跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/13 21:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱妤婕
研究生(外文):Chiou, Yu-Jie
論文名稱:製備具崩塌性質的幾丁聚醣/玻尿酸鈉/金複合膜並應用於可控制藥物釋放的傷口敷料
論文名稱(外文):Fabrication of composite chitosan/sodium hyaluronate/Au films with collapse properties for controlled drug release in wound dressing
指導教授:吳樸偉
指導教授(外文):Wu, Pu-Wei
口試委員:吳樸偉林宏洲陳俊太
口試委員(外文):Wu, Pu-WeiLin, Hong-CheuChen, Jiun-Tai
口試日期:2022-12-06
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系奈米科技碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:英文
論文頁數:79
中文關鍵詞:幾丁聚醣水膠幾丁聚醣複合薄膜玻尿酸凝膠化崩塌可控制藥物釋放
外文關鍵詞:chitosan hydrogelschitosan composite filmhyaluronic acidgoldgelationcollapsecontrolled drug release
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Acknowledgement..........................................I
摘 要.................................................II
Abstract.................................................IV
Table of Contents........................................VII
List of Tables...........................................IX
List of Figures..........................................XI
Chapter 1 Introduction.................................1
1.1 Background....................................1
1.2 Motivation....................................10
1.3 Literature Review.............................12
Chapter 2 Experimental.................................23
2.1 Materials and method..........................23
2.2 Materials characterization....................31
2.3 Drug release studies..........................33
Chapter 3 Results and Discussion.......................36
3.1 Sol-gel transition in CHI cross-linked by
metallic ions.................................36
3.2 Fabrication of composite CHI/Au films with
“collapse” properties.........................41
3.3 Fabrication of composite CHI/SH/Au films......62
3.4 Drug release of composite CHI/Au/DIf and
CHI/SH/Au/DIf films...........................68
Chapter 4 Conclusion...................................70
References...............................................71
[1] M. Rinaudo, Chitin and chitosan: properties and applications, Progress in Polymer Science, 31 (2006) 603-632.
[2] D. Klemm, F. Kramer, S. Moritz, T. Lindstrom, M. Ankerfors, D. Gray, A. Dorris, Nanocelluloses: a new family of nature-based materials, Angewandte Chemie International Edition, 50 (2011) 5438-5466.
[3] E. Šárka, V. Dvořáček, New processing and applications of waxy starch (a review), Journal of Food Engineering, 206 (2017) 77-87.
[4] M.-J. Jeong, K.-Y. Kang, M. Bacher, H.-J. Kim, B.-M. Jo, A. Potthast, Deterioration of ancient cellulose paper, Hanji: evaluation of paper permanence, Cellulose, 21 (2014) 4621-4632.
[5] A. Geissler, F. Loyal, M. Biesalski, K. Zhang, Thermo-responsive superhydrophobic paper using nanostructured cellulose stearoyl ester, Cellulose, 21 (2014) 357-366.
[6] C. Felgueiras, N.G. Azoia, C. Goncalves, M. Gama, F. Dourado, Trends on the cellulose-based textiles: raw materials and technologies, Frontiers in Bioengineering and Biotechnology, 9 (2021) 608826.
[7] E. Avcu, F.E. Baştan, H.Z. Abdullah, M.A.U. Rehman, Y.Y. Avcu, A.R. Boccaccini, Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: a review, Progress in Materials Science, 103 (2019) 69-108.
[8] I. Hamed, F. Özogul, J.M. Regenstein, Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review, Trends in Food Science & Technology, 48 (2016) 40-50.
[9] X. Zhang, J. Yuan, F. Li, J. Xiang, Chitin synthesis and degradation in crustaceans: a genomic view and application, Marine drugs, 19 (2021) 153.
[10] D. Zhou, L. Zhang, J. Zhou, S. Guo, Cellulose/chitin beads for adsorption of heavy metals in aqueous solution, Water Research, 38 (2004) 2643-2650.
[11] D. Zhou, L. Zhang, S. Guo, Mechanisms of lead biosorption on cellulose/chitin beads, Water Research, 39 (2005) 3755-3762.
[12] K.D. Trimukhe, A.J. Varma, Complexation of heavy metals by crosslinked chitin and its deacetylated derivatives, Carbohydrate Polymers, 71 (2008) 66-73.
