跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/17 20:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪子洋
研究生(外文):Hong, Zi-Yang
論文名稱:鐵電超晶格氧化鉿鋯超薄體多晶矽通道場效電晶體之研究應用於儲存級記憶體
論文名稱(外文):Investigation of Ferroelectric Superlattice HfxZr1-xO2 Ultra-Thin Body Poly-Si Channel FETs for Storage Class Memory Applications
指導教授:趙天生
指導教授(外文):Chao, Tien-Sheng
口試委員:張廖貴術林群雄蘇俊榮
口試委員(外文):Chang-Liao, Kuei-ShuLin, Chun-HsiungSu, Chun-Jung
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:64
中文關鍵詞:鐵電超晶格氧化鉿鋯超薄體多晶矽場效電晶體記憶體
外文關鍵詞:FerroelectricSuperlatticeHZOUltra-Thin BodyPoly-SiFETMemory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:58
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
近幾年,隨著半導體產業與科技的演進,對於非揮發性記憶體的需求愈來愈大,目前市場上仍以儲存電荷為基礎的SONOS非揮發性記憶體為主流,但SONOS NVM仍存在著重要的問題,即為了得到足夠的記憶體窗 (Memory window)以及數據保持度(Data retention),使得氧化層(ONO)仍須保持一定的厚度(15~20nm),難以繼續微縮,也導致了SONOS NVM需要較高的操作電壓(> 15V),因此鐵電NVM因其較高的可微縮性(< 5nm)、較低的操作電壓(< 5V)以及快速的寫入/抹除速度而受到許多關注,被視為是能取代SONOS NVM的一大候選者。
本篇論文中,成功研究了具有超晶格(Superlattice)二氧化鉿鋯(HfO2-ZrO2)結構的鐵電電容器,透過超晶格的結構來能有效提升鐵電層結晶的品質,同時提高電容器的2Pr值,並在二氧化鉿鋯的介面進行氧電漿處理(O2 plasma treatment),歸因於氧電漿處理,修補了二氧化鉿鋯介面中的缺陷與氧空缺,提高鐵電介面層的品質,並降低寫入抹除次數增加對於Pr值衰減的影響,以改善耐久度。 
後續實驗我們將厚度為10奈米之超晶格二氧化鉿鋯當作閘極氧化層並製作出了無接面超薄體(Junctionless Ultra-thin body) 鐵電場效電晶體(FeFETs),並進行耐久度及數據保持度的量測,以7V/100ns及-9V/100ns的電壓條件下進行寫入和抹除,元件可以承受超過107次以上的操作,並保持超過1V的記憶體窗,且數據能儲存超過10年。
In recent years, with the advancement of the semiconductor industry and technology, there has been an increasing demand for non-volatile memory (NVM). Currently, the market is still dominated by SONOS (Silicon-Oxide-Nitride-Oxide-Silicon) NVM, which is based on charge storage. However, SONOS NVM faces some significant challenges. To achieve sufficient memory window and data retention, the oxide-nitride-oxide (ONO) layer needs to maintain a certain thickness (15~20 nm), making scaling more difficult. Additionally, SONOS NVM requires high operating voltages (> 15V). As a result, Ferroelectric NVM has attracted significant attention due to its higher scalability (< 5 nm), lower operating voltages (< 5V), and faster program/erase speeds. Owing to these advantages, FeFETs were regarded as a promising candidate to replace SONOS NVM.
In this thesis, the ferroelectric capacitors have been successfully fabricated with a hafnium oxide-zirconium oxide (HfO2-ZrO2) superlattice structure. The superlattice structure effectively enhances the crystallization quality of the ferroelectric layer and increases the 2Pr value of the capacitors. Additionally, an O2 plasma treatment is performed on the interface of the hafnium oxide-zirconium oxide, which passivates the defects and oxygen vacancies in the interface and improves the quality of the interface layer. This treatment also reduces the degradation of the Pr during programming and erasing operations, thereby enhancing the endurance of the device.
In subsequent experiments, a 10 nm thick superlattice HfO2-ZrO2 is used as the gate-stack to fabricate Junctionless Ultra-thin body Ferroelectric Field effect transistor memory. The devices are subjected to endurance and data retention measurements under program and erase conditions of 7V/100ns and -9V/100ns. The devices can withstand over 107 operations while maintaining a memory window of over 1V. Furthermore, the data can be stored for more than 10 years.
