跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/14 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳昱蓁
研究生(外文):Chen, Yu-Chen
論文名稱:以人類半乳糖凝集素-3為例研究無序蛋白質演化上保守特徵
論文名稱(外文):Roles of the Conserved Traits in Proteins’ Intrinsically Disordered Region, Using Human Galectin-3’s Orthologs as an Example
指導教授:黃介嶸
指導教授(外文):Huang, Jie-Rong
口試委員:林達顯黃介嶸張欣暘
口試委員(外文):Lin, Ta-HsienHuang, Jie-rongChang, Hsin-Yang
口試日期:2023-07-19
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:生化暨分子生物研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:75
中文關鍵詞:固有無序蛋白質固有無序區域直系同源固有無序蛋白質/固有無序區域的演化芳香族胺基酸
外文關鍵詞:intrinsically disordered proteins (IDPs)intrinsically disordered regions (IDRs)orthologthe evolution of IDPs/IDRsaromatic residues
相關次數:
  • 被引用被引用:0
  • 點閱點閱:21
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 i
Abstract ii
Contents iii
List of Figures vi
Chapter 1 Introduction 1
1.1 Protein Evolution 1
1.2 Intrinsically Disordered Proteins/Regions (IDPs/IDRs) 3
1.2.1 The Functions of IDPs/IDRs 3
1.2.2 The Evolution of IDPs/IDRs 4
1.3 Galectin-3 5
1.3.1 The Structure of Galectin-3 5
1.3.2 The Self-Association and Agglutination of Galectin-3 6
1.3.3 Galectin-3: An Ideal Model for IDPs/IDRs Evolution Study 8
1.4 Aim 9
Chapter 2 Materials and Methods 11
2.1 Materials 11
2.1.1 Table of Material 11
2.1.2 Table of Buffer 15
2.1.3 Table of Primer 18
2.2 Methods 19
2.2.1 Primary Sequence Analysis 19
2.2.2 Construct Preparation 19
2.2.2.1 His-SUMO-fGal3 FL 19
2.2.2.2 His-SUMO-fCRD 19
2.2.2.3 His-SUMO-fGal3 W/Y 20
2.2.2.4 His-TEVcs-fGal3 20
2.2.2.5 His-TEVcs-fCRD 21
2.2.3 Protein Expression and Purification 21
2.2.3.1 SUMO Fusion Protein System 21
2.2.3.2 Protein with TEV Cutting Site System 23
2.2.4 Sequence Alignment 25
2.2.4.1 Table of organisms selected for sequence alignment 25
2.2.5 Turbidity Assay 26
2.2.6 Nuclear Magnetic Resonance (NMR) Spectroscopy 27
2.2.6.1 The Principles of NMR 27
2.2.6.2 Chemical Shifts 28
2.2.6.3 HSQC, Intensity Ratio, and Chemical Shift Perturbation 29
2.2.6.4 Relaxation Rate Constants R2 and R1 30
2.2.6.5 Backbone Assignment 31
2.2.6.6 NMR Experiments and Analysis 31
2.2.6.6.1 Table of NMR R2 and R1 experimental parameters 32
2.2.6.6.2 Table of 5NTD-fCRD NMR assignment experimental parameters 32
2.2.7 Circular Dichroism (CD) Spectroscopy 33
2.2.7.1 The Principles of CD 33
2.2.7.2 CD Experiments and Data Analysis 34
2.2.8 Language Editing 35
Chapter 3 Results 36
3.1 The Sequences Alignment of Different Vertebrate Species Galectin, Which Has an IDR 36
3.2 Comparison of the Biophysical Properties between Human and Zebrafish Galectin-3 Reveals Similarities 40
3.3 Zebrafish Galectin-3 CRD (fCRD) Assignment 42
3.4 The Intermolecular Interaction of Zebrafish Galectin-3 Is Weak 44
3.5 The Residues from F-Face of Zebrafish Galectin-3 Contribute to the NC Interactions, but Weaker than That of Human Galectin-3 46
3.6 Enhancement of NC Interaction in Zebrafish Galectin-3 through Tryptophan-to-Tyrosine Substitution on the NTD 48
3.7 No Obvious Enhancement of Intermolecular Interaction in Zebrafish Galectin-3 through Tryptophan-to-Tyrosine Substitution on the NTD 51
3.8 Instability in the CRD Structure of Zebrafish Galectin-3 at Low pH 54
Chapter 4 Discussion 57
4.1 The Impact of Aromatic Residue Types and Length Variations on IDPs/IDRs Function Preservation: Lessons from Galectin-3 Studies 57
