.1 監測模式…………………………………………...……...18
2.5.2 串聯質譜儀…………………………………………...…...20
2.5.3 質量分析器…………………………………………...…...23
2.5.4 電噴灑游離法…………………………………………......26
2.5.5 電子游離法…………………………………………...…..27
第 3 章 研究方法………………….……………………………………30
3.1 實驗藥品…………………………………….……………………30
3.2 實驗器材與設備……………………………….…………………30
3.3 藥品配製………………………………………….………………31
3.3.1 GC/MS/MS 之 177 項農藥混和標準品 5 ug/mL 配製…..31
3.3.2 LC/MS/MS 之 203 項農藥混和標準品 5 ug/mL 配製…...32
3.3.3 GC/MS/MS 之 177 項農藥混和標準品 1 ug/mL 配製…...32
3.3.4 LC/MS/MS 之 203 項農藥混和標準品 1 ug/mL 配製…...32
3.3.5 內部標準溶液 1 mg/mL 配製……………………………..33
3.3.6 內部標準溶液 50 ug/mL 配製…………………………….33
3.3.7 內部標準溶液 10 ug/mL 配製……………………………..33
3.4 樣品來源……………………………………………………….…33
3.5 氣相層析串聯質譜儀………………………………………….…34
3.6 液相層析串聯質譜儀………………………………………….…35
3.7 實驗架構……………………………………………………….…36
3.8 實驗方法……………………………………………………….…38
3.9 QuEChERS 樣品前處理優化步驟………………….……………39
3.9.1 添加水量對於回收率的影響…………………………….39
3.9.2 不同萃取溶劑對於回收率的影響……………………….40
3.9.3 改變溶劑配比配置基質檢量線對回收率的影響……….41
3.9.4 改變回溶溶劑對於回收率的影響………………………41
3.10 方法確效…………………………………...……………………42
3.10.1 基質匹配檢量線配製…………………………………..42
3.10.2 回收率測定……………………………………………..42
第 4 章 結果與討論………………………….…………………………43
4.1 添加水量對於回收率的影響………….…………………………43
4.2 不同萃取溶劑對於回收率的影響…….…………………………45
4.3 改變溶劑配比配置基質檢量線對回收率的影響….……………47
4.4 改變回溶溶劑對於回收率的影響………………….……………55
4.5 八甲紅茶農藥殘留量檢驗………………………….……………57
第 5 章 結論與未來展望………………………………….……………58
5.1 結論………………………………………………….……………58
5.2 未來展望……………………………………………….…………59
附錄 A 儀器參數……………………………………………..………62
附錄 B 八甲紅茶的各項農藥回收率…………………………..……71
附錄 C 八甲紅茶的檢量線使用丙酮進行回溶的各農藥回收率…..72
附錄 D 八甲紅茶使用丙酮進行回溶的各農藥回收率…………..…74
參考文獻……………………………………………………………...75

[1] 行政院國家永續發展委員會"臺灣永續發展目標修正本" Available from:
https://ncsd.ndc.gov.tw/Fore/nsdn/archives/meet3/detail?id=06aed260-a583-
4dd6-92d7-9e6c63349fb0.
[2] Hernández, A. F., Parrón, T., Tsatsakis, A. M., Requena, M., Alarcón, R., and
López Guarnido, O., "Toxic effects of pesticide mixtures at a molecular
level: their relevance to human health", Toxicology, 307: p. 136-145, 2013.
[3] Konstantinou, I. K., D. G. Hela, and T. A. Albanis, "The status of pesticide
pollution in surface waters (rivers and lakes) of Greece. Part I. Review on
occurrence and levels", Environmental Pollution, 141(3): p. 555-570, 2006.
[4] Oerke, E. C, "Crop losses to pests", The Journal of Agricultural Science,
144(1): p. 31-43, 2006.
[5] 行政院農業委員會茶業改良場. "臺灣特色茶" Available from:
https://www.tbrs.gov.tw/ws.php?id=3788.
[6] 行政院農業委員會茶業改良場. "臺灣特色茶分類及加工製程簡介"
Available from: https://www.tbrs.gov.tw/ws.php?id=4748.
[7] 行政院農業委員會動植物防疫檢疫局, "農藥簡介內容", Available from:
https://pesticide.aphia.gov.tw/information/Data/BriefContent/68.
[8] 農業藥物毒物試驗所. "農藥作用機制分類檢索"
https://www.tactri.gov.tw/Uploads/Item/853a3694-31b2-4185-ba83-
ad5fbc0024e1.pdf.
[9] 李敏郎, "農藥的種類介紹", 行政院農業委員會農業藥物毒物試驗所,
2011.
