|
Aratani, S., Fujii, R., Oishi, T., Fujita, H., Amano, T., Ohshima, T., Hagiwara, M., Fukamizu, A., & Nakajima, T. (2001). Dual roles of RNA helicase A in CREB-dependent transcription. Mol Cell Biol, 21(14), 4460-4469. https://doi.org/10.1128/mcb.21.14.4460-4469.2001 Aratani, S., Oishi, T., Fujita, H., Nakazawa, M., Fujii, R., Imamoto, N., Yoneda, Y., Fukamizu, A., & Nakajima, T. (2006). The nuclear import of RNA helicase A is mediated by importin-alpha3. Biochem Biophys Res Commun, 340(1), 125-133. https://doi.org/10.1016/j.bbrc.2005.11.161 Chu, Y., Simic, R., Warner, M. H., Arndt, K. M., & Prelich, G. (2007). Regulation of histone modification and cryptic transcription by the Bur1 and Paf1 complexes. Embo j, 26(22), 4646-4656. https://doi.org/10.1038/sj.emboj.7601887 Chu, Y., Yue, X., Younger, S. T., Janowski, B. A., & Corey, D. R. (2010). Involvement of argonaute proteins in gene silencing and activation by RNAs complementary to a non-coding transcript at the progesterone receptor promoter. Nucleic Acids Res, 38(21), 7736-7748. https://doi.org/10.1093/nar/gkq648 Darnell, J. C., Jensen, K. B., Jin, P., Brown, V., Warren, S. T., & Darnell, R. B. (2001). Fragile X mental retardation protein targets G quartet mRNAs important for neuronal function. Cell, 107(4), 489-499. https://doi.org/10.1016/s0092-8674(01)00566-9 Diederichs, S., & Haber, D. A. (2007). Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell, 131(6), 1097-1108. https://doi.org/10.1016/j.cell.2007.10.032 Fidaleo, M., De Paola, E., & Paronetto, M. P. (2016). The RNA helicase A in malignant transformation. Oncotarget, 7(19), 28711-28723. https://doi.org/10.18632/oncotarget.7377 Fu, Q., & Yuan, Y. A. (2013). Structural insights into RISC assembly facilitated by dsRNA-binding domains of human RNA helicase A (DHX9). Nucleic Acids Res, 41(5), 3457-3470. https://doi.org/10.1093/nar/gkt042 Gebert, L. F. R., & MacRae, I. J. (2019). Regulation of microRNA function in animals. Nat Rev Mol Cell Biol, 20(1), 21-37. https://doi.org/10.1038/s41580-018-0045-7 Ghisolfi, L., Kharrat, A., Joseph, G., Amalric, F., & Erard, M. (1992). Concerted activities of the RNA recognition and the glycine-rich C-terminal domains of nucleolin are required for efficient complex formation with pre-ribosomal RNA. Eur J Biochem, 209(2), 541-548. https://doi.org/10.1111/j.1432-1033.1992.tb17318.x Giorgi, C., Cogoni, C., & Catalanotto, C. (2012). From transcription to translation: new insights in the structure and function of Argonaute protein. Biomol Concepts, 3(6), 545-559. https://doi.org/10.1515/bmc-2012-0024 Hartman, T. R., Qian, S., Bolinger, C., Fernandez, S., Schoenberg, D. R., & Boris-Lawrie, K. (2006). RNA helicase A is necessary for translation of selected messenger RNAs. Nat Struct Mol Biol, 13(6), 509-516. https://doi.org/10.1038/nsmb1092 Hu, J., Chen, Z., Xia, D., Wu, J., Xu, H., & Ye, Z. Q. (2012). Promoter-associated small double-stranded RNA interacts with heterogeneous nuclear ribonucleoprotein A2/B1 to induce transcriptional activation. Biochem J, 447(3), 407-416. https://doi.org/10.1042/bj20120256 Jaehning, J. A. (2010). The Paf1 complex: platform or player in RNA polymerase II transcription? Biochim Biophys Acta, 1799(5-6), 379-388. https://doi.org/10.1016/j.bbagrm.2010.01.001 Janowski, B. A., Younger, S. T., Hardy, D. B., Ram, R., Huffman, K. E., & Corey, D. R. (2007). Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nat Chem Biol, 3(3), 166-173. https://doi.org/10.1038/nchembio860 Kiledjian, M., & Dreyfuss, G. (1992). Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. Embo j, 11(7), 2655-2664. https://doi.org/10.1002/j.1460-2075.1992.tb05331.x Kim, B., Jeong, K., & Kim, V. N. (2017). Genome-wide Mapping of DROSHA Cleavage Sites on Primary MicroRNAs and Noncanonical Substrates. Mol Cell, 66(2), 258-269.e255. https://doi.org/10.1016/j.molcel.2017.03.013 Kim, J., Guermah, M., & Roeder, R. G. (2010). The human PAF1 complex acts in chromatin transcription elongation both independently and cooperatively with SII/TFIIS. Cell, 140(4), 491-503. https://doi.org/10.1016/j.cell.2009.12.050 Krogan, N. J., Kim, M., Ahn, S. H., Zhong, G., Kobor, M. S., Cagney, G., Emili, A., Shilatifard, A., Buratowski, S., & Greenblatt, J. F. (2002). RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol Cell Biol, 22(20), 6979-6992. https://doi.org/10.1128/mcb.22.20.6979-6992.2002 Kwon, S. C., Nguyen, T. A., Choi, Y. G., Jo, M. H., Hohng, S., Kim, V. N., & Woo, J. S. (2016). Structure of Human DROSHA. Cell, 164(1-2), 81-90. https://doi.org/10.1016/j.cell.2015.12.019 Lee, C. G., Eki, T., Okumura, K., Nogami, M., Soares Vda, C., Murakami, Y., Hanaoka, F., & Hurwitz, J. (1999). The human RNA helicase A (DDX9) gene maps to the prostate cancer susceptibility locus at chromosome band 1q25 and its pseudogene (DDX9P) to 13q22, respectively. Somat Cell Mol Genet, 25(1), 33-39. https://doi.org/10.1023/b:scam.0000007138.44216.3a Li, L. C. (2017). Small RNA-Guided Transcriptional Gene Activation (RNAa) in Mammalian Cells. Adv Exp Med Biol, 983, 1-20. https://doi.org/10.1007/978-981-10-4310-9_1 Li, L. C., Okino, S. T., Zhao, H., Pookot, D., Place, R. F., Urakami, S., Enokida, H., & Dahiya, R. (2006). Small dsRNAs induce transcriptional activation in human cells. Proc Natl Acad Sci U S A, 103(46), 17337-17342. https://doi.org/10.1073/pnas.0607015103 Liu, H., Lei, C., He, Q., Pan, Z., Xiao, D., & Tao, Y. (2018). Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer, 17(1), 64. https://doi.org/10.1186/s12943-018-0765-5 Liu, J., Carmell, M. A., Rivas, F. V., Marsden, C. G., Thomson, J. M., Song, J. J., Hammond, S. M., Joshua-Tor, L., & Hannon, G. J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305(5689), 1437-1441. https://doi.org/10.1126/science.1102513 MacRae, I. J., Zhou, K., & Doudna, J. A. (2007). Structural determinants of RNA recognition and cleavage by Dicer. Nat Struct Mol Biol, 14(10), 934-940. https://doi.org/10.1038/nsmb1293 Marton, H. A., & Desiderio, S. (2008). The Paf1 complex promotes displacement of histones upon rapid induction of transcription by RNA polymerase II. BMC Mol Biol, 9, 4. https://doi.org/10.1186/1471-2199-9-4 Matranga, C., Tomari, Y., Shin, C., Bartel, D. P., & Zamore, P. D. (2005). Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell, 123(4), 607-620. https://doi.org/10.1016/j.cell.2005.08.044 Mueller, C. L., & Jaehning, J. A. (2002). Ctr9, Rtf1, and Leo1 are components of the Paf1/RNA polymerase II complex. Mol Cell Biol, 22(7), 1971-1980. https://doi.org/10.1128/mcb.22.7.1971-1980.2002 Nakajima, T., Uchida, C., Anderson, S. F., Lee, C. G., Hurwitz, J., Parvin, J. D., & Montminy, M. (1997). RNA helicase A mediates association of CBP with RNA polymerase II. Cell, 90(6), 1107-1112. https://doi.org/10.1016/s0092-8674(00)80376-1 Nakanishi, K., Weinberg, D. E., Bartel, D. P., & Patel, D. J. (2012). Structure of yeast Argonaute with guide RNA. Nature, 486(7403), 368-374. https://doi.org/10.1038/nature11211 Neilsen, C. T., Goodall, G. J., & Bracken, C. P. (2012). IsomiRs--the overlooked repertoire in the dynamic microRNAome. Trends Genet, 28(11), 544-549. https://doi.org/10.1016/j.tig.2012.07.005 Nguyen, T. A., Jo, M. H., Choi, Y. G., Park, J., Kwon, S. C., Hohng, S., Kim, V. N., & Woo, J. S. (2015). Functional Anatomy of the Human Microprocessor. Cell, 161(6), 1374-1387. https://doi.org/10.1016/j.cell.2015.05.010 Okada, C., Yamashita, E., Lee, S. J., Shibata, S., Katahira, J., Nakagawa, A., Yoneda, Y., & Tsukihara, T. (2009). A high-resolution structure of the pre-microRNA nuclear export machinery. Science, 326(5957), 1275-1279. https://doi.org/10.1126/science.1178705 Park, J. E., Heo, I., Tian, Y., Simanshu, D. K., Chang, H., Jee, D., Patel, D. J., & Kim, V. N. (2011). Dicer recognizes the 5' end of RNA for efficient and accurate processing. Nature, 475(7355), 201-205. https://doi.org/10.1038/nature10198 Place, R. F., Noonan, E. J., Földes-Papp, Z., & Li, L. C. (2010). Defining features and exploring chemical modifications to manipulate RNAa activity. Curr Pharm Biotechnol, 11(5), 518-526. https://doi.org/10.2174/138920110791591463 Place, R. F., Wang, J., Noonan, E. J., Meyers, R., Manoharan, M., Charisse, K., Duncan, R., Huang, V., Wang, X., & Li, L. C. (2012). Formulation of Small Activating RNA Into Lipidoid Nanoparticles Inhibits Xenograft Prostate Tumor Growth by Inducing p21 Expression. Mol Ther Nucleic Acids, 1(3), e15. https://doi.org/10.1038/mtna.2012.5 Rand, T. A., Petersen, S., Du, F., & Wang, X. (2005). Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell, 123(4), 621-629. https://doi.org/10.1016/j.cell.2005.10.020 Ranji, A., Shkriabai, N., Kvaratskhelia, M., Musier-Forsyth, K., & Boris-Lawrie, K. (2011). Features of double-stranded RNA-binding domains of RNA helicase A are necessary for selective recognition and translation of complex mRNAs. J Biol Chem, 286(7), 5328-5337. https://doi.org/10.1074/jbc.M110.176339 Rondón, A. G., Gallardo, M., García-Rubio, M., & Aguilera, A. (2004). Molecular evidence indicating that the yeast PAF complex is required for transcription elongation. EMBO Rep, 5(1), 47-53. https://doi.org/10.1038/sj.embor.7400045 Schirle, N. T., & MacRae, I. J. (2012). The crystal structure of human Argonaute2. Science, 336(6084), 1037-1040. https://doi.org/10.1126/science.1221551 Schlegel, B. P., Starita, L. M., & Parvin, J. D. (2003). Overexpression of a protein fragment of RNA helicase A causes inhibition of endogenous BRCA1 function and defects in ploidy and cytokinesis in mammary epithelial cells. Oncogene, 22(7), 983-991. https://doi.org/10.1038/sj.onc.1206195 Schwartz, J. C., Younger, S. T., Nguyen, N. B., Hardy, D. B., Monia, B. P., Corey, D. R., & Janowski, B. A. (2008). Antisense transcripts are targets for activating small RNAs. Nat Struct Mol Biol, 15(8), 842-848. https://doi.org/10.1038/nsmb.1444 Tang, W., You, W., Shi, F., Qi, T., Wang, L., Djouder, Z., Liu, W., & Zeng, X. (2009). RNA helicase