跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/07 15:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王培德
研究生(外文):Wang, Pei-Te
論文名稱:透過超大型分子動力學模擬與平行化後處理分析研究鎳鈦形狀記憶合金之尺寸效應
論文名稱(外文):Size effects of Nickel-Titanium Shape Memory Alloys studied by Ultra-large Molecular Dynamics Simulations and Parallelized Post-Processing analyses
指導教授:鄒年棣
指導教授(外文):Tsou, Nien-Ti
口試委員:楊安正陳志軒羅友杰鄒年棣
口試委員(外文):Yang, An-ChengChen, Chih-HsuanLo, Yu-ChiehTsou, Nien-Ti
口試日期:2023-04-27
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:74
中文關鍵詞:鎳鈦形狀記憶合金奈米壓印應力誘發麻田散體相變化麻田散體兄弟晶平行化計算尺寸效應
外文關鍵詞:Ni-Ti shape memory alloysnanoindentation stress-induced martensitic transformationmartensitic variantsParallel computingsize effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:12
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
鎳鈦形狀記憶合金(SMAs,Shape Memory Alloys)擁有傑出的機械性質、電耦合性質以及抗腐蝕性,在接受到外在環境刺激時,能感測並表現出獨特的現象。例如:形狀記憶效應(shape memory effect),材料在加熱到相變化溫度以上後,可以恢復在低溫時受到的形變;超彈性(superelasticity) 現象,使材料在常溫下有比一般金屬更良好的延展性,兩者都是非常重要的特性。其中奈米壓印應力誘發形狀記憶效應,因其同時牽涉應力、溫度誘發之麻田散體相轉變、特殊微結構排列、差排等塑性機制,使得其仍難以在一般實驗方法觀察微結構演變的細節,因此分子動力學模擬計算便扮演了微結構動力學過程研究的重要工具。然而在分子動力學領域中,過往在其他材料模型的研究上,已被發現到具有尺寸效應的問題,也就是過小的分子動力學模型,就算使用已經被驗證且廣泛被使用的原子間勢能函數進行計算,也有機會產生偏差的計算結果。例如在差排滑移受到限制,進而影響到力學性質的評估。因此本研究將採用多個大型模型與過往小型模型比較,探討鎳鈦形狀記憶合金的在微結構與力學性質上的尺寸效應。另一方面,過去常用的微結構分析方法,common neighbor analysis (CNA) 或是polyhedral template matching (PTM),儘管能夠區分出沃斯田體相和麻田散體相之間的轉變,卻尚不足以分辨出麻田散體兄弟晶,因此需要使用已開發的辨認方法 Martensite variants identification method (MVIM)來觀察麻田散體兄弟晶。除此之外,本研究也引入了平行化計算架構來改編MVIM,降低其在分析計算大型模型時的時間成本。
在目前的研究成果中,已經發現到微結構演進具有獨特的路徑,同時演進路徑中也發現到了兄弟晶分佈區域具有特定的臨界大小。在抵達臨界值後,模型會藉由新的麻田散體相變化區域生成,來適應壓印產生之應變。除此之外,模型中的各兄弟晶種類比例也與微結構演進路徑息息相關,相同的壓印深度比例下,尺寸越大的模型會生成更加細緻且具備高對稱性的微結構分佈,並有更少的過渡相兄弟晶比例,與實驗結果吻合。我們也針對模型週期性邊界對相變化演進的影響進行了探討。期望能透過這些結果,為形狀記憶合金的分子動力學模擬研究,提出模型尺寸設計的建議與方向,進而使計算結果更加貼近實驗結果,達到對實際設計材料提出創見的可能性。
Nickel-titanium shape memory alloys (SMAs) have outstanding mechanical properties, electrical coupling properties, and corrosion resistance. They can sense the external environmental stimuli and exhibit unique phenomena. For example, the shape memory effect, where the material can recover from the deformation at low temperatures when heated above the transformation temperature; the superelasticity phenomenon, which gives the material better ductility than conventional metals at room temperature. Nanoscale indentation stress-induced shape memory effect is difficult to observe the details of microstructure evolution using the conventional experimental methods due to the involvement of stress- and temperature-induced martensitic transformation, special microstructure arrangement, and plastic mechanisms such as dislocation movement. Therefore, molecular dynamics simulations play an important role in the study of microstructure dynamics. However, it has been found that there are size effects in the previous molecular dynamics studies of other material models. This means that, even using validated and widely used interatomic potential functions, there is still a chance of deviation in the calculation results for small molecular dynamics models. For example, dislocation slip is restricted, which affects the evaluation of mechanical properties. Therefore, this study compared multiple large models with the small models to investigate the size effects of nickel-titanium shape memory alloys on microstructure and mechanical properties. On the other hand, the commonly used microstructure analysis methods in the past, e.g. Common Neighbor Analysis (CNA) or Polyhedral Template Matching (PTM), can distinguish the transition between the austenite and martensite phases, but they failed to distinguish the martensite variants. Thus, the developed identification method, Martensite Variants Identification Method (MVIM), is needed to observe the martensite variants. In addition, a parallel computing architecture for MVIM is developed and reduce the time cost of analyzing large models.
