跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/15 01:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林欣岱
研究生(外文):Lin, Xin-Dai
論文名稱:砷離子佈植於微型發光二極體陣列特性影響之研究
論文名稱(外文):Study on the Effect of Arsenic Ion Implantation on the Performance of Micro-Light Emitting Diode Arrays
指導教授:洪瑞華
指導教授(外文):Horng, Ray-Hua
口試委員:吳育任武東星郭浩中謝嘉民洪瑞華
口試委員(外文):Wu, Yuh-RennWuu, Dong-SingKuo, Hao-ChungShieh, Jia-MinHorng, Ray-Hua
口試日期:2023-7-14
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:87
中文關鍵詞:無光罩雷射直寫曝光技術離子佈植micro-LED陣列側壁面積比側壁效應
外文關鍵詞:maskless technologylaser direct writingion implantationmicro-LED arraysidewall surface ratiosidewall effect
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xiv
第一章 序論 1
1.1 前言 1
1.2 研究動機 4
1.3 論文架構 5
第二章 基礎理論 7
2.1 發光二極體發光原理 7
2.2 Micro-LED 側壁效應及修復 8
2.3 離子佈植技術 9
2.3.1 離子佈植系統 9
2.3.2 離子佈植阻滯機制 10
2.3.3 離子佈植通道效應及陰影效應 10
2.3.4 離子佈植摻雜與電性絕緣 12
2.4 貼合技術 13
2.5 量子效率 13
第三章 實驗步驟與量測方法 14
3.1 元件設計及製程流程設計 14
3.1.1 元件及貼合電路設計 14
3.1.2 元件製程流程設計 16
3.2 乾蝕刻定義發光區樣品製備 19
3.2.1 試片清洗 19
3.2.2 蝕刻製程定義發光區 19
3.2.3 鈍化層沉積及蝕刻 21
3.2.4 金屬電極沉積 24
3.3 離子佈植定義發光區樣品製備 26
3.3.1 試片清洗 26
3.3.2 離子佈植定義發光區 26
3.3.3 乾蝕刻至n-GaN以製作n電極 27
3.3.4 金屬電極沉積 28
3.4 元件貼合 30
3.4.1 元件相應貼合電路製作 30
3.4.2 元件貼合 31
3.5 元件量測 33
3.5.1 I-V曲線 33
3.5.2 光電量測分析 33
第四章 結果與討論 34
4.1 三種製程不同像素尺寸藍光單顆micro-LED像素點電性分析 34
4.1.1 I-V特性曲線分析 34
4.1.2 J-V半對數特性曲線分析 36
4.1.3 串聯電阻及並聯電阻計算 38
4.1.4 理想因子 41
4.2 三種製程不同像素尺寸藍光micro-LED陣列貼合後電致發光影像 42
4.3 三種製程不同像素尺寸藍光micro-LED陣列貼合後電性分析 49
4.3.1 I-V特性曲線分析 49
4.3.2 I-V半對數特性曲線分析 52
4.3.3 串聯電阻及並聯電阻 55
4.3.4 理想因子 57
4.4 三種製程不同像素尺寸藍光micro-LED陣列貼合後光電特性分析 59
4.4.1 光輸出功率 59
4.4.2 外部量子效率 64
4.4.3 光電轉換效率 68
4.4.4 電致發光光譜分析 70
4.5 砷離子佈植相關分析 74
第五章 結論與未來展望 77
5.1結論 77
5.2未來展望 79
參考文獻 81
[1] Y. Ukai, "TFT-LCD manufacturing technology—current status and future prospect—," in 2007 International Workshop on Physics of Semiconductor Devices, 2007: IEEE, pp. 29-34.
[2] T. Wu, C.-W. Sher, Y. Lin, C.-F. Lee, S. Liang, Y. Lu, S.-W. Huang Chen, W. Guo, H.-C. Kuo, and Z. Chen, "Mini-LED and micro-LED: promising candidates for the next generation display technology," Applied Sciences, vol. 8, no. 9, p. 1557, 2018.
