跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/05 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳翊欣
研究生(外文):Chen,Yi-Xin
論文名稱:結合光電容積圖與小波散射之情緒強健性身分識別系統
論文名稱(外文):Emotion-Robust Human Identification from PPG Signals Using Wavelet Scattering Transform
指導教授:張文輝
指導教授(外文):Chang, Wen-Whei
口試委員:張文輝陳信宏黃敬群
口試委員(外文):Chang, Wen-WheiChen, Sin-HorngHuang, Ching-Chun
口試日期:2022-10-24
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電機學院電信學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:59
中文關鍵詞:身分識別基準特徵光電容積圖情緒強健性小波散射轉換主成分分析稀疏表示分類器
外文關鍵詞:human identificationfiducial featurephotoplethysmographyemotion-robustwavelet scattering transformprincipal components analysissparse representation classifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:15
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
中文摘要..............i
Abstract..............ii
目錄 ..............iv
圖目錄..............vi
表目錄..............viii
第一章 緒論 ..............1
1.1 研究背景與方向..............1
1.2 文獻回顧..............2
1.3 全文架構..............3
第二章 光電容積圖基本原理..............4
2.1 心臟構造..............4
2.2 光電容積圖的量測..............5
2.3 PPG 開源資料庫..............7
2.3.1 MIMIC-III 資料庫..............7
2.3.2 DEAP 資料庫..............10
第三章 特徵擷取機制..............13
3.1 系統架構..............13
3.2 訊號預處理..............14
3.3 小波散射網路..............16
3.4 套件與參數選擇..............21
3.5 主成分分析..............23
第四章 稀疏表示分類機制..............26
4.1 字典學習演算法..............27
4.2 稀疏表示係數的計算..............30
4.3 稀疏表示分類器..............33
第五章 實驗結果與分析..............39
5.1 環境設定及使用工具..............39
5.2 參數優化..............40
5.2.1 訊號長度的設定..............41
5.2.2 不變性尺度的設定..............43
5.2.3 質量因子的設定..............44
5.3 特徵擷取的效能比較..............47
5.4 分類器效能比較..............49
5.5 與前人實驗結果比較..............51
5.5 不同情緒下的強健性分析..............52
第六章 結論與未來展望..............54
參考文獻..............56
[1] Jain, Anil K., et al. An identity-authentication system using fingerprints. Proceedings of the IEEE, 1997, 85.9: 1365-1388.
[2] Feng, Guo-Can; Yuen, Pong Chi; Dai, Dao-Qing. Human face recognition using PCA on wavelet subband. Journal of electronic imaging, 2000, 9.2: 226-233.
[3] Monro, D. M.; Rakshit, S.; Zhang, D. DCT-based iris recognition. IEEE transactions on pattern analysis and machine intelligence, 2007, 29.4: 586-595.
[4] Jindal, V., et al. An adaptive deep learning approach for PPG-based identification. In: 2016 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2016. p. 6401-6404.
[5] Kavsaoglu, A. R.; Polat, K.; Bozkurt, M. R. A novel feature ranking algorithm for biometric recognition with PPG signals. Computers in Biology and Medicine, 2014, 49: 1-14.
[6] Karimian, N., et al. Human recognition from photoplethysmography (ppg) based on non-fiducial features. In: 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017. p. 4636-4640.
[7] 馬偕小兒/心臟外科團隊[Online] Available:http://chdchildren.weebly.com/35469356722749124120303402451533247.html
[8]欣傳媒[Online]
Available: https://www.xinmedia.com/article/195016
[9] Lee, M. S., et al. Fast emotion recognition based on single pulse PPG signal with convolutional neural network. Applied Sciences, 2019, 9.16: 3355.
[10] Physionet [Online]
Available: https://archive.physionet.org/cgi-bin/atm/ATM
[11] DEAP dataset [Online]
Available: https://www.eecs.qmul.ac.uk/mmv/datasets/deap/
[12] Yao, J.; Sun, X.; Wan, Y. A pilot study on using derivatives of photoplethysmographic signals as a biometric identifier. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2007. p. 4576-4579.
