跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 15:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張智超
研究生(外文):Chang, Chih-Chao
論文名稱:使用時間解析光譜研究鐵酸鉍及鈷鐵氧體複合薄膜受激後之能量轉移過程
論文名稱(外文):Using time-resolved spectroscopy to investigate energy transfer process in BFOX-CFO1-X nanocomposites
指導教授:許鈺敏
指導教授(外文):Sheu, Yu-Miin
口試委員:莊振益郭昌洋黃彥霖
口試委員(外文):Juang, Jenh-YihKuo, Chang-YangHuang, Yen-Lin
口試日期:2022-12-14
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:60
中文關鍵詞:多鐵材料時間解析能量轉移選擇性激發形變波奈米複合材料
外文關鍵詞:MultiferroicsTime-resolved SpectroscopySelective ExcitationEnergy TransferStrain WaveNanocomposite
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
2000年以後,出現許多利用鈣鈦礦-尖晶石自組裝效應所合成的磁電效應材料,其中最著名的莫過於BFOX-CFO1-X垂直複合材料,有別於以往所使用的電場,我們想透過光來選擇性控制BFOX-CFO1-X中的磁電效應。故我們先利用特定能量的激發光確認BFOX-CFO1-X之選擇性激發,接著透過飛秒雷射時間解析BFOX-CFO1-X吸收光子後之能量轉移,其中發現光譜上吸收過後的25 ps內的指數衰減項皆不相同,說明BFOX-CFO1-X吸收後能量轉移的方式會隨著鈷鐵氧體體積比例不同而有所差異,且根據函數擬合的結果指出此變化和BFO的連續相變存在著強關聯性。
透過改變探測光波長測試後發現光譜中25 ps以後的振盪訊號為形變波致使探測光干涉的結果。但BFOX-CFO1-X光譜是由兩種不同頻率的振盪所組成,推測激發BFOX-CFO1-X後可能存在兩種形變波,為此需要更多的可解析時間及樣品濃度解析度才能更進一步了解。
技術層面上,本論文透過改變探測光偏振發現樣品表面條紋和各向異性訊號(ΔRan/R)存在相關性,並根據實驗結果推論樣品晶軸和條紋呈45度。
There have been many magnetoelectric materials synthesized by perovskite-spinel self-assemble effect. Among them, the most studied case is BiFeO3(BFO) and CoFe2O4(CFO) vertical heterostructures (BFOX-CFO1-X). Different from the electric (magnetic) field that controls magnetic (electric) properties, we are looking for potential light control of magnetoelectric effects in BFOX-CFO1-X that is free from electrical contact.
We first searched a selective excitation in BFOX-CFO1-X to pump one material but not the other, confirming the excitation of octahedral site in CFO. We then analyzed energy transfers after the absorption. We found that the major difference in the data occurs before 25 ps and the intensity of signal will vary with the ratio of CFO. The decay fitting points to a strong correlation between energy transfer and the phase transitions of BFO.
By changing wavelengths of the probe light, we confirm that the oscillatory signal in our time-resolved reflectivity is interferences of the probe light caused by the deformation from a strain wave. However, the oscillatory frequency for composites got an extra peak. From probe wavelength-dependent measurement, it is expected that an additional strain wave is generated in the composite; however, more information and experiment is required to further identify.
By changing the polarization of the probe light, we found that there is a correlation between the stripes of the sample surface and the anisotropic signal (ΔRan/R). It is inferred that the crystal axis and stripes are at 45 degrees, making the anisotropic signal as a quick tool to identify such correlations.