[3] B. Geffroy, P. Le Roy, and C. Prat, "Organic light‐emitting diode (OLED) technology: materials, devices and display technologies," Polymer international, vol. 55, no. 6, pp. 572-582, 2006.
[4] Y. Wu, J. Ma, P. Su, L. Zhang, and B. Xia, "Full-color realization of micro-LED displays," Nanomaterials, vol. 10, no. 12, p. 2482, 2020.
[5] N. Sun, C. Jiang, Q. Li, D. Tan, S. Bi, and J. Song, "Performance of OLED under mechanical strain: a review," Journal of Materials Science: Materials in Electronics, vol. 31, pp. 20688-20729, 2020.
[6] L. Ma and Y.-f. Shao, "A brief review of innovative strategies towards structure design of practical electronic display device," Journal of Central South University, vol. 27, no. 6, pp. 1624-1644, 2020.
[7] K.-L. Liang, W.-H. Kuo, H.-T. Shen, P.-W. Yu, Y.-H. Fang, and C.-C. Lin, "Advances in color-converted micro-LED arrays," Japanese journal of applied physics, vol. 60, no. SA, p. SA0802, 2020.
[8] K. Ding, V. Avrutin, N. Izyumskaya, Ü. Özgür, and H. Morkoç, "Micro-LEDs, a manufacturability perspective," Applied Sciences, vol. 9, no. 6, p. 1206, 2019.
[9] "Global Micro-LED Market with Covid-19 Impact Analysis by Application (Display (Smartwatch, NTE Device, Smartphone and Tablet, Television, Digital Signage), Lighting (General, Automotive)), Display Panel Size, Vertical and Region - Forecast to 2027." https://www.researchandmarkets.com/reports/5067415/global-micro-led-market-with-covid-19-impact (accessed December, 2021).
[10] "COVID-19下,最新Micro LED廠商動向一覽." https://www.ledinside.com.tw/news/20200701-36799.html (accessed July 1st, 2020).
[11] "顯示技術的終極戰場,Micro LED 全領域展開." https://www.ledinside.com.tw/news/20220818-38163.html (accessed August 18th, 2022).
[12] "三星展示全球首款 146 吋模組化 MicroLED 電視." https://news.samsung.com/tw/%e4%b8%89%e6%98%9f%e5%b1%95%e7%a4%ba%e5%85%a8%e7%90%83%e9%a6%96%e6%ac%be-146-%e5%90%8b%e6%a8%a1%e7%b5%84%e5%8c%96-microled-%e9%9b%bb%e8%a6%96 (accessed September 1st, 2018).
[13] "Micro/Mini LED 技術引領2023顯示趨勢." https://www.ledinside.com.tw/showreport/20230118-38466.html (accessed January 18th, 2023).
[14] S. Zhou, B. Cao, and S. Liu, "Optimized ICP etching process for fabrication of oblique GaN sidewall and its application in LED," Applied Physics A, vol. 105, pp. 369-377, 2011.
[15] Z. Wu, K. Ren, Y. An, L. Yin, X. Lu, A. Guo, and J. Zhang, "Simulation Study on the Size Effect and Transient Characteristics of Micro-LEDs," in 2022 19th China International Forum on Solid State Lighting & 2022 8th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS), 2023: IEEE, pp. 293-295.
[16] H.-H. Huang, S.-K. Huang, Y.-L. Tsai, S.-W. Wang, Y.-Y. Lee, S.-Y. Weng, H.-C. Kuo, and C.-C. Lin, "Investigation on reliability of red micro-light emitting diodes with atomic layer deposition passivation layers," Optics Express, vol. 28, no. 25, pp. 38184-38195, 2020.
[17] F. Jiang, B.-R. Hyun, Y. Zhang, and Z. Liu, "Role of Intrinsic Surface States in Efficiency Attenuation of GaN‐Based Micro‐Light‐Emitting‐Diodes," physica status solidi (RRL)–Rapid Research Letters, vol. 15, no. 2, p. 2000487, 2021.
[18] J. Ye, Y. Peng, C. Luo, H. Wang, X. Zhou, T. Guo, J. Sun, Q. Yan, Y. Zhang, and C. Wu, "Pixelation of GaN based Micro-LED arrays by tailoring injection energy and dose of fluorine ion implantation," Journal of Luminescence, p. 119903, 2023.