4.2 Differential Impact of Aromatic Residues on Cation-π Interactions: Insights from Zebrafish Galectin-3 60
4.3 Summary 62
References 64
Appendix 70
1. De Vries, H., Species and varieties: their origin by mutation. 1906: Open Court Publishing Company.
2. Jayaraman, V., et al., Mechanisms of protein evolution. Protein Science, 2022. 31(7): p. e4362.
3. Trudeau, D.L., M.A. Smith, and F.H. Arnold, Innovation by homologous recombination. Current opinion in chemical biology, 2013. 17(6): p. 902-909.
4. Masel, J., Genetic drift. Current Biology, 2011. 21(20): p. R837-R838.
5. Bloom, J.D. and F.H. Arnold, In the light of directed evolution: pathways of adaptive protein evolution. Proceedings of the National Academy of Sciences, 2009. 106(supplement_1): p. 9995-10000.
6. Bornberg-Bauer, E. and M.M. Albà, Dynamics and adaptive benefits of modular protein evolution. Current opinion in structural biology, 2013. 23(3): p. 459-466.
7. Dellus-Gur, E., et al., Negative epistasis and evolvability in TEM-1 β-lactamase—the thin line between an enzyme's conformational freedom and disorder. Journal of molecular biology, 2015. 427(14): p. 2396-2409.
8. Starr, T.N. and J.W. Thornton, Epistasis in protein evolution. Protein science, 2016. 25(7): p. 1204-1218.
9. Miton, C.M. and N. Tokuriki, How mutational epistasis impairs predictability in protein evolution and design. Protein Science, 2016. 25(7): p. 1260-1272.
10. Tokuriki, N., et al., Diminishing returns and tradeoffs constrain the laboratory optimization of an enzyme. Nature Communications, 2012. 3(1): p. 1257.
11. Innan, H. and F. Kondrashov, The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 2010. 11(2): p. 97-108.
12. Näsvall, J., et al., Real-time evolution of new genes by innovation, amplification, and divergence. science, 2012. 338(6105): p. 384-387.
13. Gordon, A.J., et al., Lost in transcription: transient errors in information transfer. Current opinion in microbiology, 2015. 24: p. 80-87.
14. Yanagida, H., et al., The evolutionary potential of phenotypic mutations. PLoS genetics, 2015. 11(8): p. e1005445.
15. Noda-Garcia, L., W. Liebermeister, and D.S. Tawfik, Metabolite–enzyme coevolution: from single enzymes to metabolic pathways and networks. Annual Review of Biochemistry, 2018. 87: p. 187-216.
16. Jensen, R.A., Enzyme recruitment in evolution of new function. Annual review of microbiology, 1976. 30(1): p. 409-425.
17. Weng, J.K., The evolutionary paths towards complexity: a metabolic perspective. New Phytologist, 2014. 201(4): p. 1141-1149.
18. Notebaart, R.A., et al., Network-level architecture and the evolutionary potential of underground metabolism. Proceedings of the National Academy of Sciences, 2014. 111(32): p. 11762-11767.
19. Cornish-Bowden, A. and M.L. Cárdenas, Life before LUCA. Journal of theoretical biology, 2017. 434: p. 68-74.
20. Piette, B.M. and J.G. Heddle, A peptide–nucleic acid replicator origin for life. Trends in Ecology & Evolution, 2020. 35(5): p. 397-406.
21. Chatterjee, S. and S. Yadav, The origin of prebiotic information system in the peptide/RNA world: a simulation model of the evolution of translation and the genetic code. Life, 2019. 9(1): p. 25.
22. Rode, B.M., Peptides and the origin of life1. Peptides, 1999. 20(6): p. 773-786.
23. Ikehara, K., Possible steps to the emergence of life: The [GADV]‐protein world hypothesis. The Chemical Record, 2005. 5(2): p. 107-118.