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 文獻回顧暨研究動機 1
第二章 原理 5
2-1樣品特性 6
2-1.1 鈷鐵氧體 6
2-1.2 鐵酸鉍 8
2-1.3 鐵酸鉍及鈷鐵氧體複合薄膜 10
2-1.4 鈷鐵氧體應力及磁疇 14
2-2光學激發能量轉移及形變波生成與傳遞 16
2-2.1 激發後能量轉移 16
2-2.2 能量轉移及形變波生成 18
2-2.3 形變波的傳遞與探測 19
第三章 實驗方法 22
3-1時間解析法 23
3-2實驗系統架設 25
第四章 結果與討論 27
4-1鈷鐵氧體光學吸收性質 28
4-1.1鈷鐵氧體吸收光譜 28
4-1.2激發鈷鐵氧體後能量轉移過程及後續 31
4-2 BFOX-CFO1-X薄膜在差分反射光譜(ΔR/R)上之差異 35
4-2.1室溫下BFOX-CFO1-X薄膜內光譜訊號之差異 35
4-2.2 升溫過程BFOX-CFO1-X薄膜內光譜訊號之差異 38
4-3各向異性光譜(ΔRan/R) 41
4-3.1鈷鐵氧體條紋和各向異性之關係. 41
4-3.2鈷鐵氧體條紋和磁疇關聯 44
4-3.3複合薄膜條紋和各向異性之關係… 45
4-4 BFOX-CFO1-X薄膜之光譜振盪訊號分析 47
4-4.1 BFOX-CFO1-X薄膜內光譜振盪相位之差異. 47
4-4.2光譜中13.67 GHz振盪訊號分析及測試 53
第五章 結論與展望 55
5-1結論 56
5-2未來展望 57
參考文獻 58
﹝1﹞ C. Thomsen, J. Strait, Z. Vardeny, H. J. Maris, J. Tauc and J.J. Hauser, Phys. Rev. Lett 53, 10 (1984)
﹝2﹞ C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 43, 6 (1986)
﹝3﹞ Nicola A. Spaldin and Manfred Fiebig, Sci 309, 5733 (2005)
﹝4﹞ Yuan Zhang, Junfeng Dai, Xiangli Zhong, Dongwen Zhang, Gaokuo Zhong and Jiangyu Li. Adv. Sci. 8, 2102488 (2021)
﹝5﹞ Mariusz Lejman, Gwenaelle Vaudel, Ingrid C. Infante, Pascale Gemeiner, Vitalyi E. Gusev, Brahim Dkhil and Pascal Ruello, Nat. Comm 5, 4301 (2015)
﹝6﹞ Pascal Ruello and Vitalyi E. Gusev, Ultrasonics 56, 21–35 (2015)
﹝7﹞ Tahta Amrillah, Suresh K. Vandrangi, Yugandhar Bitla, Thi Hien Do, Sheng-Chieh Liao, Chih-Ya Tsai, Yi-Ying Chin, Yen-Ting Liu, Man-Ling Lin, Qing He, Hong-Ji Lin, Hsin-Yi Lee, Chih-Huang Lai, Elke Arenholz, Jenh-Yih Juang and Ying-Hao Chu, Nanoscale 8, 8847 (2016)
﹝8﹞ Haimei Zheng, Qian Zhan, Florin Zavaliche, Matt Sherburne, Florian Straub, Maria P. Cruz, Long-Qing Chen, Uli Dahmen and R. Ramesh, Nano. Lett. 6 , 7, 1401-1407 (2006)
﹝9﹞ Nicolas M. Aimon, Jiexi Liao, and C. A. Ross, Appl. Phys. Lett. 101, 232901 (2012)
﹝10﹞ Heng-Jui Liu,Wen-I Liang, and Ying-Hao Chu Haimei Zheng, R. Ramesh, MRS Communications 4, 31–44 (2014)
﹝11﹞ Hao-Min Xu, Huanchun Wang, Ji Shi, Yuanhua Lin and Cewen Nan, Nanomaterials 6, 215 (2016)
﹝12﹞ Xue Zeng, Junwei Zhang, Shimeng Zhu, Xia Deng, Hongbin Ma, Junli Zhang, Qiang Zhang, Peng Li, Desheng Xue, Nigel J. Mellors, Xixiang Zhang and Yong Peng, Nanoscale 9, 7493–7500 (2017)
﹝13﹞ R.C. Rai, S.Wilser, M. Guminiak, B. Cai and M.L. Nakarmi, Appl. Phys. A 106(1):207-211 (2011)