[19] J. H. Choi, J. Park, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, J. Kim, D. C. Shin, and Y. Park, "Ion implantation as a new strategy for micro-LED pixelation," in Light-Emitting Devices, Materials, and Applications XXVI, 2022, vol. 12022: SPIE, p. 1202202.
[20] C. Weisbuch, "On the search for efficient solid state light emitters: Past, present, future," ECS Journal of Solid State Science and Technology, vol. 9, no. 1, p. 016022, 2019.
[21] R. J. Shul, L. Zhang, A. G. Baca, C. Willison, J. Han, S. Pearton, and F. Ren, "Inductively coupled plasma-induced etch damage of GaN pn junctions," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 18, no. 4, pp. 1139-1143, 2000.
[22] F. Olivier, A. Daami, C. Licitra, and F. Templier, "Shockley-Read-Hall and Auger non-radiative recombination in GaN based LEDs: A size effect study," Applied Physics Letters, vol. 111, no. 2, p. 022104, 2017.
[23] D. Hwang, A. Mughal, C. D. Pynn, S. Nakamura, and S. P. DenBaars, "Sustained high external quantum efficiency in ultrasmall blue III–nitride micro-LEDs," Applied Physics Express, vol. 10, no. 3, p. 032101, 2017.
[24] S. Liu, S. Han, C. Xu, H. Xu, X. Wang, D. Wang, and Y. Zhu, "Enhanced photoelectric performance of GaN-based Micro-LEDs by ion implantation," Optical Materials, vol. 121, p. 111579, 2021.
[25] Y.-Y. Li, F.-Z. Lin, K.-L. Chi, S.-Y. Weng, G.-Y. Lee, H.-C. Kuo, and C.-C. Lin, "Analysis of size-dependent quantum efficiency in AlGaInP micro–light-emitting diodes with consideration for current leakage," IEEE Photonics Journal, vol. 14, no. 1, pp. 1-7, 2021.
[26] T.-C. Hsu, Y.-T. Teng, Y.-W. Yeh, X. Fan, K.-H. Chu, S.-H. Lin, K.-K. Yeh, P.-T. Lee, Y. Lin, and Z. Chen, "Perspectives on UVC LED: Its progress and application," in Photonics, 2021, vol. 8, no. 6: MDPI, p. 196.
[27] K. R. Son, V. Murugadoss, K. H. Kim, and T. G. Kim, "Investigation of sidewall passivation mechanism of InGaN-based blue microscale light-emitting diodes," Applied Surface Science, vol. 584, p. 152612, 2022.
[28] J. Park, W. Baek, D.-M. Geum, and S. Kim, "Understanding the sidewall passivation effects in AlGaInP/GaInP micro-LED," Nanoscale Research Letters, vol. 17, no. 1, pp. 1-9, 2022.
[29] 凌金傳, "離子植入機台最適氣體類型配置與工件排程," 2010.
[30] K. Nordlund, D. Sundholm, P. Pyykkö, D. M. Zambrano, and F. Djurabekova, "Nuclear stopping power of antiprotons," Physical Review A, vol. 96, no. 4, p. 042717, 2017.
[31] 蕭宏, 半導體製程技術導論. 台灣培生教育, 2007.
[32] H. Xiao, "Ion implantation," 1971.
[33] J. Williams, "Ion implantation of semiconductors," Materials Science and Engineering: A, vol. 253, no. 1-2, pp. 8-15, 1998.
[34] J.-Y. Shiu, J.-C. Huang, V. Desmaris, C.-T. Chang, C.-Y. Lu, K. Kumakura, T. Makimoto, H. Zirath, N. Rorsman, and E. Y. Chang, "Oxygen ion implantation isolation planar process for AlGaN/GaN HEMTs," IEEE electron device letters, vol. 28, no. 6, pp. 476-478, 2007.
