跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:紀彥丞
研究生(外文):Ji, Yan-Cheng
論文名稱:研究錫摻雜對 CsPbI3鈣鈦礦量子點性能的影響
論文名稱(外文):Investigations of Sn-doped effects on the properties of CsPbI3 perovskite nanocrystals
指導教授:楊斯博
指導教授(外文):Yang, Zu-Po
口試委員:連峻儀蘇海清
口試委員(外文):Lien, Jiun-YiSu, Hai-Ching
口試日期:2023-06-17
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:照明與能源光電研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:78
中文關鍵詞:錫摻雜CsPbI3結構穩定性異價離子二維結構合金結構
外文關鍵詞:Tin dopingCsPbI3Structural stabilityHeterovalent ionsTwo-dimensional structureAlloy structure
相關次數:
  • 被引用被引用:0
  • 點閱點閱:177
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
錫摻雜於CsPbI3已被許多研究實現,由於錫(Sn2+)的離子半徑小於鉛(Pb2+)的離子半徑,因此可以透過Sn2+來替換Pb2+使CsPbI3的晶格收縮,以提升其結構穩定性。就我們所知,至今還沒有研究使用SnI4作為摻雜劑提供Sn4+作為摻雜,由於Sn4+相比於Sn2+多了2個正電荷,此外Sn4+相對Sn2+更穩定,因此摻雜Sn4+可能對CsPbI3產生不同的影響。
本研究以熱注入合成法合成CsPbI3,並且在合成的過程中加入SnI2和SnI4作為摻雜劑,分別提供Sn2+與Sn4+對CsPbI3進行摻雜,探討Sn2+與Sn4+的摻雜分別會對CsPbI3造成甚麼影響。(1)當合成環境當中的碘為不守恆時,摻雜微量的Sn2+並不會使CsPbI3產生的結構變化,當摻雜Sn2+的比例持續提高時,CsPbI3會轉變為CsPb2I5之二維結構。除此之外,Sn4+與Sn2+具有相似的效果,只是Sn4+在相對Sn2+一半比例時就能使CsPbI3轉變為CsPb2I5之二維結構,這是因為電荷不平衡的關係使Sn4+比Sn2+能更有效的產生結構上的轉變。(2)當合成環境當中的碘為守恆時,與碘不守恆時的狀況不同,碘守恆的情況之下無法使CsPbI3轉變為二維結構,而是使CsPbI3轉變為CsSn1-xPbXI3之合金結構。
Tin (Sn2+) has been successfully doped into CsPbI3 reported in many studies. Due to the its smaller ionic radius than that of Pb2+, replacing Pb2+ with Sn2+ can cause lattice contraction and then enhance the structural stability of CsPbI3. To the best of our knowledge, there is no investigation about Sn4+-doped CsPbI3 by using SnI4 yet. Besides Sn4+-doped CsPbI3 may be more stable than Sn2+-doped CsPbI3, Sn4+-dopant might affect CsPbI3 differently from Sn2+-dopant because of heterovalent doping effect.
In this study, CsPbI3 nanocrystals were synthesized by hot-injection method. For the synthesis of Sn2+- and Sn4+-doped CsPbI3, the Sn2+ and Sn4+ dopant were provided by introducing the SnI2 and SnI4 during the synthesis process, respectively. The effects of Sn2+ and Sn4+ doping on CsPbI3 were investigated. (1) For the iodine non-conservation, doping small amounts of Sn2+ does not induce CsPbI3 structure changes. However, as the Sn2+ doping is over certain amount, CsPbI3 starts to transform into a two-dimensional (2D) CsPb2I5 structure. Sn4+ exhibits similar effects as Sn2+, but only the half amount of Sn2+ is required to trigger the 2D CsPb2I5 formation. This is attributed to the charge imbalance, which makes Sn4+ more effectively induce structure transformation than Sn2+. (2) For iodine conservation, unlike the non-conservative situation, there is no observation of 2D CsPb2I5 structures. Instead, an alloy CsSn1-xPbXI3 structure is obtained.