摘要 i
Abstract iii
Contents v
List of Tables vii
List of Figures viii
Chapter 1 Introduction 1
1.1 General Background 1
1.1.1 Polycrystalline Silicon 1
1.1.2 Ultra-Thin Body 1
1.1.3 Junctionless Transistor 2
1.1.4 Ferroelectric Materials & HfxZr1-xO2 3
1.1.5 ZrO2 Seed layer 5
1.1.6 Superlattice Structure 5
1.1.7 FeFET Memory 6
1.2 Motivation 8
1.3 Data Extraction 9
1.4 Organization of Thesis 10
Chapter 2 Electrical Characteristics and Material Analysis of Ferroelectric HZO Superlattice Capacitors with O2 plasma Interface Treatment 20
2.1 Introduction 20
2.2 MFM Capacitors Fabrication Process 21
2.3 Results and discussion 21
2.3.1 Electrical Characteristics 21
2.3.2 Material Analysis 24
2.4 Summary 25
Chapter 3 Memory Characteristics of UTB FeFET with Superlattice Structure 37
3.1 Introduction 37
3.2 FeFET Fabrication Process 37
3.3 TEM Image 38
3.4 Program/Erase Characteristics 38
3.5 Endurance and Retention Characteristics 40
3.6 Summary 42
Chapter 4 Conclusion and Future Work 55
4.1 Conclusion 55
4.2 Future Work 56
Reference 57
簡歷 (Vita) 64
[1] C. Fa and T. Jew, "The poly-silicon insulated-gate field-effect transistor," IEEE Transactions on Electron Devices, no. 2, pp. 290-291, 1966.
[2] J. Y. Seto, "The electrical properties of polycrystalline silicon films," Journal of Applied Physics, vol. 46, no. 12, pp. 5247-5254, 1975.
[3] C.-M. Lee and B.-Y. Tsui, "High-Performance Poly-Si Nanowire Thin-Film Transistors Using the HfO2 Gate Dielectric," IEEE electron device letters, vol. 32, no. 3, pp. 327-329, 2011.
[4] H.-C. Lin and C.-J. Su, "High-performance poly-Si nanowire NMOS transistors," IEEE transactions on nanotechnology, vol. 6, no. 2, pp. 206-212, 2007.
[5] M. Stewart, R. S. Howell, L. Pires, and M. K. Hatalis, "Polysilicon TFT technology for active matrix OLED displays," IEEE transactions on electron devices, vol. 48, no. 5, pp. 845-851, 2001.
[6] C.-W. Lin, C.-H. Ho, C. Lu, M. C.-T. Chao, and K. Roy, "A process/device/circuit/system compatible simulation framework for poly-Si TFT based SRAM design," in 2013 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2013: IEEE, pp. 440-443.
[7] J.-T. Lin, K.-D. Huang, and B.-T. Jheng, "Performances of a capacitorless 1T-DRAM using polycrystalline silicon thin-film transistors with trenched body," IEEE electron device letters, vol. 29, no. 11, pp. 1222-1225, 2008.
[8] H.-T. Lue et al., "A 128Gb (MLC)/192Gb (TLC) single-gate vertical channel (SGVC) architecture 3D NAND using only 16 layers with robust read disturb, long-retention and excellent scaling capability," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017: IEEE, pp. 19.1. 1-19.1. 4.
[9] Y.-H. Chen, W. C.-Y. Ma, and T.-S. Chao, "High-performance poly-Si TFT with ultra-thin channel film and gate oxide for low-power application," Semiconductor Science and Technology, vol. 30, no. 10, p. 105017, 2015.
[10] C.-H. Shen et al., "Monolithic 3D chip integrated with 500ns NVM, 3ps logic circuits and SRAM," in 2013 IEEE International Electron Devices Meeting, 2013: IEEE, pp. 9.3. 1-9.3. 4.
[11] E. Suzuki et al., "Highly suppressed short-channel effects in ultrathin SOI n-MOSFETs," IEEE Transactions on Electron Devices, vol. 47, no. 2, pp. 354-359, 2000.
[12] K. Schuegraf, M. C. Abraham, A. Brand, M. Naik, and R. Thakur, "Semiconductor logic technology innovation to achieve sub-10 nm manufacturing," IEEE Journal of the Electron Devices Society, vol. 1, no. 3, pp. 66-75, 2013.
[13] C.-W. Lee et al., "Performance estimation of junctionless multigate transistors," Solid-State Electronics, vol. 54, no. 2, pp. 97-103, 2010.
[14] L.-C. Chen et al., "The physical analysis on electrical junction of junctionless FET," AIP Advances, vol. 7, no. 2, p. 025301, 2017.