[35] A. Taube, E. Kamińska, M. Kozubal, J. Kaczmarski, W. Wojtasiak, J. Jasiński, M. A. Borysiewicz, M. Ekielski, M. Juchniewicz, and J. Grochowski, "Ion implantation for isolation of AlGaN/GaN HEMTs using C or Al," physica status solidi (a), vol. 212, no. 5, pp. 1162-1169, 2015.
[36] 劉柏均 and 吳耀銓, "三五族化合物半導體晶圓接合之基本研究及應用," 2004.
[37] K. Henttinen and T. Suni, "Silicon direct bonding," in Handbook of Silicon Based MEMS Materials and Technologies: Elsevier, 2015, pp. 591-598.
[38] Q. Wang, S.-H. Choa, W. Kim, J. Hwang, S. Ham, and C. Moon, "Application of Au-Sn eutectic bonding in hermetic radio-frequency microelectromechanical system wafer level packaging," Journal of electronic materials, vol. 35, pp. 425-432, 2006.
[39] C. Wang, J. Zeng, K. Zhao, and H. Chan, "Chip scale studies of BCB based polymer bonding for MEMS packaging," in 2008 58th Electronic Components and Technology Conference, 2008: IEEE, pp. 1869-1873.
[40] D.-H. Lee, J.-H. Lee, J.-S. Park, T.-Y. Seong, and H. Amano, "Improving the leakage characteristics and efficiency of GaN-based micro-light-emitting diode with optimized passivation," ECS Journal of Solid State Science and Technology, vol. 9, no. 5, p. 055001, 2020.
[41] R.-H. Horng, C.-X. Ye, P.-W. Chen, D. Iida, K. Ohkawa, Y.-R. Wu, and D.-S. Wuu, "Study on the effect of size on InGaN red micro-LEDs," Scientific reports, vol. 12, no. 1, p. 1324, 2022.
[42] P. Tian, J. J. McKendry, Z. Gong, B. Guilhabert, I. M. Watson, E. Gu, Z. Chen, G. Zhang, and M. D. Dawson, "Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes," Applied Physics Letters, vol. 101, no. 23, p. 231110, 2012.
[43] E. F. Schubert, Light-emitting diodes. Cambridge university press, 2006.
[44] J.-H. Lan and J. Kanicki, "ITO surface ball formation induced by atomic hydrogen in PECVD and HW-CVD tools," Thin Solid Films, vol. 304, no. 1-2, pp. 123-129, 1997.
[45] M. S. Wong, D. Hwang, A. I. Alhassan, C. Lee, R. Ley, S. Nakamura, and S. P. DenBaars, "High efficiency of III-nitride micro-light-emitting diodes by sidewall passivation using atomic layer deposition," Optics express, vol. 26, no. 16, pp. 21324-21331, 2018.
[46] V. Malyutenko, S. Bolgov, and A. Podoltsev, "Current crowding effect on the ideality factor and efficiency droop in blue lateral InGaN/GaN light emitting diodes," Applied Physics Letters, vol. 97, no. 25, p. 251110, 2010.
[47] A. B. M. H. Islam, T. K. Kim, D.-S. Shin, J.-I. Shim, and J. S. Kwak, "Generation of sidewall defects in InGaN/GaN blue micro-LEDs under forward-current stress," Applied Physics Letters, vol. 121, no. 1, p. 013501, 2022.
[48] H. Choi, M. Dawson, P. Edwards, and R. Martin, "High extraction efficiency InGaN micro-ring light-emitting diodes," Applied physics letters, vol. 83, no. 22, pp. 4483-4485, 2003.
[49] S. Lai, W. Lin, J. Chen, T. Lu, S. Liu, Y. Lin, Y. Lu, Y. Lin, Z. Chen, and H.-C. Kuo, "The impacts of sidewall passivation via atomic layer deposition on GaN-based flip-chip blue mini-LEDs," Journal of Physics D: Applied Physics, vol. 55, no. 37, p. 374001, 2022.
[50] A. M. Noor Elahi and J. Xu, "Electrical and optical modeling of gap-free III-nitride micro-LED arrays," AIP Advances, vol. 10, no. 10, p. 105028, 2020.
