|
1. Mizusaki, J., K. Arai, and K. Fueki, Ionic conduction of the perovskite-type halides. Solid State Ionics, 1983. 11(3): p. 203-211. 2. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051. 3. Tan, Z.-K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. 9(9): p. 687-692. 4. Xing, G., et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014. 13(5): p. 476-480. 5. Schmidt, L.C., et al., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 2014. 136(3): p. 850-853. 6. Zhang, F., et al., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 2015. 9(4): p. 4533-4542. 7. Protesescu, L., et al., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 2015. 15(6): p. 3692-3696. 8. Frolova, L.A., et al., Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI2. The Journal of Physical Chemistry Letters, 2017. 8(1): p. 67-72. 9. Xiang, S., et al., Highly Air-Stable Carbon-Based α-CsPbI3 Perovskite Solar Cells with a Broadened Optical Spectrum. ACS Energy Letters, 2018. 3(8): p. 1824-1831. 10. Deschler, F., et al., High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. The Journal of Physical Chemistry Letters, 2014. 5(8): p. 1421-1426. 11. Yakunin, S., et al., Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015. 6(1): p. 8056. 12. Shen, Y., et al., Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Light-Emitting Diodes. Advanced Functional Materials, 2021. 31(45): p. 2103870. 13. Wang, H., et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019. 10(1): p. 665. 14. Wang, Y.-K., et al., All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized α-CsPbI3 Perovskite. Angewandte Chemie International Edition, 2021. 60(29): p. 16164-16170. 15. Panneerselvam, D.M. and M.Z. Kabir, Evaluation of organic perovskite photoconductors for direct conversion X-ray imaging detectors. Journal of Materials Science: Materials in Electronics, 2017. 28(10): p. 7083-7090. 16. Bi, C., et al., Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol. Advanced Functional Materials, 2019. 29(29): p. 1902446. 17. Liu, S., et al., Doping and surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals for LEDs. Materials Letters, 2020. 259: p. 126857. 18. Liu, F., et al., Colloidal Synthesis of Air-Stable Alloyed CsSn1–xPbxI3 Perovskite Nanocrystals for Use in Solar Cells. Journal of the American Chemical Society, 2017. 139(46): p. 16708-16719. 19. Zhang, C., et al., Effects of CsSnxPb1−xI3 Quantum Dots as Interfacial Layer on Photovoltaic Performance of Carbon-Based Perovskite Solar Cells. Nanoscale Research Letters, 2021. 16(1): p. 74. 20. Bera, S., et al., Limiting Heterovalent B-Site Doping in CsPbI3 Nanocrystals: Phase and Optical Stability. ACS Energy Letters, 2019. 4(6): p. 1364-1369. 21. Dolzhnikov, D.S., et al., Ligand-Free, Quantum-Confined Cs2SnI6 Perovskite Nanocrystals. Chemistry of Materials, 2017. 29(18): p. 7901-7907. 22. Petrović, M., V. Chellappan, and S. Ramakrishna, Perovskites: Solar cells & engineering applications – materials and device developments. Solar Energy, 2015. 122: p. 678-699. 23. Liu, K., et al., Upscaling perovskite solar cells via the ambient deposition of perovskite thin films. Trends in Chemistry, 2021. 3(9): p. 747-764. 24. Hoefler, S.F., G. Trimmel, and T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte für Chemie - Chemical Monthly, 2017. 148(5): p. 795-826. 25. King, G. and P.M. Woodward, Cation ordering in perovskites. Journal of Materials Chemistry, 2010. 20(28): p. 5785-5796. 26. Schlom, D.G., et al., A Thin Film Approach to Engineering Functionality into Oxides. Journal of the American Ceramic Society, 2008. 91(8): p. 2429-2454. 27. Liu, D., et al., Insight into the Improved Phase Stability of CsPbI3 from First-Principles Calculations. ACS Omega, 2020. 5(1): p. 893-896. 28. Zhao, Q., et al., Size-Dependent Lattice Structure and Confinement Properties in CsPbI3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization. ACS Energy Letters, 2020. 5(1): p. 238-247. 29. Masi, S., A.F. Gualdrón-Reyes, and I. Mora-Seró, Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3. ACS Energy Letters, 2020. 5(6): p. 1974-1985. 30. Cheng, S. and H. Zhong, What Happens When Halide Perovskites Meet with Water? The Journal of Physical Chemistry Letters, 2022. 