|
[1] "3rd Generation Partnership Project." https://www.3gpp.org/release-15 (accessed 2019). [2] F. H. Raab, "Efficiency of Doherty RF Power-Amplifier Systems," IEEE Transactions on Broadcasting, vol. BC-33, no. 3, pp. 77-83, 1987, doi: 10.1109/TBC.1987.266625. [3] M. Iwamoto, A. Williams, C. Pin-Fan, A. G. Metzger, L. E. Larson, and P. M. Asbeck, "An extended Doherty amplifier with high efficiency over a wide power range," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2472-2479, 2001, doi: 10.1109/22.971638. [4] Y. Youngoo, C. Jeonghyeon, S. Bumjae, and K. Bumman, "A fully matched N-way Doherty amplifier with optimized linearity," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp. 986-993, 2003, doi: 10.1109/TMTT.2003.808713. [5] K. Jangheon, C. Jeonghyeon, K. Ildu, and K. Bumman, "Optimum operation of asymmetrical-cells-based linear Doherty power Amplifiers-uneven power drive and power matching," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 5, pp. 1802-1809, 2005, doi: 10.1109/TMTT.2005.847073. [6] W. C. E. Neo, J. Qureshi, M. J. Pelk, J. R. Gajadharsing, and L. C. N. d. Vreede, "A Mixed-Signal Approach Towards Linear and Efficient $N$-Way Doherty Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 866-879, 2007, doi: 10.1109/TMTT.2007.895160. [7] J. Moon, J. Kim, I. Kim, J. Kim, and B. Kim, "A Wideband Envelope Tracking Doherty Amplifier for WiMAX Systems," IEEE Microwave and Wireless Components Letters, vol. 18, no. 1, pp. 49-51, 2008, doi: 10.1109/LMWC.2007.912019. [8] J. Choi, D. Kang, D. Kim, and B. Kim, "Optimized Envelope Tracking Operation of Doherty Power Amplifier for High Efficiency Over an Extended Dynamic Range," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 6, pp. 1508-1515, 2009, doi: 10.1109/TMTT.2009.2020674. [9] S. Singh and P. Chawla, "Design and Performance Analysis of Broadband Doherty Power Amplifier for 5G Communication System," in 2021 2nd International Conference for Emerging Technology (INCET), 21-23 May 2021 2021, pp. 1-4, doi: 10.1109/INCET51464.2021.9456379. [10] D. Xiong, C. Liu, L. Huang, and H. Wang, "A 3.3-3.7 GHz Broadband Doherty Power Amplifier," in 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-4 Dec. 2021 2021, vol. Volume1, pp. 1-3, doi: 10.1109/ISAPE54070.2021.9753068. [11] X. Yue, B. Zhang, X. Liu, Y. Zhou, and L. Zhang, "A 1000W Wideband Recursive Four-way Doherty Amplifier for Base-station Application," in 2020 50th European Microwave Conference (EuMC), 12-14 Jan. 2021 2021, pp. 296-299, doi: 10.23919/EuMC48046.2021.9338156. [12] H. Zhou, J. R. Perez-Cisneros, S. Hesami, K. Buisman, and C. Fager, "A Generic Theory for Design of Efficient Three-Stage Doherty Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 2, pp. 1242-1253, 2022, doi: 10.1109/TMTT.2021.3126885. [13] W. Feipeng, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, "Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1244-1255, 2005, doi: 10.1109/TMTT.2005.845716. [14] I. Kim, Y. Y. Woo, J. Kim, J. Moon, J. Kim, and B. Kim, "High-Efficiency Hybrid EER Transmitter Using Optimized Power Amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 11, pp. 2582-2593, 2008, doi: 10.1109/TMTT.2008.2004898. [15] F. Wang et al., "An Improved Power-Added Efficiency 19-dBm Hybrid Envelope Elimination and Restoration Power Amplifier for 802.11g WLAN Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4086-4099, 2006, doi: 10.1109/TMTT.2006.885575. [16] F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L. E. Larson, "A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier," IEEE Journal of Solid-State Circuits, vol. 42, no. 6, pp. 1271-1281, 2007, doi: 10.1109/JSSC.2007.897170. [17] J. Choi, D. Kim, D. Kang, and B. Kim, "A Polar Transmitter With CMOS Programmable Hysteretic-Controlled Hybrid Switching Supply Modulator for