[51] K. Li, Y. Cheung, W. Cheung, and H. Choi, "Confocal microscopic analysis of optical crosstalk in GaN micro-pixel light-emitting diodes," Applied Physics Letters, vol. 107, no. 17, 2015.
[52] Y. Xu, J. Cui, Z. Hu, X. Gao, and L. Wang, "Pixel crosstalk in naked-eye micro-LED 3D display," Applied Optics, vol. 60, no. 20, pp. 5977-5983, 2021.
[53] S.-C. Zhu, L.-X. Zhao, C. Yang, H.-C. Cao, Z.-G. Yu, and L. Liu, "GaN-based flip-chip parallel micro LED array for visible light communication," in International Conference on Optoelectronics and Microelectronics Technology and Application, 2017, vol. 10244: SPIE, pp. 454-460.
[54] S. Hwang and J. Shim, "A method for current spreading analysis and electrode pattern design in light-emitting diodes," IEEE Transactions on Electron Devices, vol. 55, no. 5, pp. 1123-1128, 2008.
[55] H. Choi and M. Dawson, "Improved current spreading in 370 nm AlGaN microring light emitting diodes," Applied Physics Letters, vol. 86, no. 5, p. 053504, 2005.
[56] M. S. Wong, J. A. Kearns, C. Lee, J. M. Smith, C. Lynsky, G. Lheureux, H. Choi, J. Kim, C. Kim, and S. Nakamura, "Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments," Optics Express, vol. 28, no. 4, pp. 5787-5793, 2020.
[57] J. Park, J. H. Choi, K. Kong, J. H. Han, J. H. Park, N. Kim, E. Lee, D. Kim, J. Kim, and D. Chung, "Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses," Nature Photonics, vol. 15, no. 6, pp. 449-455, 2021.
[58] R. Ni, Z. Yu, Z. Liu, L. Zhang, L. Jia, and Y. Zhang, "Light extraction and Auger recombination in AlGaN-based ultraviolet light-emitting diodes," IEEE Photonics Technology Letters, vol. 32, no. 16, pp. 971-974, 2020.
[59] D.-P. Han, C.-H. Oh, D.-G. Zheng, H. Kim, J.-I. Shim, K.-S. Kim, and D.-S. Shin, "Analysis of nonradiative recombination mechanisms and their impacts on the device performance of InGaN/GaN light-emitting diodes," Japanese Journal of Applied Physics, vol. 54, no. 2S, p. 02BA01, 2014.
[60] D.-G. Zheng, J.-I. Shim, and D.-S. Shin, "Analysis of degradation mechanisms in GaN-based light-emitting diodes under reverse-bias stress: effects of defects and junction-temperature increase," Japanese Journal of Applied Physics, vol. 60, no. 3, p. 032006, 2021.
[61] J. Kou, C.-C. Shen, H. Shao, J. Che, X. Hou, C. Chu, K. Tian, Y. Zhang, Z.-H. Zhang, and H.-C. Kuo, "Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes," Optics Express, vol. 27, no. 12, pp. A643-A653, 2019.
[62] F. Xu, Y. Tan, Z. Xie, and B. Zhang, "Implantation energy-and size-dependent light output of enhanced-efficiency micro-LED arrays fabricated by ion implantation," Optics Express, vol. 29, no. 5, pp. 7757-7766, 2021.
[63] S. O. Kucheyev, J. S. Williams, and S. J. Pearton, "Ion implantation into GaN," Materials Science and Engineering: R: Reports, vol. 33, no. 2-3, pp. 51-108, 2001.
[64] B. Pong, C. Pan, Y. Teng, G. Chi, W.-H. Li, K. Lee, and C.-H. Lee, "Structural defects and microstrain in GaN induced by Mg ion implantation," Journal of applied physics, vol. 83, no. 11, pp. 5992-5996, 1998.
[65] C. Ronning, E. Carlson, and R. F. Davis, "Ion implantation into gallium nitride," Physics Reports, vol. 351, no. 5, pp. 349-385, 2001.