[13] M.N.R. Kumar, A review of chitin and chitosan applications, Reactive and functional polymers, 46 (2000) 1-27.
72
[14] M. Khajavian, V. Vatanpour, R. Castro-Munoz, G. Boczkaj, Chitin and derivative chitosan-based structures—preparation strategies aided by deep eutectic solvents: a review, Carbohydrate Polymers, 275 (2022) 118702.
[15] C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation, Progress in Polymer Science, 34 (2009) 641-678.
[16] M. Dash, F. Chiellini, R.M. Ottenbrite, E. Chiellini, Chitosan—a versatile semi-synthetic polymer in biomedical applications, Progress in Polymer Science, 36 (2011) 981-1014.
[17] A. Domard, M. Rinaudo, Preparation and characterization of fully deacetylated chitosan, International Journal of Biological Macromolecules, 5 (1983) 49-52.
[18] F. Croisier, C. Jérôme, Chitosan-based biomaterials for tissue engineering, European Polymer Journal, 49 (2013) 780-792.
[19] Z. Khan, Chitosan capped Au@Pd@Ag trimetallic nanoparticles: synthesis, stability, capping action and adsorbing activities, International Journal of Biological Macromolecules, 153 (2020) 545-560.
[20] M. Zhang, F. Zhang, C. Li, H. An, T. Wan, P. Zhang, Application of chitosan and its derivative polymers in clinical medicine and agriculture, Polymers, 14 (2022) 958.
[21] L. Sun, Y. Du, L. Fan, X. Chen, J. Yang, Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap, Polymer, 47 (2006) 1796-1804.
[22] R.F. Bombaldi de Souza, F.C. Bombaldi de Souza, A. Thorpe, D. Mantovani, K.C. Popat, A.M. Moraes, Phosphorylation of chitosan to improve osteoinduction of chitosan/xanthan-based scaffolds for periosteal tissue engineering, International Journal of Biological Macromolecules, 143 (2020) 619-632.
[23] M. Zhao, Z. Huang, S. Wang, L. Zhang, Ultrahigh efficient and selective adsorption of Au(III) from water by novel chitosan-coated MoS2 biosorbents: performance and mechanisms, Chemical Engineering Journal, 401 (2020) 126006.
[24] V. Sencadas, D.M. Correia, C. Ribeiro, S. Moreira, G. Botelho, J.L. Gómez Ribelles, S. Lanceros-Mendez, Physical-chemical properties of cross-linked chitosan electrospun fiber mats, Polymer Testing, 31 (2012) 1062-1069.
[25] J.D. Schiffman, C.L. Schauer, Cross-linking chitosan nanofibers, Biomacromolecules, 8 (2007) 594-601.
[26] M.L. Pita-López, G. Fletes-Vargas, H. Espinosa-Andrews, R. Rodriguez-Rodriguez,
73
Physically cross-linked chitosan-based hydrogels for tissue engineering applications: a state-of-the-art review, European Polymer Journal, 145 (2021) 110176.
[27] A.S. Hoffman, Hydrogels for biomedical applications, Advanced Drug Delivery Reviews, 54 (2002) 3-12.
[28] F. Ullah, M.B. Othman, F. Javed, Z. Ahmad, H. Md Akil, Classification, processing and application of hydrogels: a review, Materials Science and Engineering: C, 57 (2015) 414-433.
[29] E. Guibal, Interactions of metal ions with chitosan-based sorbents: a review, Separation and purification technology, 38 (2004) 43-74.
[30] C. Hwang, Y. Min, Y.J. Seong, D.E. Kim, H.E. Kim, S.H. Jeong, Enhanced biolubrication on biomedical devices using hyaluronic acid-silica nanohybrid hydrogels, Colloids and Surfaces B: Biointerfaces, 184 (2019) 110503.
[31] L.A. Perez, R. Hernandez, J.M. Alonso, R. Perez-Gonzalez, V. Saez-Martinez, Hyaluronic acid hydrogels crosslinked in physiological conditions: synthesis and biomedical applications, Biomedicines, 9 (2021) 1113.
[32] H.V. Le, D. Le Cerf, Colloidal polyelectrolyte complexes from hyaluronic acid: preparation and biomedical applications, Small, (2022) 2204283.