A acts as a bridging factor linking nuclear beta-actin with RNA polymerase II. Biochem J, 420(3), 421-428. https://doi.org/10.1042/bj20090402 Tian, Y., Simanshu, D. K., Ma, J. B., Park, J. E., Heo, I., Kim, V. N., & Patel, D. J. (2014). A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol Cell, 53(4), 606-616. https://doi.org/10.1016/j.molcel.2014.01.003 Tsutsumi, A., Kawamata, T., Izumi, N., Seitz, H., & Tomari, Y. (2011). Recognition of the pre-miRNA structure by Drosophila Dicer-1. Nat Struct Mol Biol, 18(10), 1153-1158. https://doi.org/10.1038/nsmb.2125 Turunen, M. P., Lehtola, T., Heinonen, S. E., Assefa, G. S., Korpisalo, P., Girnary, R., Glass, C. K., Väisänen, S., & Ylä-Herttuala, S. (2009). Efficient regulation of VEGF expression by promoter-targeted lentiviral shRNAs based on epigenetic mechanism: a novel example of epigenetherapy. Circ Res, 105(6), 604-609. https://doi.org/10.1161/circresaha.109.200774 Wang, X., Wang, J., Huang, V., Place, R. F., & Li, L. C. (2012). Induction of NANOG expression by targeting promoter sequence with small activating RNA antagonizes retinoic acid-induced differentiation. Biochem J, 443(3), 821-828. https://doi.org/10.1042/bj20111491 Wang, Y., Sheng, G., Juranek, S., Tuschl, T., & Patel, D. J. (2008). Structure of the guide-strand-containing argonaute silencing complex. Nature, 456(7219), 209-213. https://doi.org/10.1038/nature07315 Wilson, R., Ainscough, R., Anderson, K., Baynes, C., Berks, M., Bonfield, J., Burton, J., Connell, M., Copsey, T., Cooper, J., & et al. (1994). 2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans. Nature, 368(6466), 32-38. https://doi.org/10.1038/368032a0 Yue, X., Schwartz, J. C., Chu, Y., Younger, S. T., Gagnon, K. T., Elbashir, S., Janowski, B. A., & Corey, D. R. (2010). Transcriptional regulation by small RNAs at sequences downstream from 3' gene termini. Nat Chem Biol, 6(8), 621-629. https://doi.org/10.1038/nchembio.400 Zamore, P. D., Tuschl, T., Sharp, P. A., & Bartel, D. P. (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 101(1), 25-33. https://doi.org/10.1016/s0092-8674(00)80620-0 Zhang, S., & Grosse, F. (1994). Nuclear DNA helicase II unwinds both DNA and RNA. Biochemistry, 33(13), 3906-3912. https://doi.org/10.1021/bi00179a016 Zhang, S., & Grosse, F. (1997). Domain structure of human nuclear DNA helicase II (RNA helicase A). J Biol Chem, 272(17), 11487-11494. https://doi.org/10.1074/jbc.272.17.11487 Zhang, S., Schlott, B., Görlach, M., & Grosse, F. (2004). DNA-dependent protein kinase (DNA-PK) phosphorylates nuclear DNA helicase II/RNA helicase A and hnRNP proteins in an RNA-dependent manner. Nucleic Acids Res, 32(1), 1-10. https://doi.org/10.1093/nar/gkg933 Zhang, Y., Sikes, M. L., Beyer, A. L., & Schneider, D. A. (2009). The Paf1 complex is required for efficient transcription elongation by RNA polymerase I. Proc Natl Acad Sci U S A, 106(7), 2153-2158. https://doi.org/10.1073/pnas.0812939106 Liu, Z., Johnson, S. T., Zhang, Z., & Corey, D. R. (2019). Expression of TNRC6 (GW182) Proteins Is Not Necessary for Gene Silencing by Fully Complementary RNA Duplexes. Nucleic Acid Ther, 29(6), 323-334. https://doi.org/10.1089/nat.2019.0815 Ebert, M. S., & Sharp, P. A. (2010). MicroRNA sponges: progress and possibilities. Rna, 16(11), 2043-2050. https://doi.org/10.1261/rna.2414110
|