|
[1] Philip Chen, C. L.; Zhang, C.-Y., Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information Sciences 2014, 275, 314-347. [2] Indiveri, G.; Liu, S. C., Memory and Information Processing in Neuromorphic Systems. Proceedings of the IEEE 2015, 103 (8), 1379-1397. [3] Hong, X.; Loy, D. J.; Dananjaya, P. A.; Tan, F.; Ng, C.; Lew, W., Oxide-based RRAM materials for neuromorphic computing. Journal of Materials Science 2018, 53 (12), 8720-8746. [4] Kuzum, D.; Yu, S.; Philip Wong, H. S., Synaptic electronics: materials, devices and applications. Nanotechnology 2013, 24 (38), 382001. [5] Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J. K.; Aono, M., Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater 2011, 10 (8), 591-5 [6] Bousoulas, P.; Kitsios, S.; Chatzinikolaou, T. P.; Fyrigos, I.-A.; Ntinas, V.; Tsompanas, M.-A.; Sirakoulis, G. C.; Tsoukalas, D., Material design strategies for emulating neuromorphic functionalities with resistive switching memories. Japanese Journal of Applied Physics 2022, 61 (SM), SM0806. [7] Chang, T.-C.; Chang, K.-C.; Tsai, T.-M.; Chu, T.-J.; Sze, S. M., Resistance random access memory. Materials Today 2016, 19 (5), 254-264 [8] Garbin, D. In A variability study of PCM and OxRAM technologies for use as synapses in neuromorphic systems, 2015 [9] Russo, U.; Ielmini, D.; Cagli, C.; Lacaita, A. L., Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices. Ieee Transactions on Electron Devices 2009, 56 (2), 186-192. [10] Chen, X.; Feng, J.; Ma, H. In The resistive switching characteristics in tantalum oxide-based RRAM device via combining high-temperature sputtering with plasma oxidation, 2015 15th Non-Volatile Memory Technology Symposium (NVMTS), 12-14 Oct. 2015; 2015; pp 1-5. [11] Swathi, S. P.; Angappane, S., Low power multilevel resistive switching in titanium oxide-based RRAM devices by interface engineering. Journal of Science: Advanced Materials and Devices 2021, 6 (4), 601-610. [12] Predanocy, M.; Hotový, I.; Čaplovičová, M., Structural, optical and electrical properties of sputtered NiO thin films for gas detection. Applied Surface Science 2017, 395, 208-213. [13] Hitosugi, T.; Yamada, N.; Nakao, S.; Hirose, Y.; Hasegawa, T., Properties of TiO2-based transparent conducting oxides. Physica Status Solidi a-Applications and Materials Science 2010, 207 (7), 1529-1537. [14] Braune, B.; Muller, P.; Schmidt, H. In Tantalum oxide nanomers for optical applications, Conference on Organic-Inorganic Hybrid Materials for Photonics, San Diego, Ca, Jul 19-20; San Diego, Ca, 1998; pp 124-132 [15] Seo, J. W.; Park, J. W.; Lim, K. S.; Yang, J. H.; Kang, S. J., Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Applied Physics Letters 2008, 93 (22) [16] Grabowska, E.; Marchelek, M.; Paszkiewicz-Gawron, M.; Zaleska-Medynska, A., 3 - Metal oxide photocatalysts. In Metal Oxide-Based Photocatalysis, Zaleska-Medynska, A., Ed. Elsevier: 2018; pp 51-209 [17] Robertson, J., High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 2004, 28 (3), 265-291. [18] Birks N, Meier GH, Pettit FS. Introduction to the high-temperature oxidation of metals. Cambridge: Cambridge University Press; 2006. [19] Suri, M., Applications of Emerging Memory Technology. Springer: 2020. [20] Chen, A., A review of emerging non-volatile memory (NVM) technologies and applications. Solid-State Electronics 2016, 125, 25-38. [21] Abbas, Y.; Sokolov, A. S.; Jeon, Y.-R.; Kim, S.; Ku, B.; Choi, C., Structural engineering of tantalum oxide based memristor and its electrical switching responses using rapid thermal annealing. Journal of Alloys and Compounds 2018, 759, 44-51. [22] Wu, L.; Wang, Z.; Fang, Y.; Yu, Z.; Kang, J.; Chen, Q.; Yang, Y.; Ji, Z.; Cai, Y.; Huang, R. In Study on High-Resistance State Instability of TaOx-Based RRAM, 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), IEEE: 2018; pp 1-3. [23] Zhu, Y.; Zheng, K.; Wu, X.; Ang, L., Enhanced stability of filament-type resistive switching by interface engineering. Scientific Reports 2017, 7 (1), 1-7. [24] Jeon, H.; Park, J.; Jang, W.; Kim, H.; Kang, C.; Song, H.; Kim, H.; Seo, H.; Jeon, H., Stabilized