﹝14﹞ H. Zheng, J. Wang, S. E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S. R. Shinde, S. B. Ogale, F. Bai, D. Viehland, Y. Jia,5 D. G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Sci. 303, 30 (2004)
﹝15﹞ M. Vinod, G. Raghavan and V. Sivasubramanian, Sci. Rep. 8:17706 (2018)
﹝16﹞ W Siemons, C Beekman, G J MacDougall, J L Zarestky, S E Nagler and H M Christen, J. Phys. D: Appl. Phys. 47, 3 (2014)
﹝17﹞ G. J. MacDougall, H. M. Christen, W. Siemons, M. D. Biegalski, J. L. Zarestky, S. Liang, E. Dagotto and S. E. Nagler, Phys. Rev. B 85, 100406(R) (2012)
﹝18﹞ J Kreisel, P Jadhav, O Chaix-Pluchery, M Varela, N Dix, F Sánchez and J Fontcuberta, J. Phys. Condens. Matter 23, 342202 (2011)
﹝19﹞ X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. McGill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong and J. L. Musfeldt, Phys. Rev. B 79, 134425 (2009)
﹝20﹞ M. Abes, C. T. Koops, S. B. Hrkac, J. McCord, N. O. Urs, N. Wolff, L. Kienle, W. J. Ren, L. Bouchenoire, B. M. Murphy, and O. M. Magnussen, Phys. Rev. B 93, 195427 (2016)
﹝21﹞ Yi-De Liou, Yu-You Chiu, Ryan Thomas Hart, Chang-Yang Kuo, Yen-Lin Huang, Yuan-Chih Wu, Rajesh V. Chopdekar, Heng-Jui Liu, Arata Tanaka, Chien-Te Chen, Chun-Fu Chang, Liu Hao Tjeng, Ye Cao, Valanoor Nagarajan, Ying-Hao Chu, Yi-Chun Chen and Jan-Chi Yang, Nature Materials 580, 18 (2019)
﹝22﹞ Y. M. Sheu, S. A. Trugman, Y.-S. Park, S. Lee, H. T. Yi, S.-W. Cheong, Q. X. Jia, A. J. Taylor and R. P. Prasankumar, Appl. Phys. Lett. 100, 242904 (2012)
﹝23﹞ Sytle M. Antao, Ian Jackson, Baosheng Li, Jennifer Kung, Jiuhua Chen, Ishmael Hassan, Robert C. Liebermann and John B. Parise, Phys. and Chem. Minerals 34:345–350 (2007)
﹝24﹞ M. A. Carpenter, S. V. Sinogeikin, J. D. Bass, D. L. Lakshtanov and S. D. Jacobsen, J. Phys Condens. Matt. 22 035403 (2010)
﹝25﹞ Ming-zhi Yin , Min-qiang Wang, Xi Yao, J. Zhejiang University Sci. A 5 (2004)
﹝26﹞ Y. M. Sheu, Y. M. Chang, C. P. Chang, Y. H. Li, K. R. Babu, G. Y. Guo, T. Kurumaji, and Y. Tokura, Phys. Rev. X 9, 031038 (2019)
﹝27﹞ Y. M. Sheu, Y. J. Chien, C. Uher, S. Fahy, and D. A. Reis, Phys. Rev. B 87, 075429 (2013)
﹝28﹞ J. Chen, M. Trigo, S. Fahy, É. D. Murray, Y. M. Sheu, T. Graber, R. Henning, Y. J. Chien, C. Uher, and D. A. Reis, Appl. Phys. Lett. 102, 181903 (2013)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top