In the current research results, a unique path of microstructure evolution has been discovered;the critical size of the region of the certain martensite variant patterns has also been found in the evolution path. After reaching the critical size, the model generates a new martensitic transformation region to adapt to the increasing strain generated by indentation. In addition, the proportions of various crystal variant types in the model are closely related to the microstructure evolution path. Under the similar indentation depth ratio, larger models generate finer and more symmetrical microstructure distributions with fewer transitional phases, which are consistent with the experimental results. We also investigated the effect of periodic boundaries of the model on phase transformation. It is hoped that through these results, suggestions and design guideline for model size can be proposed for the molecular dynamics simulations for shape memory alloys. The calculation results can be closer to experimental results and the possibility for the new design of materials can be achieved.
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii
一、緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 前言. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
二、文獻回顧. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 形狀記憶合金具備之特性. . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 熱彈性麻田散體相變化. . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 形狀記憶效應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 超彈性效應. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 鎳鈦形狀記憶合金. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.1 微結構研究. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 晶格理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 分子動力學模擬應用於鎳鈦形狀記憶合金. . . . . . . . . . . . . . . . . . 17
2.4 超大型分子動力學模擬與尺寸效應. . . . . . . . . . . . . . . . . . . . . . 19
三、理論與研究方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 原子間交互作用力勢能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 2NN-MEAM 勢能. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Tersoff 勢能. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.3 Lennard-Jones 勢能. . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 結晶固體的連續理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 變形梯度與轉變矩陣. . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Cauchy-Born 法則: 連體與晶格間的關係. . . . . . . . . . . . . . . 27
3.3 Martensite Variants Identification Method (MVIM) . . . . . . . . . . . . . . . 28
3.3.1 麻田散體相兄弟晶之理論轉變矩陣. . . . . . . . . . . . . . . . . . 28
3.3.2 單位晶胞選擇與判別兄弟晶種類的條件判斷式. . . . . . . . . . . 31
3.3.3 區域投票法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 平行化處理架構之MVIM . . . . . . . . . . . . . . . . . . . . . . . 38
3.4 分子動力學模型與模擬條件設置. . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 物理模型設定. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 球狀壓印頭模型設定. . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4.3 能量最小化與溫度平衡流程設定. . . . . . . . . . . . . . . . . . . 43
3.4.4 以奈米壓印產生應力誘發流程設定. . . . . . . . . . . . . . . . . . 45
3.5 計算核心負載之動態平衡. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
四、結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.1 微結構分布與邊界影響. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 奈米壓印試驗之微結構演進階段. . . . . . . . . . . . . . . . . . . . . . . . 49
4.3 微結構之臨界值. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3.1 微結構演變範圍之臨界值. . . . . . . . . . . . . . . . . . . . . . . 51
4.3.2 雙晶面間距之臨界值. . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 應力應變曲線. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5 微結構生成之比例統計. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.1 不同尺寸下兄弟晶組成比例統計. . . . . . . . . . . . . . . . . . . 59
4.5.2 持續下壓之兄弟晶比例變化. . . . . . . . . . . . . . . . . . . . . . 61
五、結論與未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
[1] A. Kaya, I. Kaya, and H. E. Karaca, “Radio frequency u-shape slot antenna design with
niti shape memory alloys,” Microwave and Optical Technology Letters, vol. 55, no. 12,
pp. 2976–2984, 2013.
[2] A. Concilio and L. Lecce, Shape Memory Alloy Engineering. Elsevier, 2015.
