|
[1] K. G. Gassmann and R. Rupprecht, ‘Dizziness in an older community dwelling population: A multifactorial syndrome’, J. Nutr. Health Aging, vol. 13, no. 3, pp. 278–282, Mar. 2009, doi: 10.1007/s12603-009-0073-2. [2] E. Dannenbaum, N. Paquet, G. Chilingaryan, and J. Fung, ‘Clinical Evaluation of Dynamic Visual Acuity in Subjects With Unilateral Vestibular Hypofunction’, Otol. Neurotol., vol. 30, no. 3, pp. 368–372, Apr. 2009, doi: 10.1097/MAO.0b013e31819bda35. [3] S. J. Herdman, M. C. Schubert, V. E. Das, and R. J. Tusa, ‘Recovery of Dynamic Visual Acuity in Unilateral Vestibular Hypofunction’, Arch. Otolaryngol. Neck Surg., vol. 129, no. 8, p. 819, Aug. 2003, doi: 10.1001/archotol.129.8.819. [4] S. L. Hillier and M. McDonnell, ‘Vestibular rehabilitation for unilateral peripheral vestibular dysfunction’, in Cochrane Database of Systematic Reviews, The Cochrane Collaboration, Ed., Chichester, UK: John Wiley & Sons, Ltd, 2011, p. CD005397.pub3. doi: 10.1002/14651858.CD005397.pub3. [5] F. Joseph M, ‘Practical management of the balance disorder patient’, Audiol. Hamilt., vol. 36, no. 4, p. 237, Aug. 1997. [6] M. Strupp and T. Brandt, ‘Vestibular Neuritis’, Semin. Neurol., vol. 29, no. 05, pp. 509–519, Nov. 2009, doi: 10.1055/s-0029-1241040. [7] S. J. Herdman, C. D. Hall, M. C. Schubert, V. E. Das, and R. J. Tusa, ‘Recovery of Dynamic Visual Acuity in Bilateral Vestibular Hypofunction’, Arch. Otolaryngol. Neck Surg., vol. 133, no. 4, p. 383, Apr. 2007, doi: 10.1001/archotol.133.4.383. [8] H. S. Cohen, ‘Disability and rehabilitation in the dizzy patient’, Curr. Opin. Neurol., vol. 19, no. 1, pp. 49–54, Feb. 2006, doi: 10.1097/01.wco.0000194373.08203.33. [9] T. Cawthorne, ‘Vestibular Injuries’, Proc. R. Soc. Med., vol. 39, no. 5, pp. 270–273, Mar. 1946. [10] T. Cawthorne, ‘The physiological basis for head exercises’, Chart. Soc Physiothe, vol. 29, pp. 106–107, 1944. [11] F. Cooksey, ‘Physical medicine’, Practitione, vol. 155, pp. 300–305, 1945. [12] F. S. Cooksey, ‘Rehabilitation in Vestibular Injuries’, Proc. R. Soc. Med., vol. 39, no. 5, pp. 273–278, Mar. 1946. [13] H. C. Hecker, C. O. Haug, and J. W. Herndon, ‘Treatment of the vertiginous patient using cawthorne’s vestibular exercises: TREATMENT OF THE VERTIGINOUS PATIENT’, The Laryngoscope, vol. 84, no. 11, pp. 2065–2078, Nov. 1974, doi: 10.1002/lary.5540841121. [14] H. S. Song and J. S. Kim, ‘Vestibular Rehabilitation Therapy: Review of Indications, Mechanisms, and Key Exercises’, J. Clin. Neurol., vol. 7, no. 4, pp. 184–196, Dec. 2011, doi: 10.3988/jcn.2011.7.4.184. [15] E. Murray et al., ‘Evaluating Digital Health Interventions’, Am. J. Prev. Med., vol. 51, no. 5, pp. 843–851, Nov. 2016, doi: 10.1016/j.amepre.2016.06.008. [16] D. Meldrum et al., ‘Toward a Digital Health Intervention for Vestibular Rehabilitation: Usability and Subjective Outcomes of a Novel Platform’, Front. Neurol., vol. 13, p. 836796, Mar. 2022, doi: 10.3389/fneur.2022.836796. [17] S. J. Herdman, ‘Vestibular rehabilitation’:, Curr. Opin. Neurol., vol. 26, no. 1, pp. 96–101, Feb. 2013, doi: 10.1097/WCO.0b013e32835c5ec4. [18] R. A. Roller and C. D. Hall, ‘A speed-based approach to vestibular rehabilitation for peripheral vestibular hypofunction: A retrospective chart review’, J. Vestib. Res., vol. 28, no. 3–4, pp. 349–357, Nov. 2018, doi: 10.3233/VES-180633. [19] P.