跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/08 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周承諺
研究生(外文):Chou, Cheng-Yen
論文名稱:應用於 5G 通訊的 Doherty放大器和 Switch
論文名稱(外文):Doherty Amplifier and Switch Applied for 5G Communication
指導教授:蔡作敏
指導教授(外文):Tsai, Zuo-Min
口試委員:徐碩鴻張鴻埜陳咨吰
口試委員(外文):Hsu, Shuo-HungChang, Hong-YehChen, Tzu-hung
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:99
中文關鍵詞:Doherty放大器功率放大器5G通訊
外文關鍵詞:Doherty AmplifierSwitch5GmmWave
相關次數:
  • 被引用被引用:0
  • 點閱點閱:70
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出的兩個電路都希望使用在5G通訊環境底下,第一個電路為Doherty放大器,使用穩懋的GaN 0.25um製程實現,第二個電路為高功率Switch,使用穩懋的GaAs PIN Diode製程實現。
首先,本文提出的兩級Doherty放大器工作在4.4GHz-5GHz,第一級為Driver放大器,經過功率分配器進入第二級的Doherty放大器,提供36.2dBm的飽和功率,在飽和功率以及10 dB 回退功率下的PAE分別為41%和18%,P1dB是36dBm。
另外提出一個電路是可以應用在高功率環境下的SPDT(Single Pole Double Throw) Switch,頻寬覆蓋範圍為36GHz-49GHz,損耗為1.7dB,反射係數為13dB,IP1dB是21dBm,因為量測的Driver功率放大器達到P1dB所以提早飽和,而隔離度為20dB,電流是30mA,整體功耗為0.123W。
The thesis is composed of two parts under the condition of the 5G communication. First circuit is the Doherty Amplifier using WIN’s 0.25 GaN process. The other circuit is high power switch by WIN’s PIN diode process.
At the beginning of the thesis, a two stage Doherty amplifier is proposed. It works at frequency between 4.4 GHz and 5 GHz. The first stage is driver stage, and then the signal goes through the power divider, finally reaching the second stage. The Doherty Amplifer offer the 36.2 dBm saturated power, and the PAE of the saturated power and the 10 dB back-off power is 41% and 18% respectively. The Doherty amplifier reaches output 1 dB compression point at 36 dBm.
The other circuit is a SPDT(Single Pole Double Throw) switch for high power environment covering the frequency from 36 GHz to 49 GHz. The insertion loss is 1.7dB, and return loss is 13 dB. Input 1 dB compression point is 21 dBm because of the driver amplifier reached the compression first. The isolation of the proposed switch is 20 dB, and current is 30mA. Total power of switch is 0.123W.
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
表目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 論文架構 2
第二章 功率放大器 Equation Section 2 3
2.1 功率放大器分類 3
2.1.1 Class A 3
2.1.2 Class B 4
2.1.3 Class AB 5
2.1.4 Class C 5
2.2 S參數 6
2.3 穩定度 8
2.4 線性度 9
2.4.1 P1dB 9
2.4.2 IP3 9
2.5 EVM 12
第三章Doherty 放大器Equation Section 3 13
3.1 基本架構 13
3.1.1 對稱架構 14
3.1.2 非對稱架構 18
3.2 線性度 21
第四章Doherty 放大器設計與量測Equation Section 4 23
4.1 功率分配器設計 23
4.1.1 威爾金森功率分配器 23
4.1.2 傳輸線的LC模型 24
4.1.3 功率分配器設計 26
4.2 Doherty放大器設計 32
4.2.1 電晶體尺寸選擇 33
4.2.2 Peak 放大器和Carrier放大器的匹配 39
4.2.3 Doherty放大器的實現 45
4.3 量測 51
4.3.1 量測架設 51
4.3.2 量測結果 54
第五章23GHz-31GHz高功率SwitchEquation Section 5 61
5.1 二極體模型 61
5.1.1 小訊號模型 61
5.1.2 大訊號模型 63
5.2 基本架構 65
5.2.1 串聯二極體 65
5.2.2 並聯二極體 68
5.2.3 串聯-並聯以及並聯-串聯二極體架構 71
5.3 設計 75
5.4 量測 83
5.4.1 量測架設 83
5.4.2 量測結果 87
5.4.3 Switch 除錯 90
第六章 結論 92
附錄 93
參考資料 96
[1] "3rd Generation Partnership Project." https://www.3gpp.org/release-15 (accessed 2019).
[2] F. H. Raab, "Efficiency of Doherty RF Power-Amplifier Systems," IEEE Transactions on Broadcasting, vol. BC-33, no. 3, pp. 77-83, 1987, doi: 10.1109/TBC.1987.266625.