[10] 羅 致 述 , " 農 藥 劑 型 之 設 計 ", 2004; Available from:
https://www.tactri.gov.tw/Uploads/Item/280c5e6a-95ba-4c1f-a967-
182c4732902d.pdf.
[11] 林浩潭, "農藥與環境安全-環境降解", 農業藥物毒物試驗所,
2005.
[12] Liu, Tao, Shirong Xu, Shaoyong Lu, Pan Qin, Bin Bi, Haodong Ding, Ying
Liu, Xiaochun Guo, and Xiaohui Liu. "A Review on Removal of
Organophosphorus Pesticides in Constructed Wetland: Performance,
Mechanism and Influencing Factors." Science of the Total Environment 651
2247-68. 2019.
[13] Langlois, B. E., Collins, J. A., & Sides, K. "Some factors affecting degradation
of organochlorine pesticides by bacteria". Journal of dairy science, 53(12),
1671-1675. 1970.
[14] Mills, P. A., "Detection and semiquantitative estimation of chlorinated organic
pesticide residues in foods by paper chromatography", Journal of Association
of Official Agricultural Chemists, 42(4): p. 734-740, 1959.
[15] Luke, M. A., J. E. Froberg, and H. T. Masumoto, "Extraction and cleanup of
organochlorine, organophosphate, organonitrogen, and hydrocarbon
pesticides in produce for determination by gas-liquid chromatography",
Journal of the Association of Official Analytical Chemists, 58(5): p. 1020-
1026, 1975.
[16] Schenck, F. J., Callery, P., Gannett, P. M., Daft, J. R., and Lehotay,
S. J., "Comparison of magnesium sulfate and sodium sulfate for removal of
water from pesticide extracts of foods", Journal of AOAC International, 85(5):
p. 1177-1180, 2002.
[17] Anastassiades, M., Lehotay, S. J., Štajnbaher, D., and Schenck, F. J., "Fast and
easy multiresidue method employing acetonitrile extraction/partitioning and
“dispersive solid-phase extraction” for the determination of pesticide residues
in produce", Journal of AOAC international, 86(2): p. 412-431, 2003.
[18] 安捷倫公司(中國), "色譜分析的樣品前處理基本原理": p. 84-90, 2013.
[19] Hennion, M. C., "Graphitized carbons for solid-phase extraction" Journal of
chromatography A, 885(1-2): p. 73-95, 2000.
[20] Islam, A. K. M. M., Lee, H. S., Ro, J. H., Kim, D., and Kwon, H., "Application
of high‐surface‐area graphitized carbon black with primary secondary amine
as an alternative quick, easy, cheap, effective, rugged, and safe cleanup
material for pesticide multi‐residue analysis in spinach", Journal of separation
science, 42(14): p. 2379-2389, 2019.
[21] 李竺, 郜洪文, 陳玲, 趙建夫, "固相萃取技術在環境中農藥殘留分析的研
究進展", 世界科技研究與發展: p. 64-71, 2005.
[22] Lawal, A., Wong, R. C. S., Tan, G. H., Abdulra’uf, L. B., and Alsharif, A. M.
A., "Recent modifications and validation of QuEChERS dSPE coupled to
LC/MS and GC/MS instruments for determination of pesticide/agrochemical
residues in fruits and vegetables", Journal of chromatographic science, 56(7):
p. 656-669,2018.
[23] Payá, P., Anastassiades, M., Mack, D., Sigalova, I., Tasdelen, B., Oliva, J., and
Barba, A., "Analysis of pesticide residues using the Quick Easy Cheap
Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in
combination with gas and liquid chromatography and tandem mass
spectrometric detection", Analytical and bioanalytical chemistry, 389(6):
p.1697-1714, 2007.
[24] Cunha, S. C., Lehotay, S. J., Mastovska, K., Fer nandes, J. O., Beatriz, M.,
and Oliveira, P. P., "Evaluation of the QuEChERS sample preparation
approach for the analysis of pesticide residues in olives", Journal of separation
science, 30(4): p. 620-632, 2007.
[25] del Mar Gómez Ramos, M., Nannou, C., Bueno, M. J. M., Goday, A., Murcia
Morales, M., Ferrer, C., and Fernández Alba, A. R, "Pesticide residues
evaluation of organic crops. A critical appraisal", Food chemistry: X, 5: p.
100079, 2020.
[26] Usui, K., Hayashizaki, Y., Hashiyada, M., & Funayama, M. "Rapid drug
extraction from human whole blood using a modified QuEChERS extraction
method". Legal Medicine, 14(6), 286-296.2012.
[27] Ekroos, K., "Characterization of Molecular Glycerophospholipids by
Quadrupole Time-of-Flight Mass Spectrometry", 2003.