[3] T. M. Wang, Z. Y. Shi, D. Liu, C. Ma, and Z. H. Zhang, “An accurately controlled antagonistic
shape memory alloy actuator with self-sensing,” Sensors (Switzerland), 2012.
[4] S. Takaoka, H. Horikawa, J. Kobayashi, and K. Shimizu, “Applications and development
of shape-memory and superelastic alloys in japan,” in Materials Science Forum, vol. 394.
Trans Tech Publ, 2002, pp. 61–68.
[5] Y. Liu, Z. Xie, J. V. Humbeeck, and L. Delaey, “Asymmetry of stress-strain curves under
tension and compression for niti shape memory alloys,” Acta Materialia, 1998.
[6] T. Waitz, “The self-accommodated morphology of martensite in nanocrystalline niti shape
memory alloys,” Acta Materialia, 2005.
[7] A. Evirgen, I. Karaman, R. Santamarta, J. Pons, C. Hayrettin, and R. D. Noebe, “Relationship
between crystallographic compatibility and thermal hysteresis in ni-rich nitihf and
nitizr high temperature shape memory alloys,” Acta Materialia, 2016.
[8] D. C. Lagoudas, Shape Memory Alloys: modeling and engineering applications. Springer,
2008.
[9] Y. Liu, Y. Liu, and J. V. Humbeeck, “Two-way shape memory effect developed by martensite
deformation in niti,” Acta Materialia, vol. 47, pp. 199–209, 12 1998.
[10] Y. Q. Fu, J. K. Luo, A. J. Flewitt, W. M. Huang, S. Zhang, H. J. Du, and W. I. Milne, “Thin
film shape memory alloys and microactuators,” International Journal of Computational
Materials Science and Surface Engineering, 2009.
[11] C. J. D. Araújo, N. J. D. Silva, M. M. D. Silva, and C. H. Gonzalez, “A comparative
study of ni-ti and ni-ti-cu shape memory alloy processed by plasma melting and injection
molding,” Materials and Design, 2011.
[12] W. S. Ko, B. Grabowski, and J. Neugebauer, “Development and application of a ni-ti interatomic
potential with high predictive accuracy of the martensitic phase transition,” Physical
Review B - Condensed Matter and Materials Physics, 2015.
[13] C. M. Lewandowski, N. Co-investigator, and C. M. Lewandowski, “Niti-based shape
memory alloys: Relating physical deformation mechanisms and the wide hysteresis,” The
effects of brief mindfulness intervention on acute pain experience: An examination of individual
difference, 2015.
[14] X. Zhang and H. Sehitoglu, “Crystallography of the b2 → r → b19′ phase transformations
in niti,” Materials Science and Engineering: A, vol. 374, no. 1, pp. 292–302, 2004.
[15] K. G. Vishnu and A. Strachan, “Phase stability and transformations in niti from density
functional theory calculations,” Acta Materialia, 2010.
[16] X. Chen, S. Lu, Y. Zhao, T. Fu, C. Huang, and X. Peng, “Molecular dynamic simulation
on nano-indentation of niti sma,” Materials Science and Engineering A, vol. 712, 2018.
[17] Y. Zhang, J. Xu, Y. Hu, J. Li, S. Ding, and R. Xia, “Nanoindentation characteristics of
nanocrystalline b2 cuzr shape memory alloy via large-scale atomistic simulation,” Journal
of Molecular Modeling, vol. 28, no. 10, p. 317, 2022.
[18] P. Srinivasan, L. Nicola, and A. Simone, “Modeling pseudo-elasticity in niti: Why the
meam potential outperforms the eam-fs potential,” Computational Materials Science,
2017.
[19] K. Bhattacharya, Microstructure of Martensite: Why it Forms and how it Gives Rise to the
Shape-memory Effect, ser. Oxford Series on Materials Modelling. OUP Oxford, 2003.
[20] K. N. Melton, J. Simpson, , and T. W. Duerig, “A new wide hysteresis niti based shape
memory alloy and its applications melton,” Proceedings of the Int ’l Conference on
Martensitic Transformations ”The Japan Institute of Metals”, pp. 1053–1058, 1986.
[21] F. Miura, M. Mogi, Y. Ohura, and H. Hamanaka, “The super-elastic property of the
japanese niti alloy wire for use in orthodontics,” American Journal of Orthodontics and
Dentofacial Orthopedics, vol. 90, pp. 1–10, 1986.