[33] A. Yasin, Y. Ren, J. Li, Y. Sheng, C. Cao, K. Zhang, Advances in hyaluronic acid for biomedical applications, Frontiers in Bioengineering and Biotechnology, 10 (2022) 910290.
[34] R.C. Gupta, R. Lall, A. Srivastava, A. Sinha, Hyaluronic acid: molecular mechanisms and therapeutic trajectory, Frontiers in Veterinary Science, 6 (2019) 192.
[35] I. Silvestro, M. Lopreiato, A. Scotto d'Abusco, V. Di Lisio, A. Martinelli, A. Piozzi, I. Francolini, Hyaluronic acid reduces bacterial fouling and promotes fibroblasts’ adhesion onto chitosan 2D-wound dressings, International Journal of Molecular Sciences, 21 (2020) 2070.
[36] L. Jin, R. Bai, Mechanisms of lead adsorption on chitosan/PVA hydrogel beads, Langmuir, 18 (2002) 9765-9770.
[37] S.C. Boca, M. Potara, F. Toderas, O. Stephan, P.L. Baldeck, S. Astilean, Uptake and biological effects of chitosan-capped gold nanoparticles on Chinese Hamster Ovary cells, Materials Science and Engineering: C, 31 (2011) 184-189.
[38] A.J. Varma, S.V. Deshpande, J.F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydrate Polymers, 55 (2004) 77-93.
74
[39] Z. Sun, F. Lv, L. Cao, L. Liu, Y. Zhang, Z. Lu, Multistimuli-responsive, moldable supramolecular hydrogels cross-linked by ultrafast complexation of metal ions and biopolymers, Angewandte Chemie International Edition, 54 (2015) 7944-7948.
[40] J. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresource Technology, 160 (2014) 129-141.
[41] A. Sugunan, C. Thanachayanont, J. Dutta, J.G. Hilborn, Heavy-metal ion sensors using chitosan-capped gold nanoparticles, Science and Technology of Advanced Materials, 6 (2005) 335-340.
[42] W. Kaminski, E. Tomczak, K. Jaros, Interactions of metal ions sorbed on chitosan beads, Desalination, 218 (2008) 281-286.
[43] M.J. Hortigüela, I. Aranaz, M.C. Gutierrez, M.L. Ferrer, F. del Monte, Chitosan gelation induced by the in situ formation of gold nanoparticles and its processing into macroporous scaffolds, Biomacromolecules, 12 (2011) 179–186.
[44] R. Chen, Q. Chen, D. Huo, Y. Ding, Y. Hu, X. Jiang, In situ formation of chitosan-gold hybrid hydrogel and its application for drug delivery, Colloids and Surfaces B: Biointerfaces, 97 (2012) 132-137.
[45] R.P. Ramasamy, S.M. Maliyekkal, Formation of gold nanoparticles upon chitosan leading to formation and collapse of gels, New Journal of Chemistry, 38 (2014) 63-69.
[46] B. Mutharani, P. Ranganathan, S.M. Chen, Chitosan-gold collapse gel/poly(bromophenol blue) redox-active film. A perspective for selective electrochemical sensing of flutamide, International Journal of Biological Macromolecules, 124 (2019) 759-770.
[47] M. Stefan, V. Melnig, D. Pricop, A. Neagu, M. Mihasan, L. Tartau, L. Hritcu, Attenuated effects of chitosan-capped gold nanoparticles on LPS-induced toxicity in laboratory rats, Materials Science and Engineering: C, 33 (2013) 550-556.
[48] D.R. Bhumkar, H.M. Joshi, M. Sastry, V.B. Pokharkar, Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin, Pharmaceutical Research, 24 (2007) 1415-1426.
[49] P. Abrica-Gonzalez, J.A. Zamora-Justo, A. Sotelo-Lopez, G.R. Vazquez-Martinez, J.A. Balderas-Lopez, A. Munoz-Diosdado, M. Ibanez-Hernandez, Gold nanoparticles with chitosan, N-acylated chitosan, and chitosan oligosaccharide as DNA carriers, Nanoscale Research Letters, 14 (2019) 258.
75
[50] M. Kozicki, M. Kolodziejczyk, M. Szynkowska, A. Pawlaczyk, E. Lesniewska, A. Matusiak, A. Adamus, A. Karolczak, Hydrogels made from chitosan and silver nitrate, Carbohydrate Polymers, 140 (2016) 74-87.