Multistandard Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 7, pp. 1675-1686, 2009, doi: 10.1109/TMTT.2009.2021880. [18] N. A. Shairi, B. H. Ahmad, and A. C. Z. Khang, "Design and analysis of broadband high isolation of discrete packaged PIN diode SPDT switch for wireless data communication," in 2011 IEEE International RF & Microwave Conference, 12-14 Dec. 2011 2011, pp. 91-94, doi: 10.1109/RFM.2011.6168703. [19] P. Song, R. L. Schmid, A. Ç. Ulusoy, and J. D. Cressler, "A high-power, low-loss W-band SPDT switch using SiGe PIN diodes," in 2014 IEEE Radio Frequency Integrated Circuits Symposium, 1-3 June 2014 2014, pp. 195-198, doi: 10.1109/RFIC.2014.6851695. [20] H. E. Liu, X. Lin, H. Y. Chang, and Y. C. Wang, "10-MHz-to-70-GHz Ultra-Wideband Low-Insertion-Loss SPST and SPDT Switches Using GaAs PIN Diode MMIC Process," in 2018 Asia-Pacific Microwave Conference (APMC), 6-9 Nov. 2018 2018, pp. 1217-1219, doi: 10.23919/APMC.2018.8617438. [21] W. H. Doherty, "A New High Efficiency Power Amplifier for Modulated Waves," Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, 1936, doi: 10.1109/JRPROC.1936.228468. [22] B. Kim, J. Kim, I. Kim, and J. Cha, "The Doherty power amplifier," IEEE Microwave Magazine, vol. 7, no. 5, pp. 42-50, 2006, doi: 10.1109/MW-M.2006.247914. [23] C. H. Kim and B. Park, "Fully-Integrated Two-Stage GaN MMIC Doherty Power Amplifier for LTE Small Cells," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 918-920, 2016, doi: 10.1109/LMWC.2016.2615018. [24] G. Lv, W. Chen, L. Chen, and Z. Feng, "A Fully Integrated C-band GaN MMIC Doherty Power Amplifier with High Gain and High Efficiency for 5G Application," in 2019 IEEE MTT-S International Microwave Symposium (IMS), 2-7 June 2019 2019, pp. 560-563, doi: 10.1109/MWSYM.2019.8701103. [25] S. H. Li, S. S. H. Hsu, J. Zhang, and K. C. Huang, "A Sub-6 GHz Compact GaN MMIC Doherty PA with a 49.5% 6 dB back-off PAE for 5G Communications," in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 10-15 June 2018 2018, pp. 805-807, doi: 10.1109/MWSYM.2018.8439474. [26] A. Seidel, J. Wagner, and F. Ellinger, "3.6 GHz Asymmetric Doherty PA MMIC in 250 nm GaN for 5G Applications," in 2020 German Microwave Conference (GeMiC), 9-11 March 2020 2020, pp. 1-4. [27] R. J. Liu, X. W. Zhu, X. Jiang, and D. Xia, "A 4.9-GHz GaN MMIC Doherty Power Amplifier for 5G Application," in 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 28-30 Aug. 2019 2019, pp. 1-3, doi: 10.1109/RFIT.2019.8929213. [28] F. Thome, A. Leuther, and O. Ambacher, "Low-Loss Millimeter-Wave SPDT Switch MMICs in a Metamorphic HEMT Technology," IEEE Microwave and Wireless Components Letters, vol. 30, no. 2, pp. 197-200, 2020, doi: 10.1109/LMWC.2019.2958209. [29] V. Vassilev, A. Vilenskiy, H. T. Chou, M. Ivashina, and H. Zirath, "A 55-105 GHz PIN Diode SPDT Switch," in 2021 International Symposium on Antennas and Propagation (ISAP), 19-22 Oct. 2021 2021, pp. 1-2, doi: 10.23919/ISAP47258.2021.9614359. [30] Y. Gong, J. W. Teng, and J. D. Cressler, "A Compact, High-Power, 60 GHz SPDT Switch Using Shunt-Series SiGe PIN Diodes," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2-4 June 2019 2019, pp. 15-18, doi: 10.1109/RFIC.2019.8701812. [31] L. Zhao, W. F. Liang, J. Y. Zhou, and X. Jiang, "Compact 35–70 GHz SPDT Switch With High Isolation for High Power Application," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 485-487, 2017, doi: 10.1109/LMWC.2017.2690834. [32] J. He, Y. Z. Xiong, and Y. P. Zhang, "Analysis and Design of 60-GHz SPDT Switch in 130-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3113-3119, 2012, doi: 10.1109/TMTT.2012.2211380. [33] J. G. Yang and K. Yang, "Broadband InGaAs PIN Traveling-Wave Switch Using a BCB-Based Thin-Film Microstrip Line Structure," IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 647-649, 2009, doi: 10.1109/LMWC.2009.2029745.
|