24. Maury, C.P.J., Amyloid and the origin of life: self-replicating catalytic amyloids as prebiotic informational and protometabolic entities. Cellular and Molecular Life Sciences, 2018. 75(9): p. 1499-1507.
25. Friedmann, M.P., et al., Towards prebiotic catalytic amyloids using high throughput screening. PloS one, 2015. 10(12): p. e0143948.
26. Oates, M.E., et al., D2P2: database of disordered protein predictions. Nucleic acids research, 2012. 41(D1): p. D508-D516.
27. Ward, J.J., et al., Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. Journal of molecular biology, 2004. 337(3): p. 635-645.
28. Potenza, E., et al., MobiDB 2.0: an improved database of intrinsically disordered and mobile proteins. Nucleic acids research, 2015. 43(D1): p. D315-D320.
29. Tompa, P., Z. Dosztányi, and I. Simon, Prevalent Structural Disorder in E. c oli and S. c erevisiae Proteomes. Journal of proteome research, 2006. 5(8): p. 1996-2000.
30. Smock, R.G. and L.M. Gierasch, Sending signals dynamically. science, 2009. 324(5924): p. 198-203.
31. Liu, Z. and Y. Huang, Advantages of proteins being disordered. Protein Science, 2014. 23(5): p. 539-550.
32. Dyson, H.J. and P.E. Wright, Intrinsically unstructured proteins and their functions. Nature reviews Molecular cell biology, 2005. 6(3): p. 197-208.
33. Perry, S.L., Phase separation: Bridging polymer physics and biology. Current Opinion in Colloid & Interface Science, 2019. 39: p. 86-97.
34. Krainer, G., et al., Reentrant liquid condensate phase of proteins is stabilized by hydrophobic and non-ionic interactions. Nature communications, 2021. 12(1): p. 1085.
35. Gsponer, J., et al., A coupled equilibrium shift mechanism in calmodulin-mediated signal transduction. Structure, 2008. 16(5): p. 736-746.
36. Fung, H.Y.J., M. Birol, and E. Rhoades, IDPs in macromolecular complexes: the roles of multivalent interactions in diverse assemblies. Current opinion in structural biology, 2018. 49: p. 36-43.
37. Simon, J.R., et al., Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nature chemistry, 2017. 9(6): p. 509-515.
38. Trivedi, R. and H.A. Nagarajaram, Amino acid substitution scoring matrices specific to intrinsically disordered regions in proteins. Scientific reports, 2019. 9(1): p. 1-12.
39. Ali, H., et al., Performance of protein disorder prediction programs on amino acid substitutions. Human mutation, 2014. 35(7): p. 794-804.
40. Tompa, P., Intrinsically unstructured proteins evolve by repeat expansion. Bioessays, 2003. 25(9): p. 847-855.
41. Khan, T., et al., Polymorphism analysis reveals reduced negative selection and elevated rate of insertions and deletions in intrinsically disordered protein regions. Genome biology and evolution, 2015. 7(6): p. 1815-1826.
42. Brown, C.J., et al., Evolutionary rate heterogeneity in proteins with long disordered regions. Journal of molecular evolution, 2002. 55(1).
43. Afanasyeva, A., et al., Human long intrinsically disordered protein regions are frequent targets of positive selection. Genome research, 2018. 28(7): p. 975-982.
44. Daughdrill, G.W., et al., Dynamic behavior of an intrinsically unstructured linker domain is conserved in the face of negligible amino acid sequence conservation. Journal of molecular evolution, 2007. 65: p. 277-288.
45. Denning, D.P. and M.F. Rexach, Rapid evolution exposes the boundaries of domain structure and function in natively unfolded FG nucleoporins* S. Molecular & Cellular Proteomics, 2007. 6(2): p. 272-282.
46. Ayme-Southgate, A.J., et al., The myofibrillar protein, projectin, is highly conserved across insect evolution except for its PEVK domain. Journal of molecular evolution, 2008. 67: p. 653-669.
47. Lange, J., L.S. Wyrwicz, and G. Vriend, KMAD: knowledge-based multiple sequence alignment for intrinsically disordered proteins. Bioinformatics, 2016. 32(6): p. 932-936.
48. Pritišanac, I., et al., Entropy and information within intrinsically disordered protein regions. Entropy, 2019. 21(7): p. 662.