[51] M.A. Pigaleva, I.V. Novikov, A.Y. Nikolaev, V.G. Vasil'ev, S.S. Abramchuk, A.V. Naumkin, N.A. Arkharova, V.S. Sadykova, A.E. Kuvarina, M.O. Gallyamov, Platinum cross‐linked chitosan hydrogels synthesized in water saturated with CO2 under high pressure, Journal of Applied Polymer Science, 138 (2020) 50006.
[52] H. Yi, L.Q. Wu, W.E. Bentley, R. Ghodssi, G.W. Rubloff, J.N. Culver, G.F. Payne, Biofabrication with chitosan, Biomacromolecules, 6 (2005) 2881-2894.
[53] P. Sacco, S. Pedroso-Santana, Y. Kumar, N. Joly, P. Martin, P. Bocchetta, Ionotropic Gelation of Chitosan Flat Structures and Potential Applications, Molecules, 26 (2021) 660.
[54] C.L. Schauer, M.S. Chen, R.R. Price, P.E. Schoen, F.S. Ligler, Colored thin films for specific metal ion detection, Environmental Science & Technology, 38 (2004) 4409-4413.
[55] A. Niemczyk, P. Kaczorowski, M. El Fray, Spin-coated chitosan on copolyester substrates, Progress on Chemistry and Application of Chitin and its Derivatives, 20 (2015) 236-245.
[56] K.S. Oh, R.S. Kim, J. Lee, D. Kim, S.H. Cho, S.H. Yuk, Gold/chitosan/pluronic composite nanoparticles for drug delivery, Journal of Applied Polymer Science, 108 (2008) 3239-3244.
[57] X. Dai, X. Zhao, Y. Liu, B. Chen, X. Ding, N. Zhao, F.J. Xu, Controlled synthesis and surface engineering of Janus chitosan-gold nanoparticles for photoacoustic imaging-guided synergistic gene/photothermal therapy, Small, 17 (2021) 2006004.
[58] D. MubarakAli, J. Arunkumar, K.H. Nag, K.A. SheikSyedIshack, E. Baldev, D. Pandiaraj, N. Thajuddin, Gold nanoparticles from Pro and eukaryotic photosynthetic microorganisms—comparative studies on synthesis and its application on biolabelling, Colloids and Surfaces B: Biointerfaces, 103 (2013) 166-173.
[59] H. Majdi, R. Salehi, M. Pourhassan-Moghaddam, S. Mahmoodi, Z. Poursalehi, S. Vasilescu, Antibody conjugated green synthesized chitosan-gold nanoparticles for optical biosensing, Colloid and Interface Science Communications, 33 (2019) 100207.
[60] S. Maiz-Fernandez, N. Barroso, L. Perez-Alvarez, U. Silvan, J.L. Vilas-Vilela, S. Lanceros-Mendez, 3D printable self-healing hyaluronic acid/chitosan polycomplex
76
hydrogels with drug release capability, International Journal of Biological Macromolecules, 188 (2021) 820-832.
[61] B.S. Fox, M.K. Beyer, V.E. Bondybey, Coordination chemistry of silver cations, Journal of the American Chemical Society, 124 (2002) 13613-13623.
[62] M. Busato, A. Melchior, V. Migliorati, A. Colella, I. Persson, G. Mancini, D. Veclani, P. D'Angelo, Elusive coordination of the Ag+ ion in aqueous solution: evidence for a linear structure, Inorganic Chemistry, 59 (2020) 17291-17302.
[63] M. Hargittai, A. Schulz, B. Reffy, M. Kolonits, Molecular structure, bonding, and Jahn-Teller effect in gold chlorides: quantum chemical study of AuCl3, Au2Cl6, AuCl4 AuCl, and Au2Cl2 and Electron Diffraction Study of Au2Cl6, Journal of the American Chemical Society, 123 (2001) 1449-1458.
[64] Y. Laligant, G. Ferey, A. Le Bail, Crystal structure of Pd(NO3)2(H2O)2, Materials research bulletin, 26 (1991) 269-275.
[65] B. Tangeysh, M. Fryd, M.A. Ilies, B.B. Wayland, Palladium metal nanoparticle size control through ion paired structures of [PdCl4]2- with protonated PDMAEMA, Chemical Communications, 48 (2012) 8955-8957.