[66] Y. Liu, F. Feng, K. Zhang, F. Jiang, K.-W. Chan, H.-S. Kwok, and Z. Liu, "Analysis of size dependence and the behavior under ultrahigh current density injection condition of GaN-based Micro-LEDs with pixel size down to 3 μm," Journal of Physics D: Applied Physics, vol. 55, no. 31, p. 315107, 2022.
[67] P.-W. Chen, P.-W. Hsiao, H.-J. Chen, B.-S. Lee, K.-P. Chang, C.-C. Yen, R.-H. Horng, and D.-S. Wuu, "On the mechanism of carrier recombination in downsized blue micro-LEDs," Scientific reports, vol. 11, no. 1, p. 22788, 2021.
[68] F. Olivier, S. Tirano, L. Dupré, B. Aventurier, C. Largeron, and F. Templier, "Influence of size-reduction on the performances of GaN-based micro-LEDs for display application," Journal of luminescence, vol. 191, pp. 112-116, 2017.
[69] S. Han, C. Xu, H. Li, S. Liu, H. Xu, Y. Zhu, A. Fang, and X. Wang, "AlGaInP-based Micro-LED array with enhanced optoelectrical properties," Optical Materials, vol. 114, p. 110860, 2021.
[70] W. Liu, D. Zhao, D. Jiang, P. Chen, Z. Liu, J. Zhu, X. Li, F. Liang, J. Liu, and L. Zhang, "Shockley–Read–Hall recombination and efficiency droop in InGaN/GaN multiple-quantum-well green light-emitting diodes," Journal of Physics D: Applied Physics, vol. 49, no. 14, p. 145104, 2016.
[71] S. Pearton, "Ion implantation for isolation of III-V semiconductors," Materials science reports, vol. 4, no. 6, pp. 313-363, 1990.
[72] Z. Ren, Y. Lu, H.-H. Yao, H. Sun, C.-H. Liao, J. Dai, C. Chen, J.-H. Ryou, J. Yan, and J. Wang, "III-nitride deep UV LED without electron blocking layer," IEEE Photonics Journal, vol. 11, no. 2, pp. 1-11, 2019.
[73] J.-H. Ryou, W. Lee, J. Limb, D. Yoo, J. Liu, R. Dupuis, Z. Wu, A. Fischer, and F. Ponce, "Control of quantum-confined Stark effect in InGaN∕ GaN multiple quantum well active region by p-type layer for III-nitride-based visible light emitting diodes," Applied Physics Letters, vol. 92, no. 10, p. 101113, 2008.
[74] Z. Zhuang, D. Iida, M. Velazquez-Rizo, and K. Ohkawa, "606-nm InGaN amber micro-light-emitting diodes with an on-wafer external quantum efficiency of 0.56%," IEEE Electron Device Letters, vol. 42, no. 7, pp. 1029-1032, 2021.
[75] Y.-J. Lee, C.-H. Chiu, C. C. Ke, P. C. Lin, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, "Study of the excitation power dependent internal quantum efficiency in InGaN/GaN LEDs grown on patterned sapphire substrate," IEEE Journal of selected Topics in Quantum Electronics, vol. 15, no. 4, pp. 1137-1143, 2009.
[76] P. Li, Y. Zhao, H. Li, J. Che, Z.-H. Zhang, Z. Li, Y. Zhang, L. Wang, M. Liang, and X. Yi, "Very high external quantum efficiency and wall-plug efficiency 527 nm InGaN green LEDs by MOCVD," Optics Express, vol. 26, no. 25, pp. 33108-33115, 2018.
[77] Y. Qi, H. Liang, D. Wang, Z. Lu, W. Tang, and K. M. Lau, "Comparison of blue and green In Ga N∕ Ga N multiple-quantum-well light-emitting diodes grown by metalorganic vapor phase epitaxy," Applied Physics Letters, vol. 86, no. 10, p. 101903, 2005.
[78] M. Funato, M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, "Blue, green, and amber InGaN/GaN light-emitting diodes on semipolar {11-22} GaN bulk substrates," Japanese Journal of Applied Physics, vol. 45, no. 7L, p. L659, 2006.
電子全文 電子全文(網際網路公開日期:20280812)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