49. Brown, C.J., A.K. Johnson, and G.W. Daughdrill, Comparing models of evolution for ordered and disordered proteins. Molecular biology and evolution, 2010. 27(3): p. 609-621.
50. Ho, W.L. and J.r. Huang, The return of the rings: Evolutionary convergence of aromatic residues in the intrinsically disordered regions of RNA‐binding proteins for liquid–liquid phase separation. Protein Science, 2022. 31(5): p. e4317.
51. Iserte, J.A., et al., Chasing coevolutionary signals in intrinsically disordered proteins complexes. Scientific Reports, 2020. 10(1): p. 17962.
52. Hirabayashi, J. and K.-i. Kasai, The family of metazoan metal-independent β-galactoside-binding lectins: structure, function and molecular evolution. Glycobiology, 1993. 3(4): p. 297-304.
53. Romero, P., et al., Sequence complexity of disordered protein. Proteins: Structure, Function, and Bioinformatics, 2001. 42(1): p. 38-48.
54. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. Nature, 2021. 596(7873): p. 583-589.
55. Ruff, K.M. and R.V. Pappu, AlphaFold and implications for intrinsically disordered proteins. Journal of Molecular Biology, 2021. 433(20): p. 167208.
56. Seetharaman, J., et al., X-ray crystal structure of the human galectin-3 carbohydrate recognition domain at 2.1-Å resolution. Journal of Biological Chemistry, 1998. 273(21): p. 13047-13052.
57. Lin, Y.-H., et al., The intrinsically disordered N-terminal domain of galectin-3 dynamically mediates multisite self-association of the protein through fuzzy interactions. Journal of Biological Chemistry, 2017. 292(43): p. 17845-17856.
58. Chiu, Y.-P., et al., Liquid-liquid phase separation and extracellular multivalent interactions in the tale of galectin-3. Nature Communications, 2020. 11(1): p. 1229.
59. Dignon, G.L., et al., Temperature-controlled liquid–liquid phase separation of disordered proteins. ACS central science, 2019. 5(5): p. 821-830.
60. Jin, X., et al., Effects of pH alterations on stress-and aging-induced protein phase separation. Cellular and Molecular Life Sciences, 2022. 79(7): p. 380.
61. Das, S., et al., Comparative roles of charge, π, and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. Proceedings of the National Academy of Sciences, 2020. 117(46): p. 28795-28805.
62. Luo, Y.-Y., J.-J. Wu, and Y.-M. Li, Regulation of liquid–liquid phase separation with focus on post-translational modifications. Chemical communications, 2021. 57(98): p. 13275-13287.
63. Smith, L.K., et al., Interleukin-10 directly inhibits CD8+ T cell function by enhancing N-glycan branching to decrease antigen sensitivity. Immunity, 2018. 48(2): p. 299-312. e5.
64. Chen, H.-Y., et al., Galectin-3 negatively regulates TCR-mediated CD4+ T-cell activation at the immunological synapse. Proceedings of the National Academy of Sciences, 2009. 106(34): p. 14496-14501.
65. Beccaria, C.G., et al., Galectin-3 deficiency drives lupus-like disease by promoting spontaneous germinal centers formation via IFN-γ. Nature Communications, 2018. 9(1): p. 1628.
66. Liu, F.-T. and S.R. Stowell, The role of galectins in immunity and infection. Nature Reviews Immunology, 2023: p. 1-16.
67. Guo, Y., et al., Roles of galectin‑3 in the tumor microenvironment and tumor metabolism. Oncology Reports, 2020. 44(5): p. 1799-1809.
68. Houzelstein, D., et al., Phylogenetic analysis of the vertebrate galectin family. Molecular biology and evolution, 2004. 21(7): p. 1177-1187.
69. Ely, Z.A., et al., The impact of natural selection on the evolution and function of placentally expressed galectins. Genome Biology and Evolution, 2019. 11(9): p. 2574-2592.
70. Sprague, J., et al., The Zebrafish Information Network: the zebrafish model organism database. Nucleic acids research, 2006. 34(suppl_1): p. D581-D585.
