|
[1] 陳學仕, “量子點簡介,” 工研院化工所, 化工資訊Chem Net奈米專欄, Sep. 2002. [2] V.V. Pokropivny, V.V. Skorokhod, “Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science,” Materials Science and Engineering., C 27 (2007), pp. 990-993, Oct. 2006. [3] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots.” Science., vol. 271, pp. 933-937, Feb 1996. [4] D. Sumanth Kumar, B. Jai Kumar and H.M. Mahesh, Chapter 3 – Quantum Nanostructures (QDs): An Overview., Woodhead Publishing, 2018. [5] 陳政安, 蘇子森, “鈣鈦礦太陽能電池中鈣鈦礦薄膜鈍化研究.” 台灣化學工程學會., vol. 68, no. 4, pp. 60-75, 2021. [6] E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey and L. Dou, “Two-dimensional halide perovskite nanomaterials and heterostructures,” Chemical Society Reviews., vol. 47, no. 16, pp. 6046-6072, 2018. [7] D. N. Minh, J. Kim, J. Hyon, J. H. Sim, H. H. Sowlih, C. Seo, J. Nam, S. Eom, S. Suk, S. Lee, E. Kim, and Y. Kang, “Room-Temperature Synthesis of Widely Tunable Formamidinium Lead Halide Perovskite Nanocrystals.” Chemistry of Materials,, vol. 29, no. 13, pp. 5713-5719, Jun. 2017. [8] S. W. Dai, B. W. Hsu, C. Y. Chen, C. A. Lee, H. Y. Liu, H. F. Wang, Y. C. Huang, T. L. Wu, A. Manikandan, R. M. Ho, C. S. Tsao, C. H. Cheng, Y. L. Chueh, H. W Lin, “Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis.” Advanced Materials., vol. 30, no. 7, pp. 1705532, 2018. [9] L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto, “Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles.” Journal of the American Chemical Society., vol. 136, no. 3, pp. 850-853, Jan. 2014. [10] F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, “Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.” ACS Nano., vol. 9, no. 4, pp. 4533-4542, Mar. 2015. [11] C. P. Schaller, Physical Chemistry for the Biosciences. Vol. 14.7, LibreTexts Textmap, 2020. [12] 劉瑞祥, 感光性高分子, 2nd ed. 台南, 復文書局, 1998. [13] 林建中, 應用高分子化學, 1st ed. 台北, 高立圖書有限公司, 1982. [14] Sigma-Aldrich. Poly(vinyl cinnamate), [Online]. Available: https://www.sigmaaldrich.com/TW/en/product/aldrich/182648. [15] A. Ravve, Light-Associated Reactions of Synthetic Polymers, 1st ed. vol. 4, New York, Springer, 2006. [16] I. Assaid, D. Bosc, I. Hardy, “Improvements of the Poly(vinyl cinnamate) Photoresponse in Order to Induce High Refractive Index Variations.” The Journal of Physical Chemistry B., vol. 108, no. 9, pp. 2801-2806, Feb. 2004. [17] M. M. Coleman, Y. Hu, M. Sobkowiak, P. C. Painter, “Infrared characterization of poly(vinyl cinnamate) and its blends with poly(4-vinyl phenol) before and after UV exposure.” Polymer Physics., vol. 36, no.9, pp. 1579-1590, Jul. 1998. [18] T. Y. Lee, L. Y. Chen, Y. Y. Lo, S. S. Swayamprabha, A. Kumar, Y. M. Huang, S. C. Chen, H. W. Zan, F. C. Chen, R. H. Horng, H. C. Kuo, “Technology and Applications of Micro-LEDs: Their Characteristics, Fabrication, Advancement, and Challenges.” ACS Photonics., vol. 9, no. 9, pp. 2905-2930, Aug. 2022. [19] Y. Yin, Z. Hu, M. U. Ali, M. Duan, L. Gao, M. Liu, W. Peng, J. Geng, S. Pan, Y. Wu, J. Hou, J. Fan, D. Li, X. Zhang, H. Meng, “Full-Color Micro-LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers.” Advanced Materials Technologies., vol. 5, no. 8, pp. 2000251, Aug. 2020. [20] J. Yang, D. Hahm, K. Kim, S. Rhee, M. Lee, S. Kim, J. H. Chang, H. W. Park, J. Lim, M. Lee, H. Kim, J. Bang, H. Ahn, J. H. Cho, J. Kwak, BongSoo Kim, C. Lee, W. K.Bae, M. S. Kang, “High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking.” Nature Communications., vol. 11, no. 