-Y. Chen, W.-L. Hsieh, S.-H. Wei, and C.-L. Kao, ‘Interactive wiimote gaze stabilization exercise training system for patients with vestibular hypofunction’, J. NeuroEngineering Rehabil., vol. 9, no. 1, p. 77, Dec. 2012, doi: 10.1186/1743-0003-9-77. [20] P. Hovareshti et al., ‘VestAid: A Tablet-Based Technology for Objective Exercise Monitoring in Vestibular Rehabilitation’, Sensors, vol. 21, no. 24, p. 8388, Dec. 2021, doi: 10.3390/s21248388. [21] S. Obdrzalek et al., ‘Accuracy and robustness of Kinect pose estimation in the context of coaching of elderly population’, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA: IEEE, Aug. 2012, pp. 1188–1193. doi: 10.1109/EMBC.2012.6346149. [22] P. Bonato, ‘Wearable Sensors and Systems’, IEEE Eng. Med. Biol. Mag., vol. 29, no. 3, pp. 25–36, May 2010, doi: 10.1109/MEMB.2010.936554. [23] S. C. Mukhopadhyay, ‘Wearable Sensors for Human Activity Monitoring: A Review’, IEEE Sens. J., vol. 15, no. 3, pp. 1321–1330, Mar. 2015, doi: 10.1109/JSEN.2014.2370945. [24] Y. Delahoz and M. Labrador, ‘Survey on Fall Detection and Fall Prevention Using Wearable and External Sensors’, Sensors, vol. 14, no. 10, pp. 19806–19842, Oct. 2014, doi: 10.3390/s141019806. [25] W. Tao, T. Liu, R. Zheng, and H. Feng, ‘Gait Analysis Using Wearable Sensors’, Sensors, vol. 12, no. 2, pp. 2255–2283, Feb. 2012, doi: 10.3390/s120202255. [26] L. Freeman, G. Gera, F. B. Horak, M. T. Blackinton, M. Besch, and L. King, ‘Instrumented Test of Sensory Integration for Balance: A Validation Study’, J. Geriatr. Phys. Ther., vol. 41, no. 2, pp. 77–84, Apr. 2018, doi: 10.1519/JPT.0000000000000110. [27] M. Ghislieri, L. Gastaldi, S. Pastorelli, S. Tadano, and V. Agostini, ‘Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review’, Sensors, vol. 19, no. 19, p. 4075, Sep. 2019, doi: 10.3390/s19194075. [28] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, ‘A review of wearable sensors and systems with application in rehabilitation’, J. NeuroEngineering Rehabil., vol. 9, no. 1, p. 21, Dec. 2012, doi: 10.1186/1743-0003-9-21. [29] L. Parrington, D. Jehu, P. Fino, S. Pearson, M. El-Gohary, and L. King, ‘Validation of an Inertial Sensor Algorithm to Quantify Head and Trunk Movement in Healthy Young Adults and Individuals with Mild Traumatic Brain Injury’, Sensors, vol. 18, no. 12, p. 4501, Dec. 2018, doi: 10.3390/s18124501. [30] C. J. Todd, P. P. Hubner, P. Hubner, M. C. Schubert, and A. A. Migliaccio, ‘StableEyes—A Portable Vestibular Rehabilitation Device’, IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 6, pp. 1223–1232, Jun. 2018, doi: 10.1109/TNSRE.2018.2834964. [31] D. Martini, N. Pettigrew, J. Wilhelm, L. Parrington, and