71. Johnson, M., et al., NCBI BLAST: a better web interface. Nucleic acids research, 2008. 36(suppl_2): p. W5-W9.
72. UniProt: the Universal Protein knowledgebase in 2023. Nucleic Acids Research, 2023. 51(D1): p. D523-D531.
73. Lancaster, A.K., et al., PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics, 2014. 30(17): p. 2501-2502.
74. Vernon, R.M., et al., Pi-Pi contacts are an overlooked protein feature relevant to phase separation. elife, 2018. 7: p. e31486.
75. Hardenberg, M., et al., Widespread occurrence of the droplet state of proteins in the human proteome. Proceedings of the National Academy of Sciences, 2020. 117(52): p. 33254-33262.
76. Li, C., et al., FastCloning: a highly simplified, purification-free, sequence-and ligation-independent PCR cloning method. BMC biotechnology, 2011. 11: p. 1-10.
77. Hedges, S.B., The origin and evolution of model organisms. Nature Reviews Genetics, 2002. 3(11): p. 838-849.
78. Piotto, M., V. Saudek, and V. Sklenář, Gradient-tailored excitation for single-quantum NMR spectroscopy of aqueous solutions. Journal of biomolecular NMR, 1992. 2: p. 661-665.
79. Liu, M., et al., Improved WATERGATE pulse sequences for solvent suppression in NMR spectroscopy. Journal of Magnetic Resonance, 1998. 132(1): p. 125-129.
80. Lee, H.J., et al., Effects of hydroxyl group variations on a flavonoid backbone toward modulation of metal-free and metal-induced amyloid-β aggregation. Inorganic Chemistry Frontiers, 2016. 3(3): p. 381-392.
81. Lee, W., et al., I-PINE web server: an integrative probabilistic NMR assignment system for proteins. Journal of biomolecular NMR, 2019. 73: p. 213-222.
82. Klukowski, P., R. Riek, and P. Güntert, Rapid protein assignments and structures from raw NMR spectra with the deep learning technique ARTINA. Nature Communications, 2022. 13(1): p. 6151.
83. Delaglio, F., et al., NMRPipe: a multidimensional spectral processing system based on UNIX pipes. Journal of biomolecular NMR, 1995. 6: p. 277-293.
84. Goddard, T. and D. Kneller, Sparky 3. University of California, San Francisco, USA. Google Scholar There is no corresponding record for this reference, 2008.
85. Zhu, S. and M. Sun, Electronic circular dichroism and raman optical activity: principle and applications. Applied Spectroscopy Reviews, 2021. 56(7): p. 553-587.
86. Andrews, S.S. and J. Tretton, Physical principles of circular dichroism. Journal of Chemical Education, 2020. 97(12): p. 4370-4376.
87. Miles, A., R.W. Janes, and B.A. Wallace, Tools and methods for circular dichroism spectroscopy of proteins: A tutorial review. Chemical Society Reviews, 2021. 50(15): p. 8400-8413.
88. Nelson, D.L. and M.M. Cox, Lehninger principles of biochemistry: International edition. Maximillian Higher Education, Houndmills, Baskington, England, 2017.
89. Micsonai, A., et al., BeStSel: a web server for accurate protein secondary structure prediction and fold recognition from the circular dichroism spectra. Nucleic acids research, 2018. 46(W1): p. W315-W322.
90. Micsonai, A., et al., Bestsel: Updated webserver for secondary structure and fold prediction for protein CD spectroscopy. Biophysical Journal, 2023. 122(3): p. 179a.
91. Van Dis, E.A., et al., ChatGPT: five priorities for research. Nature, 2023. 614(7947): p. 224-226.
92. Thorp, H.H., ChatGPT is fun, but not an author. 2023, American Association for the Advancement of Science. p. 313-313.
93. Jia, J., et al., Galectin-3 coordinates a cellular system for lysosomal repair and removal. Developmental cell, 2020. 52(1): p. 69-87. e8.
94. Gallivan, J.P. and D.A. Dougherty, Cation-π interactions in structural biology. Proceedings of the National Academy of Sciences, 1999. 96(17): p. 9459-9464.
95. Wang, J., et al., A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell, 2018. 174(3): p. 688-699. e16.
96. Qamar, S., et al., FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell, 2018. 173(3): p. 720-734. e15.
電子全文 電子全文(網際網路公開日期:20260729)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top