[15] M.-J. Tsai et al., "Fabrication and characterization of stacked poly-Si nanosheet with gate-all-around and multi-gate junctionless field effect transistors," IEEE Journal of the Electron Devices Society, vol. 7, pp. 1133-1139, 2019.
[16] C.-W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, "Junctionless multigate field-effect transistor," Applied Physics Letters, vol. 94, no. 5, p. 053511, 2009.
[17] J.-P. Colinge et al., "Junctionless nanowire transistor (JNT): Properties and design guidelines," Solid-State Electronics, vol. 65, pp. 33-37, 2011.
[18] J.-P. Colinge et al., "Nanowire transistors without junctions," Nature nanotechnology, vol. 5, no. 3, pp. 225-229, 2010.
[19] S.-J. Choi, D.-I. Moon, J. Duarte, S. Kim, and Y.-K. Choi, "A novel junctionless all-around-gate SONOS device with a quantum nanowire on a bulk substrate for 3D stack NAND flash memory," in 2011 Symposium on VLSI Technology-Digest of Technical Papers, 2011: IEEE, pp. 74-75.
[20] H.-T. Lue et al., "A novel bit alterable 3D NAND flash using junction-free p-channel device with band-to-band tunneling induced hot-electron programming," in 2013 Symposium on VLSI Technology, 2013: IEEE, pp. T152-T153.
[21] A. Sheikholeslami and P. G. Gulak, "A survey of circuit innovations in ferroelectric random-access memories," Proceedings of the IEEE, vol. 88, no. 5, pp. 667-689, 2000.
[22] J. Müller, P. Polakowski, S. Mueller, and T. Mikolajick, "Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects," ECS Journal of Solid State Science and Technology, vol. 4, no. 5, p. N30, 2015.
[23] J. Muller et al., "Ferroelectricity in simple binary ZrO2 and HfO2," Nano letters, vol. 12, no. 8, pp. 4318-4323, 2012.
[24] M. H. Park et al., "Surface and grain boundary energy as the key enabler of ferroelectricity in nanoscale hafnia-zirconia: a comparison of model and experiment," Nanoscale, vol. 9, no. 28, pp. 9973-9986, 2017.
[25] M. H. Park et al., "A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants," Journal of Materials Chemistry C, vol. 5, no. 19, pp. 4677-4690, 2017.
[26] K.-Y. Chen, P.-H. Chen, R.-W. Kao, Y.-X. Lin, and Y.-H. Wu, "Impact of plasma treatment on reliability performance for HfZrO x-based metal-ferroelectric-metal capacitors," IEEE Electron Device Letters, vol. 39, no. 1, pp. 87-90, 2017.
[27] J. Müller et al., "Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories," in 2013 IEEE International Electron Devices Meeting, 2013: IEEE, pp. 10.8. 1-10.8. 4.
[28] S. S. Cheema et al., "Enhanced ferroelectricity in ultrathin films grown directly on silicon," Nature, vol. 580, no. 7804, pp. 478-482, 2020.
[29] D.-R. Hsieh, C.-C. Lee, and T.-S. Chao, "Role of Nitrogen in Ferroelectricity of Hf x Zr 1-x O 2-Based Capacitors With Metal-Ferroelectric-Insulator-Metal Structure," IEEE Transactions on Electron Devices, vol. 69, no. 4, pp. 2074-2079, 2022.
[30] Y.-S. Kuo, "Novel Gate-all-around Polysilicon Nanowires Ferroelectric Field-effect Transistors and Memories," Master's Thesis, 2021.
[31] T. Onaya et al., "Improvement in ferroelectricity of HfxZr1− xO2 thin films using ZrO2 seed layer," Applied Physics Express, vol. 10, no. 8, p. 081501, 2017.
[32] W. Xiao et al., "Performance improvement of Hf 0.5 Zr 0.5 O 2-based ferroelectric-field-effect transistors with ZrO 2 seed layers," IEEE Electron Device Letters, vol. 40, no. 5, pp. 714-717, 2019.
[33] S.-Y. Lee et al., "Experimental demonstration of stacked gate-all-around poly-Si nanowires negative capacitance FETs with internal gate featuring seed layer and free of post-metal annealing process," IEEE Electron Device Letters, vol. 40, no. 11, pp. 1708-1711, 2019.
[34] S.-Y. Lee, "A Study on Using Seed-Layer to Improve the Stacked Gate-All-Around erroelectric Field-Effect Transistor and the Ferroelectric Tunneling Junction," Doctoral Dissertation, 2020.