[28] Tobolkina, E., "New analytical tools combining gel electrophoresis and mass
spectrometry", EPFL, 2014.
[29] Glish, G. L. and R. W. Vachet, "The basics of mass spectrometry in the twentyfirst century", Nature reviews drug discovery, 2(2): p. 140-150, 2003.
[30] Santoiemma, G., "Recent methodologies for studying the soil organic matter",
Applied Soil Ecology, 123: p. 546-550, 2018.
[31] 詹舜安, 劉宗榮, "液相層析串聯式質譜儀之原理及應用", 科儀新知, 24: p.
77-89, 2002.
[32] 陳清源, 麥富德, 凌永健, "飛行時間二次離子質譜儀的原理與應用", 科儀
新知, 24: p. 14-26, 2002.
[33] Dole, M., Mack, L. L., Hines, R. L., Mobley, R. C., Ferguson, L. D., and Alice,
M. B., "Molecular beams of macroions", The Journal of chemical physics,
49(5): p. 2240-2249, 1968.
[34] Tobolkina, E., "New analytical tools combining gel electrophoresis and mass
spectrometry", EPFL, 2014.
[35] 王玟心, "QuEChERS 萃取技術結合液相層析串聯質譜術於蔬果中農藥殘
留之分析": p. 27-33, 2018.
[36] Bleakney, W., "A new method of positive ray analysis and its application to
the measurement of ionization potentials in mercury vapor", Physical Review,
34(1): p. 157, 1929.
[37] Nier, A. O., "A mass spectrometer for isotope and gas analysis", Review of
Scientific Instruments, 18(6): p. 398-411, 1947.
[38] Mark, T., "Fundamental aspects of electron impact ionization", International
Journal of Mass Spectrometry and Ion Physics, 45: p. 125-145, 1982.
[39] Hou, X., Lei, S., Guo, L., & Qiu, S. Optimization of a multi-residue method
for 101 pesticides in green tea leaves using gas chromatography-tandem mass
spectrometry. Revista Brasileira de Farmacognosia, 26, 401-407, 2016.
[40] Gao, G., Chen, H., Dai, J., Jin, L., Chai, Y., Zhu, L., & Lu, C. Determination
of polychlorinated biphenyls in tea using gas chromatography–tandem mass
spectrometry combined with dispersive solid phase extraction. Food chemistry,
316, 126290,2020.
[41] Zhang, Zihao, Maofeng Dong, Xianghong Hao, Lijun Han, Shuangyu Song,
and Wei Yao. "Evaluation of Cleanup Procedures in Pesticide Multi-Residue
Analysis with Quechers in Cinnamon Bark." Food chemistry 276: 140-46,
2019.
[42] Hetian Huang, Zhanbin Li, Yu He, Lian Huang, Xiaoli Xu, Canping Pan, Feng
Guo, Hongbo Yang,Shi Tang, "Nontarget and high-throughput screening of
pesticides and metabolites residues in tea using ultra-high-performance
liquid chromatography and quadrupole-orbitrap high-resolution mass
spectrometry. " Journal of Chromatography B, 1179: p. 122847, 2021.
[43] Song, L., Zeng, W., Li, A., Pan, C., & Pan, L. "Automated multi-plug filtration
cleanup method for analysis of 48 pesticide residues in green tea using liquid
chromatography-tandem mass spectrometry". Food Control, 131,108436,
2022.
[44] Chen, G., Cao, P., & Liu, R. "A multi-residue method for fast determination of
pesticides in tea by ultra performance liquid chromatography–electrospray
tandem mass spectrometry combined with modified QuEChERS sample
preparation procedure". Food Chemistry, 125(4), 1406-1411, 2011.
[45] Deng, X., Guo, Q., Chen, X., Xue, T., Wang, H., & Yao, P. Rapid and effective
sample clean-up based on magnetic multiwalled carbon nanotubes for the
determination of pesticide residues in tea by gas chromatography–mass
spectrometry. Food chemistry, 145, 853-858, 2014.
[46] Kardani, F., Jelyani, A. Z., Dahanzadeh, M., & Rashedinia, M. "Modified
QuEChERS sample preparation method and applied for the analysis of 30
pesticide residues in iran tea in 2020–2021 using gas chromatography-tandem
mass spectrometry". Applied Food Research, 2(2), 100197, 2022.
[47] Vandana Tripathy, Krishan Kumar Sharma, Ruchi Gupta, Rajbir Yadav,
Suneeta Devi, Khushbu Sharma, Gitansh Singh, Shobhita Kalra, Akanksha
Aggarwal, Kesar Tandekar, Ankita Verma, Suresh Walia, Simultaneous
monitoring and dietary risk assessment of 386 pesticides in market samples of
black tea. Food Chemistry, 420: p. 136103,2023.