L. King, ‘Wearable Sensors for Vestibular Rehabilitation: A Pilot Study’, vol. 5, Jul. 2021. [32] I. El Naqa and M. J. Murphy, ‘What Is Machine Learning?’, in Machine Learning in Radiation Oncology, I. El Naqa, R. Li, and M. J. Murphy, Eds., Cham: Springer International Publishing, 2015, pp. 3–11. doi: 10.1007/978-3-319-18305-3_1. [33] S. Rauschert, K. Raubenheimer, P. E. Melton, and R. C. Huang, ‘Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification’, Clin. Epigenetics, vol. 12, no. 1, p. 51, Dec. 2020, doi: 10.1186/s13148-020-00842-4. [34] C. J. C. Burges, ‘A Tutorial on Support Vector Machines for Pattern Recognition’, SUPPORT VECTOR Mach.. [35] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, 1st ed. Cambridge University Press, 2000. doi: 10.1017/CBO9780511801389. [36] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. The MIT Press, 2018. doi: 10.7551/mitpress/4175.001.0001. [37] C. Cortes and V. Vapnik, ‘Support-vector networks’, Mach. Learn., vol. 20, no. 3, pp. 273–297, Sep. 1995, doi: 10.1007/BF00994018. [38] N. S. Altman, ‘An Introduction to Kernel and Nearest-Neighbor Nonparametric Regression’, Am. Stat., vol. 46, no. 3, p. 175, Aug. 1992, doi: 10.2307/2685209. [39] T. Cover and P. Hart, ‘Nearest neighbor pattern classification’, IEEE Trans. Inf. Theory, vol. 13, no. 1, pp. 21–27, Jan. 1967, doi: 10.1109/TIT.1967.1053964. [40] L. Breiman, ‘Random Forests’, Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324. [41] A. Liaw and M. Wiener, ‘Classification and Regression by randomForest’, vol. 2, 2002. [42] T. Chen and T. He, ‘xgboost: eXtreme Gradient Boosting’. [43] T. Chen and C. Guestrin, ‘XGBoost: A Scalable Tree Boosting System’, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA: ACM, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785. [44] J. H. Friedman, ‘Greedy function approximation: A gradient boosting machine.’, Ann. Stat., vol. 29, no. 5, Oct. 2001, doi: 10.1214/aos/1013203451. [45] ‘Mobility Lab User Guide’. APDM Inc., Nov. 2020. [Online]. Available: https://share.apdm.com/documentation/MobilityLabUserGuide.pdf [46] C.-C. Liu, K.-C. Ting, C.-Y. Hsieh, K.-C. Liu, and C.-T. Chan, ‘Wearable-based Vestibular Rehabilitation Monitoring Syste’, presented at the Global Conference on Biomedical Engineering (GCBME), Taiwan, Dec. 2022. [47] D. C. Montgomery, ‘Design and Analysis of Experiments’. [48] A. Bulling, U. Blanke, and B. Schiele, ‘A tutorial on human activity recognition using body-worn inertial sensors’, ACM Comput. Surv., vol. 46, no. 3, pp. 1–33, Jan. 2014, doi: 10.1145/2499621. [49] D. Berrar, ‘Cross-Validation’, in Encyclopedia of Bioinformatics and Computational Biology, Elsevier, 2019, pp. 542–545. doi: 10.1016/B978-0-12-809633-8.20349-X. [50] P. E. Taylor, G. J. M. Almeida, J. K. Hodgins, and T. Kanade, ‘Multi-label classification for the analysis of human motion quality’, in 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA: IEEE, Aug. 2012, pp. 2214–2218. doi: 10.1109/EMBC.2012.6346402.
|