[35] S.-Y. Lee et al., "Experimental demonstration of performance enhancement of MFMIS and MFIS for 5-nm× 12.5-nm poly-Si nanowire gate-all-around negative capacitance FETs featuring seed-layer and PMA-free process," in 2019 Silicon Nanoelectronics Workshop (SNW), 2019: IEEE, pp. 1-2.
[36] M. Hyuk Park, H. Joon Kim, Y. Jin Kim, W. Lee, T. Moon, and C. Seong Hwang, "Evolution of phases and ferroelectric properties of thin Hf0. 5Zr0. 5O2 films according to the thickness and annealing temperature," Applied Physics Letters, vol. 102, no. 24, 2013.
[37] A. G. Chernikova et al., "Improved ferroelectric switching endurance of La-doped Hf0. 5Zr0. 5O2 thin films," ACS applied materials & interfaces, vol. 10, no. 3, pp. 2701-2708, 2018.
[38] M. H. Park, H. J. Kim, Y. J. Kim, W. Jeon, T. Moon, and C. S. Hwang, "Ferroelectric properties and switching endurance of Hf0. 5Zr0. 5O2 films on TiN bottom and TiN or RuO2 top electrodes," physica status solidi (RRL)–Rapid Research Letters, vol. 8, no. 6, pp. 532-535, 2014.
[39] M. H. Park et al., "A comprehensive study on the mechanism of ferroelectric phase formation in hafnia-zirconia nanolaminates and superlattices," Applied Physics Reviews, vol. 6, no. 4, p. 041403, 2019.
[40] S. L. Weeks, A. Pal, V. K. Narasimhan, K. A. Littau, and T. Chiang, "Engineering of ferroelectric HfO2–ZrO2 nanolaminates," ACS Applied Materials & Interfaces, vol. 9, no. 15, pp. 13440-13447, 2017.
[41] Y.-K. Liang et al., "ZrO 2-HfO 2 Superlattice Ferroelectric Capacitors With Optimized Annealing to Achieve Extremely High Polarization Stability," IEEE Electron Device Letters, vol. 43, no. 9, pp. 1451-1454, 2022.
[42] Y. Peng et al., "HfO 2-ZrO 2 superlattice ferroelectric capacitor with improved endurance performance and higher fatigue recovery capability," IEEE Electron Device Letters, vol. 43, no. 2, pp. 216-219, 2021.
[43] D. Lehninger et al., "Ferroelectric [HfO2/ZrO2] Superlattices with Enhanced Polarization, Tailored Coercive Field, and Improved High Temperature Reliability," Advanced Physics Research, 2023.
[44] B. Cui et al., "Back-End-of-Line Compatible HfO 2/ZrO 2 Superlattice Ferroelectric Capacitor with High Endurance and Remnant Polarization," IEEE Electron Device Letters, 2023.
[45] J. Moll and Y. Tarui, "A new solid state memory resistor," IEEE Transactions on Electron Devices, vol. 10, no. 5, pp. 338-338, 1963.
[46] I. H. Lone, J. Aslam, N. R. Radwan, A. H. Bashal, A. F. Ajlouni, and A. Akhter, "Multiferroic ABO3 transition metal oxides: a rare interaction of ferroelectricity and magnetism," Nanoscale research letters, vol. 14, no. 1, pp. 1-12, 2019.
[47] S. Mueller, S. Slesazeck, T. Mikolajick, J. Müller, P. Polakowski, and S. Flachowsky, "Next-generation ferroelectric memories based on FE-HfO 2," in 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM), 2015: IEEE, pp. 233-236.
[48] X. Chen, X. Yin, M. Niemier, and X. S. Hu, "Design and optimization of FeFET-based crossbars for binary convolution neural networks," in 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018: IEEE, pp. 1205-1210.
[49] S.-C. Yan et al., "Multilevel Cell Ferroelectric HfZrO FinFET With High Speed and Large Memory Window Using AlON Interfacial Layer," IEEE Electron Device Letters, vol. 44, no. 1, pp. 44-47, 2022.
[50] Y. Long et al., "A ferroelectric FET based power-efficient architecture for data-intensive computing," in Proceedings of the International Conference on Computer-Aided Design, 2018, pp. 1-8.
[51] T. Ma and J.-P. Han, "Why is nonvolatile ferroelectric memory field-effect transistor still elusive?," IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, 2002.
[52] K. Ni et al., "Critical role of interlayer in Hf 0.5 Zr 0.5 O 2 ferroelectric FET nonvolatile memory performance," IEEE Transactions on Electron Devices, vol. 65, no. 6, pp. 2461-2469, 2018.