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1-1 鹵化物鈣鈦礦的歷史 1
1-2 鈣鈦礦量子點的簡介及應用 3
1-3 研究動機與目的 4
第二章 基本原理及文獻回顧 5
2-1 鈣鈦礦量子點的晶體結構 5
2-2 熱注入合成法 8
2-3 CsPbI3不穩定性的原因 10
2-3-1 結構的不穩定性 10
2-3-2 外部環境的影響 12
2-3-3 配體的動態結合 13
2-4 解決CsPbI3不穩定性的方法 14
2-4-1 離子摻雜 14
2-4-1-1 離子摻雜帶來的影響 14
2-4-1-1-1 提升結構的穩定性 14
2-4-1-1-2 降低鉛的含量 15
2-4-1-1-3 改變光電特性 15
2-4-1-2 不同金屬離子的摻雜 17
2-4-1-2-1 同價摻雜 17
2-4-1-2-2 異價摻雜 17
2-4-2 降低維度 18
2-4-3 外層保護 19
2-4-4 配體改良 20
第三章 實驗製程與設備 21
3-1 實驗材料 21
3-2 實驗設備 23
3-3 實驗製程 26
3-3-1 Cs-oleate前體溶液的合成 26
3-3-2 CsPbI3與錫摻雜的CsPbI3的合成 27
3-4 量測設備 31
第四章 結果與討論 36
4-1 錫濃度對於CsPbI3的影響 36
4-1-1 Sn2+摻雜CsPbI3 36
4-1-2 Sn4+摻雜CsPbI3 46
4-2 比較Sn2+與Sn4+摻雜對CsPbI3的影響 55
4-3 碘對於CsPbI3的影響 60
第五章 結論與未來展望 66
參考文獻 67
附錄一 XPS的原始數據與擬合數據 72
1. Mizusaki, J., K. Arai, and K. Fueki, Ionic conduction of the perovskite-type halides. Solid State Ionics, 1983. 11(3): p. 203-211.
2. Kojima, A., et al., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society, 2009. 131(17): p. 6050-6051.
3. Tan, Z.-K., et al., Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014. 9(9): p. 687-692.
4. Xing, G., et al., Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nature Materials, 2014. 13(5): p. 476-480.
5. Schmidt, L.C., et al., Nontemplate Synthesis of CH3NH3PbBr3 Perovskite Nanoparticles. Journal of the American Chemical Society, 2014. 136(3): p. 850-853.
6. Zhang, F., et al., Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 2015. 9(4): p. 4533-4542.
7. Protesescu, L., et al., Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 2015. 15(6): p. 3692-3696.
8. Frolova, L.A., et al., Highly Efficient All-Inorganic Planar Heterojunction Perovskite Solar Cells Produced by Thermal Coevaporation of CsI and PbI2. The Journal of Physical Chemistry Letters, 2017. 8(1): p. 67-72.
9. Xiang, S., et al., Highly Air-Stable Carbon-Based α-CsPbI3 Perovskite Solar Cells with a Broadened Optical Spectrum. ACS Energy Letters, 2018. 3(8): p. 1824-1831.
10. Deschler, F., et al., High Photoluminescence Efficiency and Optically Pumped Lasing in Solution-Processed Mixed Halide Perovskite Semiconductors. The Journal of Physical Chemistry Letters, 2014. 5(8): p. 1421-1426.
11. Yakunin, S., et al., Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nature Communications, 2015. 6(1): p. 8056.
12. Shen, Y., et al., Interfacial Nucleation Seeding for Electroluminescent Manipulation in Blue Perovskite Light-Emitting Diodes. Advanced Functional Materials, 2021. 31(45): p. 2103870.
13. Wang, H., et al., Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nature Communications, 2019. 10(1): p. 665.
14. Wang, Y.-K., et al., All-Inorganic Quantum-Dot LEDs Based on a Phase-Stabilized α-CsPbI3 Perovskite. Angewandte Chemie International Edition, 2021. 60(29): p. 16164-16170.
15. Panneerselvam, D.M. and M.Z. Kabir, Evaluation of organic perovskite photoconductors for direct conversion X-ray imaging detectors. Journal of Materials Science: Materials in Electronics, 2017. 28(10): p. 7083-7090.
16. Bi, C., et al., Improved Stability and Photodetector Performance of CsPbI3 Perovskite Quantum Dots by Ligand Exchange with Aminoethanethiol. Advanced Functional Materials, 2019. 29(29): p. 1902446.