resistive switching behaviors of a Pt/TaOx/TiN RRAM under different oxygen contents. physica status solidi (a) 2014, 211 (9), 2189-2194. [25] Li, C.; Wang, F.; Zhang, J.; She, Y.; Zhang, Z.; Liu, L.; Liu, Q.; Hao, Y.; Zhang, K., Improved Uniformity of TaOx-Based Resistive Random Access Memory with Ultralow Operating Voltage by Electrodes Engineering. ECS Journal of Solid State Science and Technology 2020, 9 (4), 041005. [26] Qin, Y.; Wang, Z.; Ling, Y.; Cai, Y.; Huang, R., A TaOx-based RRAM with improved uniformity and excellent analog characteristics by local dopant engineering. Electronics 2021, 10 (20), 2451. [27] Kim, D.; Kim, J.; Kim, S., Enhancement of Resistive and Synaptic Characteristics in Tantalum Oxide-Based RRAM by Nitrogen Doping. Nanomaterials 2022, 12 (19), 3334. [28] She, Y.; Pan, H.; Wang, F.; Li, C.; Zhang, Z.; Han, Y.; Zhang, K. In Improvement on Electronic Characteristics of TAOX/TIOX Dual-Layer Structure Resiative Memory, 2020 China Semiconductor Technology International Conference (CSTIC), IEEE: 2020; pp 1-3. [29] Wu, J.; Cao, J.; Han, W.-Q.; Janotti, A.; Kim, H.-C., Functional metal oxide nanostructures. Springer Science & Business Media: 2011; Vol. 149. [30] Chiu, F.-C., A review on conduction mechanisms in dielectric films. Advances in Materials Science and Engineering 2014, 2014. [31] Lim, E. W.; Ismail, R., Conduction mechanism of valence change resistive switching memory: a survey. Electronics 2015, 4 (3), 586-613. [32] Kumar, A.; Das, M.; Mukherjee, S., Oxide based memristors: fabrication, mechanism, and application. 2018. [33] Zahoor, F.; Azni Zulkifli, T. Z.; Khanday, F. A., Resistive random access memory (RRAM): an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage, modeling, and applications. Nanoscale Res Lett 2020, 15 (1), 1-26. [34] Li, Y.; Zhong, Y.; Zhang, J.; Xu, L.; Wang, Q.; Sun, H.; Tong, H.; Cheng, X.; Miao, X., Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems. Scientific reports 2014, 4 (1), 4906. [35] Sagar, S.; Udaya Mohanan, K.; Cho, S.; Majewski, L. A.; Das, B. C., Emulation of synaptic functions with low voltage organic memtransistor for hardware oriented neuromorphic computing. Scientific reports 2022, 12 (1), 3808. [36] Prakash, A.; Hwang, H., Multilevel cell storage and resistance variability in resistive random access memory. Physical Sciences Reviews 2016, 1 (6). [37] Chen, P.-Y.; Lin, B.; Wang, I.-T.; Hou, T.-H.; Ye, J.; Vrudhula, S.; Seo, J.-s.; Cao, Y.; Yu, S. In Mitigating effects of non-ideal synaptic device characteristics for on-chip learning, 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), IEEE: 2015; pp 194-199. [38] Chen, P.-A.; Hsu, W.-C.; Chiang, M.-H., Bilayer Modulation With Dual Vacancy Filaments by Intentionally Oxidized Titanium Oxide for Multilayer-hBN RRAM. IEEE Transactions on Nanotechnology 2021, 20, 687-694. [39] Yao, C.; Ismail, M.; Hao, A.; Thatikonda, S. K.; Huang, W.; Qin, N.; Bao, D., Annealing atmosphere effect on the resistive switching and magnetic properties of spinel Co 3 O 4 thin films prepared by a sol–gel technique. RSC advances 2019, 9 (22), 12615-12625. [40] Rittich, J.; Jung, S.; Siekmann, J.; Wuttig, M., Indium‐Tin‐Oxide (ITO) Work Function Tailoring by Covalently Bound Carboxylic Acid Self‐Assembled Monolayers. physica status solidi (b) 2018, 255 (8), 1800075. [41] Liu, Z.; Liu, Y.; Wang, X.; Li, W.; Zhi, Y.; Wang, X.; Li, P.; Tang, W., Energy-band alignments at ZnO/Ga2O3 and Ta2O5/Ga2O3 heterointerfaces by X-ray photoelectron spectroscopy and electron affinity rule. Journal of Applied Physics 2019, 126 (4), 045707. [42] Chen, J.-Z.; Chen, T.-H.; Lai, L.-W.; Li, P.-Y.; Liu, H.-W.; Hong, Y.-Y.; Liu, D.-S., Preparation and characterization of surface photocatalytic activity with NiO/TiO2 nanocomposite structure. Materials 2015, 8 (7), 4273-4286. [43] Birks, N.; Meier, G. H.; Pettit, F. S., Introduction to the high temperature oxidation of metals. Cambridge university press: 2006. [44] Prakash, A.; Jana, D.; Maikap, S., TaO x-based resistive switching memories: prospective and challenges. Nanoscale Res Lett 2013, 8 (1), 1-17.
|