[22] K. S. Suresh, D. I. Kim, S. K. Bhaumik, and S. Suwas, “Evolution of microstructure and
texture in ni49.4ti 38.6hf12 shape memory alloy during hot rolling,” Intermetallics, 2013.
[23] J. A. Shaw and S. Kyriakides, “Thermomechanical aspects of niti,” Journal of the Mechanics
and Physics of Solids, 1995.
[24] D. J. Hartl and D. C. Lagoudas, “Aerospace applications of shape memory alloys,” Proceedings
of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
2007.
[25] L. Manfredi, Y. Huan, and A. Cuschieri, “Low power consumption mini rotary actuator
with sma wires,” Smart Materials and Structures, 2017.
[26] D. Gu and B. He, “Finite element simulation and experimental investigation of residual
stresses in selective laser melted ti–ni shape memory alloy,” Computational Materials
Science, vol. 117, pp. 221–232, 2016.
[27] S. Plimpton, “Fast parallel algorithms for short-range molecular dynamics,” Journal of
Computational Physics, vol. 117, pp. 1–19, 3 1995.
[28] B. FrantzDale, S. J. Plimpton, and M. S. Shephard, “Software components for parallel
multiscale simulation: An example with lammps,” Engineering with Computers, 2010.
[29] D. P. Sellan, E. S. Landry, J. E. Turney, A. J. H. McGaughey, and C. H. Amon, “Size effects
in molecular dynamics thermal conductivity predictions,” Phys. Rev. B, vol. 81, p. 214305,
Jun 2010.
[30] J. D. Honeycutt and H. C. Andersen, “Molecular dynamics study of melting and freezing
of small lennard-jones clusters,” Journal of Physical Chemistry, 1987.
[31] D. Faken and H. Jónsson, “Systematic analysis of local atomic structure combined with 3d
computer graphics,” Computational Materials Science, 1994.
[32] A. Stukowski, “Structure identification methods for atomistic simulations of crystalline
materials,” Modelling and Simulation in Materials Science and Engineering, 2012.
[33] P. M. Larsen, S. Schmidt, and J. SchiØtz, “Robust structural identification via polyhedral
template matching,” Modelling and Simulation in Materials Science and Engineering,
vol. 24, 5 2016.
[34] C. W. Yang and N. T. Tsou, “Microstructural analysis and molecular dynamics modeling of
shape memory alloys,” Computational Materials Science, vol. 131, pp. 293–300, 4 2017.
[35] H. Y. Lu, C. H. Chen, and N. T. Tsou, “The analysis of superelasticity and microstructural
evolution in niti single crystals by molecular dynamics,” Materials, 2018.
[36] Y.-M. Tseng, P.-T. Wang, N.-Y. Chen, A.-C. Yang, and N.-T. Tsou, “Martensite variant
identification for shape memory alloys by using graph neural networks,” 2021.
[37] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large
graphs,” in Advances in Neural Information Processing Systems, vol. 30, 2017.
[38] A. Ölander, “An electrochemical investigation of solid cadmium-gold alloys,” Journal of
the American Chemical Society, 1932.
[39] A. B. Greninger and V. G. Mooradian, “Strain transformation in metastable beta copperzinc
and beta copper-ti alloys,” AIME Trans, vol. 128, pp. 337–369, 1938.
[40] L. C. Chang and T. A. Read, “Plastic deformation and diffusionless phase changes in metals
—the gold-cadmium beta phase,” JOM, vol. 3, pp. 47–52, 1 1951.
[41] W. J. Buehler, J. V. Gilfrich, and R. C. Wiley, “Effect of low-temperature phase changes
on the mechanical properties of alloys near composition tini,” Journal of Applied Physics,
vol. 34, pp. 1475–1477, 1963.
[42] F. Lovey and V. Torra, “Shape memory in cu-based alloys: phenomenological behavior at
the mesoscale level and interaction of martensitic transformation with structural defects in
cu-zn-al,” Progress in Materials Science, vol. 44, no. 3, pp. 189–289, 1999.
[43] W. Khalil, L. Saint-Sulpice, S. A. Chirani, C. Bouby, A. Mikolajczak, and T. B. Zineb,
“Experimental analysis of fe-based shape memory alloy behavior under thermomechanical
cyclic loading,” Mechanics of Materials, vol. 63, pp. 1–11, 2013.