17. Liu, S., et al., Doping and surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals for LEDs. Materials Letters, 2020. 259: p. 126857.
18. Liu, F., et al., Colloidal Synthesis of Air-Stable Alloyed CsSn1–xPbxI3 Perovskite Nanocrystals for Use in Solar Cells. Journal of the American Chemical Society, 2017. 139(46): p. 16708-16719.
19. Zhang, C., et al., Effects of CsSnxPb1−xI3 Quantum Dots as Interfacial Layer on Photovoltaic Performance of Carbon-Based Perovskite Solar Cells. Nanoscale Research Letters, 2021. 16(1): p. 74.
20. Bera, S., et al., Limiting Heterovalent B-Site Doping in CsPbI3 Nanocrystals: Phase and Optical Stability. ACS Energy Letters, 2019. 4(6): p. 1364-1369.
21. Dolzhnikov, D.S., et al., Ligand-Free, Quantum-Confined Cs2SnI6 Perovskite Nanocrystals. Chemistry of Materials, 2017. 29(18): p. 7901-7907.
22. Petrović, M., V. Chellappan, and S. Ramakrishna, Perovskites: Solar cells & engineering applications – materials and device developments. Solar Energy, 2015. 122: p. 678-699.
23. Liu, K., et al., Upscaling perovskite solar cells via the ambient deposition of perovskite thin films. Trends in Chemistry, 2021. 3(9): p. 747-764.
24. Hoefler, S.F., G. Trimmel, and T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatshefte für Chemie - Chemical Monthly, 2017. 148(5): p. 795-826.
25. King, G. and P.M. Woodward, Cation ordering in perovskites. Journal of Materials Chemistry, 2010. 20(28): p. 5785-5796.
26. Schlom, D.G., et al., A Thin Film Approach to Engineering Functionality into Oxides. Journal of the American Ceramic Society, 2008. 91(8): p. 2429-2454.
27. Liu, D., et al., Insight into the Improved Phase Stability of CsPbI3 from First-Principles Calculations. ACS Omega, 2020. 5(1): p. 893-896.
28. Zhao, Q., et al., Size-Dependent Lattice Structure and Confinement Properties in CsPbI3 Perovskite Nanocrystals: Negative Surface Energy for Stabilization. ACS Energy Letters, 2020. 5(1): p. 238-247.
29. Masi, S., A.F. Gualdrón-Reyes, and I. Mora-Seró, Stabilization of Black Perovskite Phase in FAPbI3 and CsPbI3. ACS Energy Letters, 2020. 5(6): p. 1974-1985.
30. Cheng, S. and H. Zhong, What Happens When Halide Perovskites Meet with Water? The Journal of Physical Chemistry Letters, 2022. 13(10): p. 2281-2290.
31. Ding, X., et al., Enhancing the Phase Stability of Inorganic α-CsPbI3 by the Bication-Conjugated Organic Molecule for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019. 11(41): p. 37720-37725.
32. De Roo, J., et al., Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals. ACS Nano, 2016. 10(2): p. 2071-2081.
33. Lim, S., et al., Monodisperse Perovskite Colloidal Quantum Dots Enable High-Efficiency Photovoltaics. ACS Energy Letters, 2021. 6(6): p. 2229-2237.
34. Swarnkar, A., W.J. Mir, and A. Nag, Can B-Site Doping or Alloying Improve Thermal- and Phase-Stability of All-Inorganic CsPbX3 (X = Cl, Br, I) Perovskites? ACS Energy Letters, 2018. 3(2): p. 286-289.
35. Ravi, V.K., G.B. Markad, and A. Nag, Band Edge Energies and Excitonic Transition Probabilities of Colloidal CsPbX3 (X = Cl, Br, I) Perovskite Nanocrystals. ACS Energy Letters, 2016. 1(4): p. 665-671.
36. Chen, Z., et al., Cu2+-Doped CsPbI3 Nanocrystals with Enhanced Stability for Light-Emitting Diodes. The Journal of Physical Chemistry Letters, 2021. 12(12): p. 3038-3045.
37. Liu, M., et al., Mn2+-Doped CsPbI3 Nanocrystals for Perovskite Light-Emitting Diodes with High Luminance and Improved Device Stability. Advanced Photonics Research, 2021. 2(11): p. 2100137.