[66] R. Lakshmi Narayanan, M. Sivakumar, Preparation and characterization of gold nanoparticles in chitosan suspension by one-pot chemical reduction method., Nano Hybrids, 6 (2014) 47-57.
[67] T. Thanayutsiri, P. Patrojanasophon, P. Opanasopit, T. Ngawhirunpat, S. Plianwong, T. Rojanarata, Rapid synthesis of chitosan-capped gold nanoparticles for analytical application and facile recovery of gold from laboratory waste, Carbohydrate Polymers, 250 (2020) 116983.
[68] J. Sievers, K. Sperlich, T. Stahnke, C. Kreiner, T. Eickner, H. Martin, R.F. Guthoff, M. Schünemann, S. Bohn, O. Stachs, Determination of hydrogel swelling factors by two established and a novel non‐contact continuous method, Journal of Applied Polymer Science, 138 (2020) 50326.
[69] L. Yahia, N. Chirani, L. Gritsch, F.L. Motta, S. Fare, History and Applications of Hydrogels, Journal of Biomedical Sciencies, 4 (2015) 1-13.
[70] R.S. Wong, M. Ashton, K. Dodou, Effect of crosslinking agent concentration on the properties of unmedicated hydrogels, Pharmaceutics, 7 (2015) 305-319.
[71] P.N. Dave, A. Gor, Natural polysaccharide-based hydrogels and nanomaterials: recent trends and their applications, Handbook of Nanomaterials for Industrial
77
Applications2018, pp. 36-66.
[72] S. Dubey, S.K. Bajpai, Poly(methacrylamide‐co‐acrylic acid) hydrogels for gastrointestinal delivery of theophylline. I. Swelling characterization, Journal of Applied Polymer Science, 101 (2006) 2995-3008.
[73] L. Chen, Z. Tian, Y. Du, Synthesis and pH sensitivity of carboxymethyl chitosan-based polyampholyte hydrogels for protein carrier matrices, Biomaterials, 25 (2004) 3725-3732.
[74] S. Lu, K.S. Anseth, Photopolymerization of multilaminated poly(HEMA) hydrogels for controlled release, Journal of Controlled Release, 57 (1999) 291-300.
[75] L. Gao, H. Gan, Z. Meng, R. Gu, Z. Wu, L. Zhang, X. Zhu, W. Sun, J. Li, Y. Zheng, G. Dou, Effects of genipin cross-linking of chitosan hydrogels on cellular adhesion and viability, Colloids and Surfaces B-Biointerfaces, 117 (2014) 398-405.
[76] S.B. Aziz, M.H. Hamsan, W.O. Karim, M.F.Z. Kadir, M.A. Brza, O.G. Abdullah, High proton conducting polymer blend electrolytes based on chitosan: dextran with constant specific capacitance and energy density, Biomolecules, 9 (2019) 267.
[77] S.B. Aziz, W.O. Karim, M.A. Brza, R.T. Abdulwahid, S.R. Saeed, S. Al-Zangana, M.F.Z. Kadir, Ion transport study in CS: POZ based polymer membrane electrolytes using Trukhan model, International Journal of Molecular Sciences, 20 (2019) 5265.
[78] R. Ramya, P.N. Sudha, J. Mahalakshmi, Preparation and characterization of chitosan binary blend, International Journal of Scientific and Research Publications, 2 (2012) 1-9.
[79] K. Sneha, M. Sathishkumar, S. Kim, Y.-S. Yun, Counter ions and temperature incorporated tailoring of biogenic gold nanoparticles, Process Biochemistry, 45 (2010) 1450-1458.
[80] S. Krishnamurthy, A. Esterle, N.C. Sharma, S.V. Sahi, Yucca-derived synthesis of gold nanomaterial and their catalytic potential, Nanoscale Research Letters, 9 (2014) 1-9.
[81] G. Geng, P. Chen, B. Guan, Y. Liu, C. Yang, N. Wang, M. Liu, Sheetlike gold nanostructures/graphene oxide composites via a one-pot green fabrication protocol and their interesting two-stage catalytic behaviors, Rsc Advances, 7 (2017) 51838-51846.