[53] H.-T. Lue et al., "Advantage of extremely-thin body (Tsi~ 3nm) device to boost the memory window for 3D NAND flash," in 2019 Symposium on VLSI Technology, 2019: IEEE, pp. T210-T211.
[54] X. Tian, S. Shibayama, T. Nishimura, T. Yajima, S. Migita, and A. Toriumi, "Evolution of ferroelectric HfO2 in ultrathin region down to 3 nm," Applied Physics Letters, vol. 112, no. 10, p. 102902, 2018.
[55] T. Mittmann, M. Materano, S.-C. Chang, I. Karpov, T. Mikolajick, and U. Schroeder, "Impact of oxygen vacancy content in ferroelectric HZO films on the device performance," in 2020 IEEE International Electron Devices Meeting (IEDM), 2020: IEEE, pp. 18.4. 1-18.4. 4.
[56] M. Jerry et al., "Ferroelectric FET analog synapse for acceleration of deep neural network training," in 2017 IEEE International Electron Devices Meeting (IEDM), 2017: IEEE, pp. 6.2. 1-6.2. 4.
[57] D. Zhou et al., "Wake-up effects in Si-doped hafnium oxide ferroelectric thin films," Applied Physics Letters, vol. 103, no. 19, p. 192904, 2013.
[58] A. K. Tagantsev, I. Stolichnov, E. Colla, and N. Setter, "Polarization fatigue in ferroelectric films: Basic experimental findings, phenomenological scenarios, and microscopic features," Journal of Applied Physics, vol. 90, no. 3, pp. 1387-1402, 2001.
[59] J. Chen et al., "Impact of oxygen vacancy on ferroelectric characteristics and its implication for wake-up and fatigue of HfO 2-based thin films," IEEE Transactions on Electron Devices, vol. 69, no. 9, pp. 5297-5301, 2022.
[60] D. R. Hsieh, C. C. Lee, and T. S. Chao, "Role of Nitrogen in Ferroelectricity of HfxZr1-xO2-Based Capacitors With Metal-Ferroelectric-Insulator-Metal Structure," IEEE Transactions on Electron Devices, vol. 69, no. 4, pp. 2074-2079, 2022, doi: 10.1109/TED.2022.3153263.
[61] S. Dünkel et al., "A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond," in 2017 IEEE International Electron Devices Meeting (IEDM), 2-6 Dec. 2017 2017, pp. 19.7.1-19.7.4, doi: 10.1109/IEDM.2017.8268425.
[62] M. Trentzsch et al., "A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs," in 2016 IEEE International Electron Devices Meeting (IEDM), 3-7 Dec. 2016 2016, pp. 11.5.1-11.5.4, doi: 10.1109/IEDM.2016.7838397.
[63] K. Florent et al., "Vertical Ferroelectric HfO2 FET based on 3-D NAND Architecture: Towards Dense Low-Power Memory," in 2018 IEEE International Electron Devices Meeting (IEDM), 1-5 Dec. 2018 2018, pp. 2.5.1-2.5.4, doi: 10.1109/IEDM.2018.8614710.
[64] W. C.-Y. Ma et al., "Impacts of pulse conditions on endurance behavior of ferroelectric thin-film transistor non-volatile memory," Semiconductor Science and Technology, vol. 38, no. 3, p. 035020, 2023/02/16 2023, doi: 10.1088/1361-6641/acb8d2.
[65] M. M. Hasan et al., "Improvement of Amorphous InGaZnO Thin-Film Transistor With Ferroelectric ZrOx/HfZrO Gate Insulator by 2 Step Sequential Ar/O2 Treatment," IEEE Electron Device Letters, vol. 43, no. 5, pp. 725-728, 2022, doi: 10.1109/LED.2022.3162325.
[66] S. Jeong et al., "All-Sputter-Deposited Hf0.5Zr0.5O2 Double-Gate Ferroelectric Thin-Film Transistor With Amorphous Indium–Gallium–Zinc Oxide Channel," IEEE Electron Device Letters, vol. 44, no. 5, pp. 749-752, 2023, doi: 10.1109/LED.2023.3260860.
[67] H. T. Lue et al., "Advantage of Extremely-thin Body (Tsi~3nm) Device to Boost the Memory Window for 3D NAND Flash," in 2019 Symposium on VLSI Technology, 9-14 June 2019 2019, pp. T210-T211, doi: 10.23919/VLSIT.2019.8776483.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