跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐子又
研究生(外文):Hsu, Tzu-Yu
論文名稱:有機無機混成鈣鈦礦量子點之配體工程與發光元件之應用
論文名稱(外文):Ligand Engineering of Organic-Inorganic Hybrid Perovskite Quantum Dots and their Light-Emitting Applications
指導教授:陳方中陳方中引用關係
指導教授(外文):Chen, Fang-Chung
口試委員:郭浩中林建中鄭彥如
口試委員(外文):Kuo, Hao-ChungLin, Chien-ChungCheng, Yen-Ju
口試日期:2022-10-31
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:70
中文關鍵詞:鈣鈦礦量子點配體輔助再沈澱法配體可光圖形化微發光二極體
外文關鍵詞:Perovskite quantum dotLigand-assisted re-precipitation (LARP)LigandPhotopatternableMicro-light-emitting diodes (μLEDs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要..........................................................................................................................................i
Abstract............................................................................................................................................ii
誌謝.................................................................................................................................................iv
目錄.................................................................................................................................................vi
圖目錄.............................................................................................................................................ix
表目錄...........................................................................................................................................xii
Chapter 1 Introduction and Theory 理論介紹.......................................................................1
1.1 奈米材料................................................................................................................1
1.2 量子點簡介............................................................................................................3
1.2.1量子穿隧效應...........................................................................................3
1.2.2量子尺寸效應...........................................................................................3
1.2.3量子侷限效應...........................................................................................4
1.3 鈣鈦礦材料............................................................................................................6
1.4 量子點合成.........................................................................................................10
1.5 螢光發光機制.....................................................................................................12
1.6 光交聯高分子.....................................................................................................13
1.7 微發光二極體(micro-LED)及其應用....................................................18
1.8 研究動機..............................................................................................................21
Chapter 2 Experiment Setup 實驗裝置.................................................................................22
2.1 實驗材料..............................................................................................................22
2.2 製程儀器..............................................................................................................26
2.3 FAPbBr3 (OAm Capped)鈣鈦礦量子點合成..............................................29
2.4 FAPbBr3鈣鈦礦量子點混PVCN圖案化製程..........................................31
2.5 量測儀器..............................................................................................................33
Chapter 3 Result and Discussion 結果與討論.....................................................................42
3.1 FAPbBr3 (OAm Capped)鈣鈦礦量子點性質分析.....................................42
3.1.1 FAPbBr3 (OAm Capped)的PL和吸收光譜...................................42
3.1.2 固定油酸和固定油胺之TRPL頻譜與數據分析.........................49 3.1.3 FAPbBr3 的TEM攝像..................................................................................51
3.2 FAPbBr3鈣鈦礦量子點混PVCN薄膜性質分析......................................54
3.2.1 大尺寸特殊圖案化...............................................................................54
3.2.2 小尺寸特殊圖案化...............................................................................56
3.2.3 AFM/SEM表面量測............................................................................58
3.2.4 FAPbBr3鈣鈦礦量子點混PVCN的吸收光譜和傅立 葉轉換紅外光譜.......................................................................................................61
3.2.5 穩定度測試.............................................................................................63
Chapter 4 Conclusion 結論......................................................................................................65
Chapter 5 Reference 參考資料...............................................................................................66
[1] 陳學仕, “量子點簡介,” 工研院化工所, 化工資訊Chem Net奈米專欄, Sep. 2002.
[2] V.V. Pokropivny, V.V. Skorokhod, “Classification of nanostructures by dimensionality and concept of surface forms engineering in nanomaterial science,” Materials Science and Engineering., C 27 (2007), pp. 990-993, Oct. 2006.
[3] A. P. Alivisatos, “Semiconductor clusters, nanocrystals, and quantum dots.” Science., vol. 271, pp. 933-937, Feb 1996.
[4] D. Sumanth Kumar, B. Jai Kumar and H.M. Mahesh, Chapter 3 – Quantum Nanostructures (QDs): An Overview., Woodhead Publishing, 2018.
[5] 陳政安, 蘇子森, “鈣鈦礦太陽能電池中鈣鈦礦薄膜鈍化研究.” 台灣化學工程學會., vol. 68, no. 4, pp. 60-75, 2021.
[6] E. Shi, Y. Gao, B. P. Finkenauer, Akriti, A. H. Coffey and L. Dou, “Two-dimensional halide perovskite nanomaterials and heterostructures,” Chemical Society Reviews., vol. 47, no. 16, pp. 6046-6072, 2018.
