跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張譽騰
研究生(外文):Chang, Yu-Teng
論文名稱:基於等效熱傳導係數之系統層級晶片熱建模方法
論文名稱(外文):A Simplified System-Level Thermal Modeling Method via Effective Heat Transfer Coefficients for IC Design
指導教授:李育民李育民引用關係
指導教授(外文):Lee, Yu-Min
口試委員:洪崇智陳富強黃培育
口試日期:2022-09-02
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:英文
論文頁數:28
中文關鍵詞:熱建模方法系統層級晶片層級等效熱傳導係數簡化熱模型
外文關鍵詞:Thermal modeling methodSystem-levelChip-levelEffective heat transfer coefficientSimplified thermal model
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出了一種系統級的熱建模方法,將所有系統元件簡化為晶片邊界的等效熱傳導係數。我們應用熱學和電路定理的技巧進行簡化,並與先前的工作相結合,包括電路板建模、擴散熱阻等。在實驗驗證中,我們測試了德州儀器的 AWR1843 雷達傳感器(單熱源)和三星 Galaxy S4 的智能手機(雙熱源)。實驗結果顯示,簡化前和簡化後的模型,用 Ansys Icepak 模擬的運行時間分別減少了 11.64 倍和 12.61 倍。其中,隨著運行時間的改善,AWR1843 的均方根誤差僅約為 0.657 ℃,Galaxy S4 各源的誤差為 0.684 ℃ 和 0.694 ℃。最後,我們將我們的簡化模型以有限差分法演示給系統級和晶片級混合模擬,使得運行時間減少了 1000 倍以上。
This work presents a system-level thermal modeling method, which simplifies all system components to effective heat transfer coefficients for the boundaries of the integrated circuit. We apply several thermal and circuit theorem techniques for simplification and combine them with previous work, including PCB modeling, spreading resistance, etc. In experimental validation, we test the AWR1843 radar sensor of Texas Instrument (single source) and smartphone of Samsung Galaxy S4 (multiple sources). The experimental result shows that the model before and after simplifying reduced the runtime by 11.64× and 12.61× simulated with Ansys Icepak. With the runtime improvement, the root-mean-square (RMS) error is only about 0.657 ℃ for AWR1843 and 0.684 ℃ & 0.694 ℃ for each source of Galaxy S4. Ultimately, we also demonstrate our simplified model with finite difference method to a system-level and chip-level simulation hybrid, where the runtime reduces by over 1000×.
Chinese Abstract i
English Abstract ii
Acknowledgements iii
Contents iv
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.1 Constructed Thermal Resistance Model . . . . . . . . . . . . . . . . . 3
1.3.2 Simplified System Components to HTCs Boundaries . . . . . . . . . . 3
1.3.3 Combined Chip-level Simulation with System-level Structures in Ultra-
Fast Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Preliminary 5
2.1 Conduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 One-Dimensional Thermal Model . . . . . . . . . . . . . . . . . . . . 5
2.2 Free Convection and Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Thermal Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Natural Convection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3 Methodology of Heat Transfer Coefficients Estimation and Temperature Calculation
9
3.1 Methodology Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.1.1 Compute Thermal Resistance and Convert to Effective HTCs . . . . . . 9
iv
3.1.2 Combine Chip-Level Thermal Simulation with System-Level Structure 10
3.2 Thermal Spreading Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Heat Transfer in Print Circuit Board . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Techniques for Simplifying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4.1 Common Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . 14
4 Validating Model Formulation and Solution Methods 18
4.1 Radar Sensor Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Smartphone Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Experimental Results 23
5.1 Experimental Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Experimental Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 23
6 Conclusion 26
Bibliography 27
[1] Y. Yang, Z. Gu, C. Zhu, R. P. Dick, and L. Shang, “ISAC: Integrated space-and-timeadaptive
chip-package thermal analysis,” IEEE TCAD, 26(1):86–99, 2007.
[2] R. Zhang, M. R. Stan, and K. Skadron, ”HotSpot 6.0: Validation, Acceleration and Extension.”
University of Virginia, Tech. Report CS-2015-04
[3] F. Terraneo, A. Leva, W. Fornaciari, M. Zapater, and D. Atienza, “3D-ICE 3.0: efficient
nonlinear MPSoC thermal simulation with pluggable heat sink models,”
IEEE TCAD, 1(14), 2021.
[4] T. Y.Wang and C. C. P. Chen, “3D thermal-ADI: A linear-time chip level transient thermal
simulator,” IEEE TCAD, 21(12):1434–1245, 2002.
[5] Y. Zhan and S. S. Sapatnekar, “High-efficiency Green function-based thermal simulation
algorithms,” IEEE TCAD, 26(9):1661–1675, 2007.
[6] F. P. Incropera, D. P. DeWitt, T. L. Bergman, and A. S. Lavine, “Principles of heat and
mass transfer, seventh edition. John Wiley & Sons,” 2013.
[7] EIA/JEDEC standard JESD51-2a integrated circuits thermal test method environmental
conditions - natural convection. In Electronic Industries Association, JC15 committee,
1995.
[8] Z. Duan, X. Lv, H. Ma, L. Su, and M. Zhang, “Analysis of flow characteristics and pressure
drop for an impinging plate fin heat sink with elliptic bottom profiles,” Appl. Sci.,
10(1):225, 2020.
[9] P. Teertstra, M. M. Yovanovich, and J. R. Culham, “Analytical forced convection modeling
of plate fin heat sinks,” JEM, 10(4):253-261, 2000.
[10] Y. S. Muzychka, M. M. Yovanovich, and J. R. Culham. ”Thermal spreading resistance in
compound and orthotropic systems.” JTHT, 18(1):45-51, 2004.
[11] H. W. Chiou, Y. M Lee, S. Y. Shiau, C. W. Pan, and T. Y. Chen, “Phone-nomenon: A
system-level thermal simulator for handheld devices,” In ASPDAC, 2019.
[12] R. L. Costa and V. Vlassov, “PCB Effective Thermal Conductivity for Spacecraft Electronic
Boxes Thermal Analysis and Design,” In STCW, 2015.
[13] Examples of Therminator, https://zh.ifixit.com/Teardown/Samsung+Galaxy+S4+Teardow
n/13947?pk vid=17d82acf586408271657602362062a6a
[14] iFixit GS4 teardown, https://github.com/mjdousti/Therminator/tree/master/examples
電子全文 電子全文(網際網路公開日期:20271011)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top