38. Behera, R.K., et al., Doping the Smallest Shannon Radii Transition Metal Ion Ni(II) for Stabilizing α-CsPbI3 Perovskite Nanocrystals. The Journal of Physical Chemistry Letters, 2019. 10(24): p. 7916-7921.
39. Lau, C.F.J., et al., Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. Journal of Materials Chemistry A, 2018. 6(14): p. 5580-5586.
40. Lu, M., et al., Simultaneous Strontium Doping and Chlorine Surface Passivation Improve Luminescence Intensity and Stability of CsPbI3 Nanocrystals Enabling Efficient Light-Emitting Devices. Advanced Materials, 2018. 30(50): p. 1804691.
41. Hu, Y., et al., Bismuth Incorporation Stabilized α-CsPbI3 for Fully Inorganic Perovskite Solar Cells. ACS Energy Letters, 2017. 2(10): p. 2219-2227.
42. Li, X., et al., Indium doped CsPbI3 films for inorganic perovskite solar cells with efficiency exceeding 17%. Nano Research, 2020. 13(8): p. 2203-2208.
43. Shi, J., et al., Efficient and stable CsPbI3 perovskite quantum dots enabled by in situ ytterbium doping for photovoltaic applications. Journal of Materials Chemistry A, 2019. 7(36): p. 20936-20944.
44. Ahmad, W., et al., Inorganic CsPbI3 Perovskite-Based Solar Cells: A Choice for a Tandem Device. Solar RRL, 2017. 1(7): p. 1700048.
45. Chen, P., et al., In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2018. 28(17): p. 1706923.
46. Bai, Y., et al., Dimensional Engineering of a Graded 3D–2D Halide Perovskite Interface Enables Ultrahigh Voc Enhanced Stability in the p-i-n Photovoltaics. Advanced Energy Materials, 2017. 7(20): p. 1701038.
47. Wu, H., et al., Water-stable and ion exchange-free inorganic perovskite quantum dots encapsulated in solid paraffin and their application in light emitting diodes. Nanoscale, 2019. 11(12): p. 5557-5563.
48. Wei, Y., et al., Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a Swelling–Shrinking Strategy toward Superior Water Resistance. Advanced Functional Materials, 2017. 27(39): p. 1703535.
49. Yao, Y., et al., Efficient Quantum Dot Light-Emitting Diodes Based on Trioctylphosphine Oxide-Passivated Organometallic Halide Perovskites. ACS Omega, 2019. 4(5): p. 9150-9159.
50. Hu, Z., et al., Enhanced Two-Photon-Pumped Emission from In Situ Synthesized Nonblinking CsPbBr3/SiO2 Nanocrystals with Excellent Stability. Advanced Optical Materials, 2018. 6(3): p. 1700997.
51. Sun, C., et al., Efficient and Stable White LEDs with Silica-Coated Inorganic Perovskite Quantum Dots. Advanced Materials, 2016. 28(45): p. 10088-10094.
52. Zhong, Q., et al., One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core–Shell Nanoparticles. ACS Nano, 2018. 12(8): p. 8579-8587.
53. Lu, C., et al., Enhanced stabilization of inorganic cesium lead triiodide (CsPbI3) perovskite quantum dots with tri-octylphosphine. Nano Research, 2018. 11(2): p. 762-768.
54. Chen, X., et al., Phase Regulation and Surface Passivation of Stable α-CsPbI3 Nanocrystals with Dual-Mode Luminescence via Synergistic Effects of Ligands. The Journal of Physical Chemistry C, 2022. 126(11): p. 5233-5243.
55. Huang, Y., et al., DDAB-assisted synthesis of iodine-rich CsPbI3 perovskite nanocrystals with improved stability in multiple environments. Journal of Materials Chemistry C, 2020. 8(7): p. 2381-2387.
56. Wang, Z., et al., Efficient and Stable CF3PEAI-Passivated CsPbI3 QDs toward Red LEDs. ACS Applied Materials & Interfaces, 2022. 14(6): p. 8235-8242.
57. Li, M., et al., Synthesis of Two-Dimensional CsPb2X5 (X = Br and I) with a Stable Structure and Tunable Bandgap by CsPbX3 Phase Separation. The Journal of Physical Chemistry Letters, 2022. 13(11): p. 2555-2562.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top