[48] Oellig, C., & Schwack, W. Planar solid phase extraction clean-up for pesticide
residue analysis in tea by liquid chromatography–mass spectrometry. Journal of Chromatography A, 1260, 42-53,2012.
[49] Cajka, T., Sandy, C., Bachanova, V., Drabova, L., Kalachova, K., Pulkrabova,
J., & Hajslova, J. StreamLining sample preparation and gas chromatography–
tandem mass spectrometry analysis of multiple pesticide residues in tea.
Analytica Chimica Acta, 743, 51-60, 2012.
[50] Lozano, A., Rajski, Ł., Belmonte-Valles, N., Uclés, A., Uclés, S., Mezcua, M.,
& Fernández-Alba, A. R. Pesticide analysis in teas and chamomile by liquid
chromatography and gas chromatography tandem mass spectrometry using a
modified QuEChERS method: validation and pilot survey in real samples.
Journal of Chromatography A, 1268, 109-122,2012.
[51] Guedes, J. A. C., de Oliveira Silva, R., Lima, C. G., Milhome, M. A. L., & do
Nascimento, R. F. "Matrix effect in guava multiresidue analysis by
QuEChERS method and gas chromatography coupled to quadrupole mass
spectrometry. " Food Chemistry, 199, 380-386,2016.
[52] Shuang Li, Peipei Yu, Ceng Zhou, Ling Tong, Dongxiang Li, Zhiguo Yu, Yunli
Zhao, Analysis of pesticide residues in commercially available chenpi using a
modified QuEChERS method and GC-MS/MS determination. Journal of
Pharmaceutical Analysis, 10(1): p. 60-69,2020.
[53] Huo, F., Tang, H., Wu, X., Chen, D., Zhao, T., Liu, P., & Li, L. Utilizing a
novel sorbent in the solid phase extraction for simultaneous determination of
15 pesticide residues in green tea by GC/MS. Journal of Chromatography B,
1023, 44-54,2016.
[54] Tuan-Kiet Ly, Tuan-Dat Ho, Philippe Behra, Tran-Thi Nhu-Trang.
Determination of 400 pesticide residues in green tea leaves by UPLC-MS/MS
and GC-MS/MS combined with QuEChERS extraction and mixed-mode SPE
clean-up method. Food chemistry, 326: p. 126928,2020.
[55] Trevisan, M. T. S., Owen, R. W., Calatayud-Vernich, P., Breuer, A., & Picó, Y.
Pesticide analysis in coffee leaves using a quick, easy, cheap, effective, rugged
and safe approach and liquid chromatography tandem mass spectrometry:
Optimization of the clean-up step. Journal of Chromatography A, 1512, 98-
106, 2017.
[56] Cao, Y., Tang, H., Chen, D., & Li, L. A novel method based on MSPD for
simultaneous determination of 16 pesticide residues in tea by LC–MS/MS.
Journal of Chromatography B, 998, 72-79,2015.
[57] Zhuang, Ming, Wei Yao, Lijun Han, Yingying Bi, Chengkui Qiao, Xinru Lv,
Mengyuan Cao, and Hanzhong Xie. "Multivariate Response Surface
Methodology Assisted Modified Quechers Method for the Rapid
Determination of 39 Pesticides and Metabolites in Medlar." Ecotoxicology andEnvironmental Safety 261: 115102,2023.
[58] Yangliu Wu, Quanshun An, Dong Li, Lu Kang, Chunran Zhou, Jingbang
Zhang, Jingbang Zhang, Multi-residue analytical method development and
risk assessment of 56 pesticides and their metabolites in tea by
chromatography tandem mass spectroscopy. Food Chemistry, 375: p. 131819,
2022.
[59] Zhu, B., Xu, X., Luo, J., Jin, S., Chen, W., Liu, Z., & Tian, C. Simultaneous
determination of 131 pesticides in tea by on-line GPC-GC–MS/MS using
graphitized multi-walled carbon nanotubes as dispersive solid phase extraction
sorbent. Food chemistry, 276, 202-208,2019.
[60] Huo, F., Tang, H., Wu, X., Chen, D., Zhao, T., Liu, P., & Li, L. Utilizing a
novel sorbent in the solid phase extraction for simultaneous determination of
15 pesticide residues in green tea by GC/MS. Journal of Chromatography B,
1023, 44-54, 2016.
[61] Zhao, P., Wang, L., Zhou, L., Zhang, F., Kang, S., & Pan, C. Multi-walled
carbon nanotubes as alternative reversed-dispersive solid phase extraction
materials in pesticide multi-residue analysis with QuEChERS method. Journal
of Chromatography A, 1225, 17-25, 2012.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top