2874, Jun 2020. [21] J. Ko, J. H. Chang, B. G. Jeong, H. J. Kim, J. F. Joung, S. Park, D. H. Choi, W. K. Bae, J. Bang, “Direct Photolithographic Patterning of Colloidal Quantum Dots Enabled by UV-Crosslinkable and Hole-Transporting Polymer Ligands.” ACS Applied Materials and Interfaces., vol. 12, no. 37, pp. 42153-42160, Aug. 2020. [22] Cheng-Han Sung, “Perovskite Quantum Dots with Highly Luminescent Efficiencies for Light-Emitting Applications.” M.S. thesis, Dept. DOP, NYCU, Taiwan, 2021.. [23] A. Perumal, S. Shendre, M. Li, Y. K. Eugene Tay, V. K. Sharma, S. Chen, Z. Wei, Q. Liu, Y. Gao, P. John S. Buenconsejo, S. T. Tan, C. L. Gan, Q. Xiong, T. C. Sum, H. V. Demir, “High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices.” Scientific Report., vol. 6, pp. 26733, Nov. 2016. [24] Ye Zhou, Yan Wang, Perovskite Quantum Dots: Synthesis, Properties and Applications. 1st ed. vol.303, New York, Springer, 2020. [25] Ossila. Formamidinium Bromide, [Online]. Available: https://www.ossila.com/products/formamidinium-bromide-fabr [26] LookChem. Lead(II) bromide, [Online]. Available: https://www.lookchem.com/Lead-II-bromide/ [27] Sigma-Aldrich. N,N-Dimethylformamide, [Online]. Available: https://www.sigmaaldrich.com/TW/en/substance/nndimethylformamide730968122 [28] Sigma-Aldrich. Toluene, [Online]. Available: https://www.sigmaaldrich.com/TW/en/substance/toluene9214108883 [29] Study.com. Acetonitrile, [Online]. Available: https://study.com/learn/lesson/acetonitrile.html [30] Sigma-Aldrich. Oleic acid, [Online]. Available: https://www.sigmaaldrich.com/TW/en/substance/oleicacid28246112801 [31] TCI. n-Octylamine, [Online]. Available: https://www.tcichemicals.com/TW/zh_TW/p/O0045 [32] Sigma-Aldrich. Oleylamine, [Online]. Available: https://www.sigmaaldrich.com/TW/en/substance/oleylamine26749112903 [33] Sigma-Aldrich. Propylene glycol monomethyl ether acetate, [Online]. Available https://www.sigmaaldrich.com/TW/en/product/sial/484431 [34] 馮世維, Electro-Optical Lab. (C02-512-1), 國立高雄大學應用物理系, [Online]. Available: https://ap.nuk.edu.tw/p/412-1020-130.php?Lang=zh-tw. [35] 盧錫全, UV/VIS/NIR spectrometers, Center of EMO Materials and nanotechnology, National Taipei University of Technology, [Online]. Available: https://myweb.ntut.edu.tw/~wwwemo/instrument_manual/ultraviolet.htm. [36] 盧錫全, FT-IR Analysis, Center of EMO Materials and nanotechnology, National Taipei University of Technology, [Online]. Available: https://myweb.ntut.edu.tw/~wwwemo/instrument_manual/FTIR.html. [37] 翁于婷, 紅外線光譜(infrared spectroscopy), [Online]. Available: https://highscope.ch.ntu.edu.tw/wordpress/?p=63872. [38] J. R. MOHRIG, C. N. HAMMOND, P. F. SCHATZ, Techniques in Organic Chemistry, 3th ed. New York: W. H. Freeman and Company, 2010. [39] 洪連輝, 穿透式電子顯微鏡 (Transmission Electron Microscopy:TEM), [Online]. Available: https://highscope.ch.ntu.edu.tw/wordpress/?p=1599. [40] Wikipedia, Transmission electron microscopy, [Online]. Available: https://en.wikipedia.org/wiki/Transmission_electron_microscopy. [41] Wikipedia, Scanning electron microscope, [Online]. Available: https://en.wikipedia.org/wiki/Scanning_electron_microscope. [42] Wi Tec, AFM, [Online]. Available: https://raman.oxinst.com/techniques/scanning-probe-microscopy. [43] H. Huang, Jo. Raith, S. V. Kershaw, S. Kalytchuk, O. Tomanec, L. Jing, A. S. Susha, R. Zboril, A. L. Rogach, “Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap.” Nature Communications, vol.8, no. 996, Oct. 2017.
|