13(10): p. 2281-2290. 31. Ding, X., et al., Enhancing the Phase Stability of Inorganic α-CsPbI3 by the Bication-Conjugated Organic Molecule for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019. 11(41): p. 37720-37725. 32. De Roo, J., et al., Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano, 2016. 10(2): p. 2071-2081. 33. Lim, S., et al., Monodisperse Perovskite Colloidal Quantum Dots Enable High-Efficiency Photovoltaics. ACS Energy Letters, 2021. 6(6): p. 2229-2237. 34. Swarnkar, A., W.J. Mir, and A. Nag, Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? ACS Energy Letters, 2018. 3(2): p. 286-289. 35. Ravi, V.K., G.B. Markad, and A. Nag, Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals. ACS Energy Letters, 2016. 1(4): p. 665-671. 36. Chen, Z., et al., Cu2+-Doped CsPbI3 Nanocrystals with Enhanced Stability for Light-Emitting Diodes. The Journal of Physical Chemistry Letters, 2021. 12(12): p. 3038-3045. 37. Liu, M., et al., Mn2+-Doped CsPbI3 Nanocrystals for Perovskite Light-Emitting Diodes with High Luminance and Improved Device Stability. Advanced Photonics Research, 2021. 2(11): p. 2100137. 38. Behera, R.K., et al., Doping the Smallest Shannon Radii Transition Metal Ion Ni(II) for Stabilizing α-CsPbI3 Perovskite Nanocrystals. The Journal of Physical Chemistry Letters, 2019. 10(24): p. 7916-7921. 39. Lau, C.F.J., et al., Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, 2018. 6(14): p. 5580-5586. 40. Lu, M., et al., Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light-Emitting Devices. Advanced Materials, 2018. 30(50): p. 1804691. 41. Hu, Y., et al., Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells. ACS Energy Letters, 2017. 2(10): p. 2219-2227. 42. Li, X., et al., Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Research, 2020. 13(8): p. 2203-2208. 43. Shi, J., et al., Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications. Journal of Materials Chemistry A, 2019. 7(36): p. 20936-20944. 44. Ahmad, W., et al., Inorganic CsPbI3 Perovskite-Based Solar Cells: A Choice for a Tandem Device. Solar RRL, 2017. 1(7): p. 1700048. 45. Chen, P., et al., In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2018. 28(17): p. 1706923. 46. Bai, Y., et al., Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics. Advanced Energy Materials, 2017. 7(20): p. 1701038. 47. Wu, H., et al., Water-stable and ion exchange-free inorganic perovskite quantum dots encapsulated in solid paraffin and their application in light emitting diodes. Nanoscale, 2019. 11(12): p. 5557-5563. 48. Wei, Y., et al., Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a Swelling–Shrinking Strategy toward Superior Water Resistance. Advanced Functional Materials, 2017. 27(39): p. 1703535. 49. Yao, Y., et al., Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated Organometallic Halide Perovskites. ACS Omega, 2019. 4(5): p. 9150-9159. 50. Hu, Z., et al., Enhanced Two-Photon-Pumped Emission from In Situ Synthesized Nonblinking CsPbBr3/SiO2 Nanocrystals with Excellent Stability. Advanced Optical Materials, 2018. 6(3): p. 1700997. 51. Sun, C., et al., Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots. Advanced Materials, 2016. 28(45): p. 10088-10094. 52. Zhong, Q., et al., One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core–Shell Nanoparticles. ACS Nano, 2018. 12(8): p. 8579-8587. 53. Lu, C., et al., Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Research, 2018. 11(2): p. 762-768. 54. Chen, X., et al., Phase Regulation and Surface Passivation of Stable α-CsPbI3 Nanocrystals with Dual-Mode Luminescence via Synergistic Effects of Ligands. The Journal of Physical Chemistry C, 2022. 126(11): p. 5233-5243. 55. Huang, Y., et al., DDAB-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments. Journal of Materials Chemistry C, 2020. 8(7): p. 2381-2387. 56. Wang, Z., et al., Efficient and Stable CF3PEAI-Passivated CsPbI3 QDs toward Red LEDs. ACS Applied Materials & Interfaces, 2022. 14(6): p. 8235-8242. 57. Li, M., et al., Synthesis of Two-Dimensional CsPb2X5 (X = Br and I) with a Stable Structure and Tunable Bandgap by CsPbX3 Phase Separation. The Journal of Physical Chemistry Letters, 2022. 13(11): p. 2555-2562.
|