[44] K. Bhattacharya, “Self-accommodation in martensite,” Archive for Rational Mechanics
and Analysis, vol. 120, pp. 201–244, 1992.
[45] C. Wayman and T. Duerig, “An Introduction to Martensite and Shape Memory,” in Engineering
Aspects of Shape Memory Alloys, 1990.
[46] Y. Liu and Z. Xie, Detwinning in shape memory alloy. Nova Science Publishers Inc NY,
2007.
[47] X. Ren, N. Miura, J. Zhang, K. Otsuka, K. Tanaka, M. Koiwa, T. Suzuki, Y. I.
Chumlyakov, and M. Asai, “A comparative study of elastic constants of ti-ni based alloys
prior to martensitic transformation,” Materials Science and Engineering A, 2001.
[48] K. Ng and Q. Sun, “Stress-induced phase transformation and detwinning in niti polycrystalline
shape memory alloy tubes,” Mechanics of Materials, vol. 38, no. 1, pp. 41–56,
2006.
[49] X. Huang, G. J. Ackland, and K. M. Rabe, “Crystal structures and shape-memory behaviour
of niti,” Nature materials, vol. 2, no. 5, pp. 307–311, 2003.
[50] S. Kibey, H. Sehitoglu, and D. D. Johnson, “Energy landscape for martensitic phase transformation
in shape memory niti,” Acta Materialia, 2009.
[51] K. G. Vishnu and A. Strachan, “Size effects in niti from density functional theory calculations,”
Physical Review B - Condensed Matter and Materials Physics, 2012.
[52] X. Xie, G. Kang, Q. Kan, C. Yu, and Q. Peng, “Phase field modeling for cyclic phase
transition of niti shape memory alloy single crystal with super-elasticity,” Computational
Materials Science, vol. 143, 2018.
[53] J. H. Irving and J. G. Kirkwood, “The statistical mechanical theory of transport processes.
iv. the equations of hydrodynamics,” The Journal of Chemical Physics, 1950.
[54] G. Sushko, A. Verkhovtsev, A. Yakubovich, and A. Solov’yov, “Molecular dynamics simulation
of nanoindentation of nickel-titanium crystal,” in Journal of Physics: Conference
Series, vol. 438, no. 1, 2013, p. 012021.
[55] E. Qin, N. Peter, M. Frensemeier, C. Frick, E. Arzt, and A. Schneider, “Vickers indentation
induced one-way and two-way shape memory effect in austenitic niti,” Advanced
Engineering Materials, vol. 16, 01 2014.
[56] Z. Song, X. Tang, X. Chen, T. Fu, H. Zheng, and S. Lu, “Nano-indentation and nanoscratching
of pure nickel and niti shape memory alloy thin films: an atomic-scale simulation,”
Thin Solid Films, vol. 736, p. 138906, 2021.
[57] P.-H. Sung, C.-D. Wu, T.-H. Fang, and C.-I. Weng, “Size effect on shape recovery and
induced strain of niti nanowires,” Applied Surface Science, vol. 258, no. 18, pp. 7064–
7069, 2012.
[58] K. Nie, M.-P. Li, W.-P. Wu, and Q.-P. Sun, “Grain size-dependent energy partition in phase
transition of niti shape memory alloys studied by molecular dynamics simulation,” International
Journal of Solids and Structures, vol. 221, pp. 31–41, 2021.
[59] Y. Zhang, S. Jiang, and M. Wang, “Atomistic investigation on superelasticity of niti shape
memory alloy with complex microstructures based on molecular dynamics simulation,”
International Journal of Plasticity, vol. 125, pp. 27–51, 2020.
[60] Y. Shibuta, S. Sakane, E. Miyoshi, S. Okita, T. Takaki, and M. Ohno, “Heterogeneity in homogeneous
nucleation from billion-atom molecular dynamics simulation of solidification
of pure metal,” Nature Communications, vol. 8, 2017.
[61] W. S. Lai and B. X. Liu, “Lattice stability of some ni-ti alloy phases versus their chemical
composition and disordering,” Journal of Physics Condensed Matter, 2000.
[62] D. Mutter and P. Nielaba, “Simulation of structural phase transitions in niti,” Physical
Review B - Condensed Matter and Materials Physics, 2010.