[3] M. Iwamoto, A. Williams, C. Pin-Fan, A. G. Metzger, L. E. Larson, and P. M. Asbeck, "An extended Doherty amplifier with high efficiency over a wide power range," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2472-2479, 2001, doi: 10.1109/22.971638.
[4] Y. Youngoo, C. Jeonghyeon, S. Bumjae, and K. Bumman, "A fully matched N-way Doherty amplifier with optimized linearity," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp. 986-993, 2003, doi: 10.1109/TMTT.2003.808713.
[5] K. Jangheon, C. Jeonghyeon, K. Ildu, and K. Bumman, "Optimum operation of asymmetrical-cells-based linear Doherty power Amplifiers-uneven power drive and power matching," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 5, pp. 1802-1809, 2005, doi: 10.1109/TMTT.2005.847073.
[6] W. C. E. Neo, J. Qureshi, M. J. Pelk, J. R. Gajadharsing, and L. C. N. d. Vreede, "A Mixed-Signal Approach Towards Linear and Efficient $N$-Way Doherty Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 5, pp. 866-879, 2007, doi: 10.1109/TMTT.2007.895160.
[7] J. Moon, J. Kim, I. Kim, J. Kim, and B. Kim, "A Wideband Envelope Tracking Doherty Amplifier for WiMAX Systems," IEEE Microwave and Wireless Components Letters, vol. 18, no. 1, pp. 49-51, 2008, doi: 10.1109/LMWC.2007.912019.
[8] J. Choi, D. Kang, D. Kim, and B. Kim, "Optimized Envelope Tracking Operation of Doherty Power Amplifier for High Efficiency Over an Extended Dynamic Range," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 6, pp. 1508-1515, 2009, doi: 10.1109/TMTT.2009.2020674.
[9] S. Singh and P. Chawla, "Design and Performance Analysis of Broadband Doherty Power Amplifier for 5G Communication System," in 2021 2nd International Conference for Emerging Technology (INCET), 21-23 May 2021 2021, pp. 1-4, doi: 10.1109/INCET51464.2021.9456379.
[10] D. Xiong, C. Liu, L. Huang, and H. Wang, "A 3.3-3.7 GHz Broadband Doherty Power Amplifier," in 2021 13th International Symposium on Antennas, Propagation and EM Theory (ISAPE), 1-4 Dec. 2021 2021, vol. Volume1, pp. 1-3, doi: 10.1109/ISAPE54070.2021.9753068.
[11] X. Yue, B. Zhang, X. Liu, Y. Zhou, and L. Zhang, "A 1000W Wideband Recursive Four-way Doherty Amplifier for Base-station Application," in 2020 50th European Microwave Conference (EuMC), 12-14 Jan. 2021 2021, pp. 296-299, doi: 10.23919/EuMC48046.2021.9338156.
[12] H. Zhou, J. R. Perez-Cisneros, S. Hesami, K. Buisman, and C. Fager, "A Generic Theory for Design of Efficient Three-Stage Doherty Power Amplifiers," IEEE Transactions on Microwave Theory and Techniques, vol. 70, no. 2, pp. 1242-1253, 2022, doi: 10.1109/TMTT.2021.3126885.
[13] W. Feipeng, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, "Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications," IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1244-1255, 2005, doi: 10.1109/TMTT.2005.845716.
[14] I. Kim, Y. Y. Woo, J. Kim, J. Moon, J. Kim, and B. Kim, "High-Efficiency Hybrid EER Transmitter Using Optimized Power Amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 11, pp. 2582-2593, 2008, doi: 10.1109/TMTT.2008.2004898.
[15] F. Wang et al., "An Improved Power-Added Efficiency 19-dBm Hybrid Envelope Elimination and Restoration Power Amplifier for 802.11g WLAN Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 12, pp. 4086-4099, 2006, doi: 10.1109/TMTT.2006.885575.
[16] F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L. E. Larson, "A Monolithic High-Efficiency 2.4-GHz 20-dBm SiGe BiCMOS Envelope-Tracking OFDM Power Amplifier," IEEE Journal of Solid-State Circuits, vol. 42, no. 6, pp. 1271-1281, 2007, doi: 10.1109/JSSC.2007.897170.
[17] J. Choi, D. Kim, D. Kang, and B. Kim, "A Polar Transmitter With CMOS Programmable Hysteretic-Controlled Hybrid Switching Supply Modulator for Multistandard Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 7, pp. 1675-1686, 2009, doi: 10.1109/TMTT.2009.2021880.
[18] N. A. Shairi, B. H. Ahmad, and A. C. Z. Khang, "Design and analysis of broadband high isolation of discrete packaged PIN diode SPDT switch for wireless data communication," in 2011 IEEE International RF & Microwave Conference, 12-14 Dec. 2011 2011, pp. 91-94, doi: 10.1109/RFM.2011.6168703.