[7] D. N. Minh, J. Kim, J. Hyon, J. H. Sim, H. H. Sowlih, C. Seo, J. Nam, S. Eom, S. Suk, S. Lee, E. Kim, and Y. Kang, “Room-Temperature Synthesis of Widely Tunable Formamidinium Lead Halide Perovskite Nanocrystals.” Chemistry of Materials,, vol. 29, no. 13, pp. 5713-5719, Jun. 2017.
[8] S. W. Dai, B. W. Hsu, C. Y. Chen, C. A. Lee, H. Y. Liu, H. F. Wang, Y. C. Huang, T. L. Wu, A. Manikandan, R. M. Ho, C. S. Tsao, C. H. Cheng, Y. L. Chueh, H. W Lin, “Perovskite Quantum Dots with Near Unity Solution and Neat-Film Photoluminescent Quantum Yield by Novel Spray Synthesis.” Advanced Materials., vol. 30, no. 7, pp. 1705532, 2018.
[9] L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. M. Espallargas, H. J. Bolink, R. E. Galian, J. Pérez-Prieto, “Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles.” Journal of the American Chemical Society., vol. 136, no. 3, pp. 850-853, Jan. 2014.
[10] F. Zhang, H. Zhong, C. Chen, X. G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, “Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology.” ACS Nano., vol. 9, no. 4, pp. 4533-4542, Mar. 2015.
[11] C. P. Schaller, Physical Chemistry for the Biosciences. Vol. 14.7, LibreTexts Textmap, 2020.
[12] 劉瑞祥, 感光性高分子, 2nd ed. 台南, 復文書局, 1998.
[13] 林建中, 應用高分子化學, 1st ed. 台北, 高立圖書有限公司, 1982.
[14] Sigma-Aldrich. Poly(vinyl cinnamate), [Online]. Available: https://www.sigmaaldrich.com/TW/en/product/aldrich/182648.
[15] A. Ravve, Light-Associated Reactions of Synthetic Polymers, 1st ed. vol. 4, New York, Springer, 2006.
[16] I. Assaid, D. Bosc, I. Hardy, “Improvements of the Poly(vinyl cinnamate) Photoresponse in Order to Induce High Refractive Index Variations.” The Journal of Physical Chemistry B., vol. 108, no. 9, pp. 2801-2806, Feb. 2004.
[17] M. M. Coleman, Y. Hu, M. Sobkowiak, P. C. Painter, “Infrared characterization of poly(vinyl cinnamate) and its blends with poly(4-vinyl phenol) before and after UV exposure.” Polymer Physics., vol. 36, no.9, pp. 1579-1590, Jul. 1998.
[18] T. Y. Lee, L. Y. Chen, Y. Y. Lo, S. S. Swayamprabha, A. Kumar, Y. M. Huang, S. C. Chen, H. W. Zan, F. C. Chen, R. H. Horng, H. C. Kuo, “Technology and Applications of Micro-LEDs: Their Characteristics, Fabrication, Advancement, and Challenges.” ACS Photonics., vol. 9, no. 9, pp. 2905-2930, Aug. 2022.
[19] Y. Yin, Z. Hu, M. U. Ali, M. Duan, L. Gao, M. Liu, W. Peng, J. Geng, S. Pan, Y. Wu, J. Hou, J. Fan, D. Li, X. Zhang, H. Meng, “Full-Color Micro-LED Display with CsPbBr3 Perovskite and CdSe Quantum Dots as Color Conversion Layers.” Advanced Materials Technologies., vol. 5, no. 8, pp. 2000251, Aug. 2020.
[20] J. Yang, D. Hahm, K. Kim, S. Rhee, M. Lee, S. Kim, J. H. Chang, H. W. Park, J. Lim, M. Lee, H. Kim, J. Bang, H. Ahn, J. H. Cho, J. Kwak, BongSoo Kim, C. Lee, W. K.Bae, M. S. Kang, “High-resolution patterning of colloidal quantum dots via non-destructive, light-driven ligand crosslinking.” Nature Communications., vol. 11, no. 2874, Jun 2020.
[21] J. Ko, J. H. Chang, B. G. Jeong, H. J. Kim, J. F. Joung, S. Park, D. H. Choi, W. K. Bae, J. Bang, “Direct Photolithographic Patterning of Colloidal Quantum Dots Enabled by UV-Crosslinkable and Hole-Transporting Polymer Ligands.” ACS Applied Materials and Interfaces., vol. 12, no. 37, pp. 42153-42160, Aug. 2020.