[82] X. Duan, X. Tian, J. Ke, Y. Yin, J. Zheng, J. Chen, Z. Cao, Z. Xie, Y. Yuan, Size controllable redispersion of sintered Au nanoparticles by using iodohydrocarbon and its implications, Chemical Science, 7 (2016) 3181-3187.
[83] J. Feng, J. Liu, X. Cheng, J. Liu, M. Xu, J. Zhang, Hydrothermal cation exchange
78
enabled gradual evolution of Au@ZnS-AgAuS yolk-shell nanocrystals and their visible light photocatalytic applications, Advanced Science, 5 (2018) 1700376.
[84] S. Mincke, T.G. Asere, I. Verheye, K. Folens, F.V. Bussche, L. Lapeire, K. Verbeken, P. Van Der Voort, D.A. Tessema, F. Fufa, G.D. Laing, C.V. Stevens, Functionalized chitosan adsorbents allow recovery of palladium and platinum from acidic aqueous solutions, Green Chemistry, 21 (2019) 2295-2306.
[85] Z. Kalaycioglu, E. Torlak, G. Akin-Evingur, I. Ozen, F.B. Erim, Antimicrobial and physical properties of chitosan films incorporated with turmeric extract, International Journal of Biological Macromolecules, 101 (2017) 882-888.
[86] M.F. Queiroz, K.R. Teodosio Melo, D.A. Sabry, G.L. Sassaki, H.A.O. Rocha, Does the use of chitosan contribute to oxalate kidney stone formation?, Marine drugs, 13 (2014) 141-158.
[87] A. Regiel-Futyra, M. Kus-Liskiewicz, V. Sebastian, S. Irusta, M. Arruebo, G. Stochel, A. Kyziol, Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials, ACS Applied Materials & Interfaces, 7 (2015) 1087-1099.
[88] E. Rwegasila, E. Mubofu, S. Nyandoro, P. Erasto, J. Munissi, Preparation, characterization and in vivo antimycobacterial studies of panchovillin-chitosan nanocomposites, International Journal of Molecular Sciences, 17 (2016) 1559.
[89] D. Wei, W. Qian, Facile synthesis of Ag and Au nanoparticles utilizing chitosan as a mediator agent, Colloids and Surfaces B: Biointerfaces, 62 (2008) 136-142.
[90] I.F. Amaral, P.L. Granja, M.A. Barbosa, Chemical modification of chitosan by phosphorylation: an XPS, FT-IR and SEM study, Journal of Biomaterials Science, Polymer Edition, 16 (2005) 1575-1593.
[91] A.G. Karakeçili, C. Satriano, M. Gümüşderelioğlu, G. Marletta, Surface characteristics of ionically crosslinked chitosan membranes, Journal of Applied Polymer Science, 106 (2007) 3884-3888.
[92] F. Sallem, J. Boudon, O. Heintz, I. Severin, A. Megriche, N. Millot, Synthesis and characterization of chitosan-coated titanate nanotubes: towards a new safe nanocarrier, Dalton Transactions, 46 (2017) 15386-15398.
[93] R. Li, W. Liang, M. Li, S. Jiang, H. Huang, Z. Zhang, J.J. Wang, M.K. Awasthi, Removal of Cd(II) and Cr(VI) ions by highly cross-linked thiocarbohydrazide-chitosan gel, International Journal of Biological Macromolecules, 104 (2017) 1072-1081.
[94] K.-H. Wu, H.-M. Lo, J.-C. Wang, S.-Y. Yu, B.-D. Yan, Electrochemical detection of
79
heavy metal pollutant using crosslinked chitosan/carbon nanotubes thin film electrodes, Materials Express, 7 (2017) 15-24.
[95] U. Ijaz, M. Sohail, M. Usman Minhas, S. Khan, Z. Hussain, M. Kazi, S. Ahmed Shah, A. Mahmood, M. Maniruzzaman, Biofunctional hyaluronic acid/κ-carrageenan injectable hydrogels for improved drug delivery and wound healing, Polymers, 14 (2022) 376.
[96] M.I. Azocar, R. Alarcon, A. Castillo, J.M. Blamey, M. Walter, M. Paez, Capping of silver nanoparticles by anti-inflammatory ligands: antibacterial activity and superoxide anion generation, Journal of Photochemistry and Photobiology B: Biology, 193 (2019) 100-108.
電子全文 電子全文(網際網路公開日期:20251215)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top