[19] P. Song, R. L. Schmid, A. Ç. Ulusoy, and J. D. Cressler, "A high-power, low-loss W-band SPDT switch using SiGe PIN diodes," in 2014 IEEE Radio Frequency Integrated Circuits Symposium, 1-3 June 2014 2014, pp. 195-198, doi: 10.1109/RFIC.2014.6851695.
[20] H. E. Liu, X. Lin, H. Y. Chang, and Y. C. Wang, "10-MHz-to-70-GHz Ultra-Wideband Low-Insertion-Loss SPST and SPDT Switches Using GaAs PIN Diode MMIC Process," in 2018 Asia-Pacific Microwave Conference (APMC), 6-9 Nov. 2018 2018, pp. 1217-1219, doi: 10.23919/APMC.2018.8617438.
[21] W. H. Doherty, "A New High Efficiency Power Amplifier for Modulated Waves," Proceedings of the Institute of Radio Engineers, vol. 24, no. 9, pp. 1163-1182, 1936, doi: 10.1109/JRPROC.1936.228468.
[22] B. Kim, J. Kim, I. Kim, and J. Cha, "The Doherty power amplifier," IEEE Microwave Magazine, vol. 7, no. 5, pp. 42-50, 2006, doi: 10.1109/MW-M.2006.247914.
[23] C. H. Kim and B. Park, "Fully-Integrated Two-Stage GaN MMIC Doherty Power Amplifier for LTE Small Cells," IEEE Microwave and Wireless Components Letters, vol. 26, no. 11, pp. 918-920, 2016, doi: 10.1109/LMWC.2016.2615018.
[24] G. Lv, W. Chen, L. Chen, and Z. Feng, "A Fully Integrated C-band GaN MMIC Doherty Power Amplifier with High Gain and High Efficiency for 5G Application," in 2019 IEEE MTT-S International Microwave Symposium (IMS), 2-7 June 2019 2019, pp. 560-563, doi: 10.1109/MWSYM.2019.8701103.
[25] S. H. Li, S. S. H. Hsu, J. Zhang, and K. C. Huang, "A Sub-6 GHz Compact GaN MMIC Doherty PA with a 49.5% 6 dB back-off PAE for 5G Communications," in 2018 IEEE/MTT-S International Microwave Symposium - IMS, 10-15 June 2018 2018, pp. 805-807, doi: 10.1109/MWSYM.2018.8439474.
[26] A. Seidel, J. Wagner, and F. Ellinger, "3.6 GHz Asymmetric Doherty PA MMIC in 250 nm GaN for 5G Applications," in 2020 German Microwave Conference (GeMiC), 9-11 March 2020 2020, pp. 1-4.
[27] R. J. Liu, X. W. Zhu, X. Jiang, and D. Xia, "A 4.9-GHz GaN MMIC Doherty Power Amplifier for 5G Application," in 2019 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 28-30 Aug. 2019 2019, pp. 1-3, doi: 10.1109/RFIT.2019.8929213.
[28] F. Thome, A. Leuther, and O. Ambacher, "Low-Loss Millimeter-Wave SPDT Switch MMICs in a Metamorphic HEMT Technology," IEEE Microwave and Wireless Components Letters, vol. 30, no. 2, pp. 197-200, 2020, doi: 10.1109/LMWC.2019.2958209.
[29] V. Vassilev, A. Vilenskiy, H. T. Chou, M. Ivashina, and H. Zirath, "A 55-105 GHz PIN Diode SPDT Switch," in 2021 International Symposium on Antennas and Propagation (ISAP), 19-22 Oct. 2021 2021, pp. 1-2, doi: 10.23919/ISAP47258.2021.9614359.
[30] Y. Gong, J. W. Teng, and J. D. Cressler, "A Compact, High-Power, 60 GHz SPDT Switch Using Shunt-Series SiGe PIN Diodes," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2-4 June 2019 2019, pp. 15-18, doi: 10.1109/RFIC.2019.8701812.
[31] L. Zhao, W. F. Liang, J. Y. Zhou, and X. Jiang, "Compact 35–70 GHz SPDT Switch With High Isolation for High Power Application," IEEE Microwave and Wireless Components Letters, vol. 27, no. 5, pp. 485-487, 2017, doi: 10.1109/LMWC.2017.2690834.
[32] J. He, Y. Z. Xiong, and Y. P. Zhang, "Analysis and Design of 60-GHz SPDT Switch in 130-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3113-3119, 2012, doi: 10.1109/TMTT.2012.2211380.
[33] J. G. Yang and K. Yang, "Broadband InGaAs PIN Traveling-Wave Switch Using a BCB-Based Thin-Film Microstrip Line Structure," IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 647-649, 2009, doi: 10.1109/LMWC.2009.2029745.
電子全文 電子全文(網際網路公開日期:20280206)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