[63] B. J. Lee and M. I. Baskes, “Second nearest-neighbor modified embedded-atom-method
potential,” Physical Review B - Condensed Matter and Materials Physics, 2000.
[64] M. I. Baskes, B. J. Lee, H. Kim, and Y. K. Cho, “Second nearest-neighbor modified embedded
atom method potentials for bcc transition metals,” Physical Review B - Condensed
Matter and Materials Physics, 2001.
[65] B. J. Lee, J. H. Shim, and I. Baskes, “Semiempirical atomic potentials for the fcc metals cu,
ag, au, ni, pd, pt, al, and pb based on first and second nearest-neighbor modified embedded
atom method,” Physical Review B - Condensed Matter and Materials Physics, 2003.
[66] G. C. Abell, “Empirical chemical pseudopotential theory of molecular and metallic bonding,”
Phys. Rev. B, vol. 31, pp. 6184–6196, May 1985.
[67] J. Tersoff, “Empirical interatomic potential for silicon with improved elastic properties,”
Phys. Rev. B, vol. 38, pp. 9902–9905, Nov 1988.
[68] C. Huang, X. Peng, B. Yang, H. Xiang, S. Sun, X. Chen, Q. Li, D. Yin, and T. Fu,
“Anisotropy effects in diamond under nanoindentation,” Carbon, vol. 132, pp. 606–615,
2018.
[69] X. Du, H. Zhao, L. Zhang, Y. Yang, H. Xu, H. Fu, and L. Li, “Molecular dynamics investigations
of mechanical behaviours in monocrystalline silicon due to nanoindentation at
cryogenic temperatures and room temperature,” Scientific reports, vol. 5, no. 1, p. 16275,
2015.
[70] A. Redkov, A. Osipov, and S. Kukushkin, “Molecular dynamics simulation of the indentation
of nanoscale films on a substrate,” Technical Physics Letters, vol. 42, pp. 639–643,
06 2016.
[71] D. E. Kim and S. I. Oh, “Atomistic simulation of structural phase transformations in
monocrystalline silicon induced by nanoindentation,” Nanotechnology, vol. 17, no. 9, p.
2259, apr 2006.
[72] P. Peng, G. Liao, T. Shi, Z. Tang, and Y. Gao, “Molecular dynamic simulations of nanoindentation
in aluminum thin film on silicon substrate,” Applied Surface Science, vol. 256,
no. 21, pp. 6284–6290, 2010.
[73] K. Matsunaga, C. Fisher, and H. Matsubara, “Tersoff potential parameters for simulating
cubic boron carbonitrides,” Japanese Journal of Applied Physics, vol. 39, no. 1A, p. L48,
jan 2000.
[74] B. W. Dodson, “Development of a many-body tersoff-type potential for silicon,” Phys.
Rev. B, vol. 35, pp. 2795–2798, Feb 1987.
[75] A. Ray, M. Srivastava, G. Kondayya, and S. Menon, “Improved equation of state of metals
in the liquid-vapor region,” Laser and Particle Beams, vol. 24, no. 3, pp. 437–445, 2006.
[76] E. Hückel, Zur Theorie der Elektrolyte. Berlin, Heidelberg: Springer Berlin Heidelberg,
1924, pp. 199–276.
[77] J. E. Jones, “On the determination of molecular fields. ii. from the equation of state of
a gas,” Proceedings of the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character, vol. 106, no. 738, pp. 463–477, 1924.
[78] F. Tavazza, T. P. Senftle, C. Zou, C. A. Becker, and A. C. T. van Duin, “Molecular dynamics
investigation of the effects of tip–substrate interactions during nanoindentation,”
The Journal of Physical Chemistry C, vol. 119, no. 24, pp. 13 580–13 589, 2015.
[79] J. L. Ericksen, “On the cauchy-born rule,” Mathematics and Mechanics of Solids, 2008.
[80] B. P. Chadwick, “Reviews continuum mechanics. concise theory and problems,” J . Fluid
Mech, 2017.
[81] A. Stukowski, “Visualization and analysis of atomistic simulation data with ovito the
open visualization tool,” Modelling and Simulation in Materials Science and Engineering,
vol. 18, p. 15012, 2010.
[82] K. M. Knowles and D. A. Smith, “The crystallography of the martensitic transformation
in equiatomic nickel-titanium,” Acta Metallurgica, 1981.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