[22] Cheng-Han Sung, “Perovskite Quantum Dots with Highly Luminescent Efficiencies for Light-Emitting Applications.” M.S. thesis, Dept. DOP, NYCU, Taiwan, 2021..
[23] A. Perumal, S. Shendre, M. Li, Y. K. Eugene Tay, V. K. Sharma, S. Chen, Z. Wei, Q. Liu, Y. Gao, P. John S. Buenconsejo, S. T. Tan, C. L. Gan, Q. Xiong, T. C. Sum, H. V. Demir, “High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices.” Scientific Report., vol. 6, pp. 26733, Nov. 2016.
[24] Ye Zhou, Yan Wang, Perovskite Quantum Dots: Synthesis, Properties and Applications. 1st ed. vol.303, New York, Springer, 2020.
[25] Ossila. Formamidinium Bromide, [Online]. Available:
https://www.ossila.com/products/formamidinium-bromide-fabr
[26] LookChem. Lead(II) bromide, [Online]. Available: https://www.lookchem.com/Lead-II-bromide/
[27] Sigma-Aldrich. N,N-Dimethylformamide, [Online]. Available: https://www.sigmaaldrich.com/TW/en/substance/nndimethylformamide730968122
[28] Sigma-Aldrich. Toluene, [Online]. Available: https://www.sigmaaldrich.com/TW/en/substance/toluene9214108883
[29] Study.com. Acetonitrile, [Online]. Available: https://study.com/learn/lesson/acetonitrile.html
[30] Sigma-Aldrich. Oleic acid, [Online]. Available: https://www.sigmaaldrich.com/TW/en/substance/oleicacid28246112801
[31] TCI. n-Octylamine, [Online]. Available: https://www.tcichemicals.com/TW/zh_TW/p/O0045
[32] Sigma-Aldrich. Oleylamine, [Online]. Available: https://www.sigmaaldrich.com/TW/en/substance/oleylamine26749112903
[33] Sigma-Aldrich. Propylene glycol monomethyl ether acetate, [Online]. Available https://www.sigmaaldrich.com/TW/en/product/sial/484431
[34] 馮世維, Electro-Optical Lab. (C02-512-1), 國立高雄大學應用物理系, [Online]. Available: https://ap.nuk.edu.tw/p/412-1020-130.php?Lang=zh-tw.
[35] 盧錫全, UV/VIS/NIR spectrometers, Center of EMO Materials and nanotechnology, National Taipei University of Technology, [Online]. Available: https://myweb.ntut.edu.tw/~wwwemo/instrument_manual/ultraviolet.htm.
[36] 盧錫全, FT-IR Analysis, Center of EMO Materials and nanotechnology, National Taipei University of Technology, [Online]. Available: https://myweb.ntut.edu.tw/~wwwemo/instrument_manual/FTIR.html.
[37] 翁于婷, 紅外線光譜(infrared spectroscopy), [Online]. Available: https://highscope.ch.ntu.edu.tw/wordpress/?p=63872.
[38] J. R. MOHRIG, C. N. HAMMOND, P. F. SCHATZ, Techniques in Organic Chemistry, 3th ed. New York: W. H. Freeman and Company, 2010.
[39] 洪連輝, 穿透式電子顯微鏡 (Transmission Electron Microscopy:TEM), [Online]. Available: https://highscope.ch.ntu.edu.tw/wordpress/?p=1599.
[40] Wikipedia, Transmission electron microscopy, [Online]. Available: https://en.wikipedia.org/wiki/Transmission_electron_microscopy.
[41] Wikipedia, Scanning electron microscope, [Online]. Available: https://en.wikipedia.org/wiki/Scanning_electron_microscope.
[42] Wi Tec, AFM, [Online]. Available: https://raman.oxinst.com/techniques/scanning-probe-microscopy.
[43] H. Huang, Jo. Raith, S. V. Kershaw, S. Kalytchuk, O. Tomanec, L. Jing, A. S. Susha, R. Zboril, A. L. Rogach, “Growth mechanism of strongly emitting CH3NH3PbBr3 perovskite nanocrystals with a tunable bandgap.” Nature Communications, vol.8, no. 996, Oct. 2017.
電子全文 電子全文(網際網路公開日期:20251117)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top