[13] Shriram, R.; Martin, B.; Sundhararajan, M.; and Daimiwal, N. Comparison of Acceleration Plethysmogram Acquired Using Optical Signal and Pressure Signal, International Journal of Signal Processing, Image Processing and Pattern Recognition Vol. 10, No. 9 (2017), pp. 57-68
[14] A guide for using the wavelet transform in machine learning [Online]
Available: https://ataspinar.com/2018/12/21/a-guide-for-using-the-wavelet-transform-in-machine-learning/
[15] Wikipedia [Online]
Available: https://en.wikipedia.org/wiki/Gabor_transform
[16] Mallat, S. Group invariant scattering. Communications on Pure and Applied Mathematics, 2012, 65.10: 1331-1398.
[17] Anden, J.; Mallat, S. Deep scattering spectrum. IEEE Transactions on Signal Processing, 2014, 62.16: 4114-4128.
[18] Pennebaker, W. B.; Mitchell, J. L. JPEG: Still image data compression standard. Springer Science & Business Media, 1992.
[19] 鞍點示意圖[Online]
Available: https://zh.wikipedia.org/wiki/File:Saddle_point.png
[20] Mallat, S. G.; Zhang, Zhifeng. Matching pursuits with time-frequency dictionaries. IEEE Transactions on signal processing, 1993, 41.12: 3397-3415.
[21] Pati, Y. C.; Rezaiifar, R.; Krishnaprasad, P. S. Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th Asilomar conference on signals, systems and computers. IEEE, 1993. p. 40-44.
[22] Donoho, D. L.; Elad, M. Maximal Sparsity Representation via l Minimization. IEEE Transactions on Information Theory, 2002.
[23] Gao, Shenghua; Tsang, Ivor Wai-Hung; Chia, Liang-Tien. Kernel sparse representation for image classification and face recognition. In: European conference on computer vision. Springer, Berlin, Heidelberg, 2010. p. 1-14.
[24] Naseem, I.; Togneri, R.; Bennamoun, M. Sparse representation for speaker identification. In: 2010 20th International Conference on Pattern Recognition. IEEE, 2010. p. 4460-4463.
[25] Wright, J., et al. Robust face recognition via sparse representation. IEEE transactions on pattern analysis and machine intelligence, 2008, 31.2: 210-227.
[26] MathWorks [Online]
Available: https://www.mathworks.com/help/wavelet/ug/wavelet-scattering.html
[27] Grant, M.; Boyd, S. (2013, Sep.). CVX: Matlab software for disciplined convex programming (version 2.0 beta) [Online].
Available: http://cvxr.com/cvx
[28] Sarkar, A.; Abbott, A. L.; Doerzaph, Z. Biometric authentication using photoplethysmography signals. In: 2016 IEEE 8th International Conference on Biometrics Theory, Applications and Systems (BTAS). IEEE, 2016. p. 1-7.
[29] Jindal, V., et al. An adaptive deep learning approach for PPG-based identification. In: 2016 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, 2016. p. 6401-6404.
[30] Yang, Junfeng, et al. Study on ppg biometric recognition based on multifeature extraction and naive bayes classifier. Scientific Programming, 2021, 2021.
[31] Liu, Zhishuai, et al. Wavelet scattering transform for ECG beat classification. Computational and Mathematical Methods in Medicine, 2020, 2020.
[32] K-近鄰演算法 - 維基百科,自由的百科全書 (wikipedia.org) [Online]
[33] Gu, Y. Y.; Zhang, Y.; Zhang, Y. T. A novel biometric approach in human verification by photoplethysmographic signals. In: 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine, 2003. IEEE, 2003. p. 13-14.
電子全文 電子全文(網際網路公開日期:20231104)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top