|
[1] H. Tataria, K. Haneda, A. F. Molisch, M. Shafi, and F. Tufvesson, ‘‘Standardization of propagation models for terrestrial cellular systems: A historical perspective,’’ Int. J. Wireless Inf. Netw., vol. 28, no. 1, pp. 20–44, Mar. 2021. [2] L. Shi, S. Du, Y. Miao, and S. Lan, “Modeling and performance analysis of satellite network moving target defense system with Petri nets,” Remote Sens., vol. 13, no. 7, pp. 1262–1286, 2021. [3] 自駕車毫米波雷達技術發展探討. [Online]Available:https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=155 [4] D. M. Pozar, Microwave Engineering, 4th ed., Hoboken, NJ, USA: Wiley, 2012. [5] 高曜煌, 射頻技術在行動通訊的應用. 全華圖書, 2017. [6] B. Razavi, R.-H. Yan, and K. F. Lee, “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 41, no. 11, pp. 750–754, Nov. 1994. [7] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997. [8] B. Razavi, Analog CMOS Integrated Circuits. 2nd ed., McGraw Hill, 2017. [9] S. Marsh, Practical MMlC Design, Norwood, MA: Artech House, 2006. [10] B. Razavi, RF Microelectronics. 2nd ed., Prentice Hall, 2011. [11] K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1554–1560, Apr. 2006. [12] B.-J. Huang, H. Wang, and K.-Y. Lin, “Millimeter-wave low power and miniature CMOS multi-cascode low noise amplifiers with noise reduction topology,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3049–3059, Dec. 2009. [13] D. Wu, R. Huang, W. Wong, and Y. Wang, “A 0.4-V low noise amplifier using forward body bias technology for 5 GHz application,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 543–545, Jul. 2007. [14] T.-P. Wang, “A low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 519–521, Sep. 2010. [15] H.-T. Chou, Z.-L. Ke and H.-K. Chiou, “A low-power, compact size millimeter-wave two-stage current-reused low noise amplifier in 90-nm CMOS technology,” in Proc. 2012 Asia-Pacific Microw. Conf. (APMC), Kaohsiung, Taiwan, 2012, pp. 750-752. [16] Y.-L. Wei, S. S. H. Hsu, and J.-D. Jin, “A low-power low-noise amplifier for K-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116–118, Feb. 2009. [17] J. Zhang, D. Zhao, and X. You, “A 20-GHz 1.9-mW LNA using gm-boost and current-reuse techniques in 65-nm CMOS for satellite communications,” IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2714–2723, Oct. 2020. [18] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004. [19] H.-K. Chen, Y.-S. Lin, and S.-S. Lu, “Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a π-match input network,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2092–2104, 2010 [20] Y.-S. Lin et al., “Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 287–296, Feb. 2010. [21] B. Y. Banyamin and M. Berwick, "Analysis of the performance of four-cascaded single-stage distributed amplifiers," IEEE Trans. Microw. Theory Techn., vol. 48, no. 12, pp. 2657–2663, Dec. 2000. [22] R.-C. Liu, C.-S. Lin, K.-L. Deng, and H. Wang, “Design and analysis of DC-to-14-GHz and 22-GHz CMOS cascode,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1370–1374, Aug. 2004. [23] J.-C. Kao, P. Chen, P.-C. Huang, and H. Wang, “A novel distributed amplifier with high gain, low noise, and high output power in 0.18-µm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1533–1542, Apr. 2013. [24] T.-Y. Chiu, Y. Wang, and H. Wang, “A 3.7–43.7-GHz low-power consumption variable gain distributed amplifier in 90-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 2, pp. 169–172, Feb. 2021. [25] G. Feng, C. C. Boon, F. Meng, X. Yi, and C. Li, “An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 2, pp. 134–136, Feb. 2016. [26] M.-H. Tsai, S. S. H. Hsu, F.-L. Hsueh, C.-P. Jou, and T.-J. Yeh, “Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 553–561, Jan. 2013. [27] M.-D. Ker, C.-Y. Lin, and Y.-W. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device Mater. Rel., vol. 11, no. 2, pp. 207–218, Jun. 2011. [28] L. Gao, E. Wagner, and G. M. Rebeiz, “Design of E- and W-band low-noise amplifiers in 22-nm CMOS FD-SOI,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 1, pp. 132–143, Jan. 2020. [29] Y.-S. Lin et al., “A 7.2 mW 74∼82 GHz CMOS low-noise amplifier with 17.3±1.5 dB gain and 7.7±0.3 dB NF for automotive radar system,” in Proc. IEEE Radio Wireless Symp., Jan. 2016, pp. 111–114. [30] Y. Wang, C.-N. Chen, Y.-C. Wu, and H. Wang, “An E-Band variable gain low noise amplifier in 90-nm CMOS process using body-floating and noise reduction techniques, ” in Proc. 48th Eur. Microw. Conf. (EuMC), Madrid, Spain, 2018, pp. 1245–1248. [31] D. Pan, Z. Duan, S. Chakraborty, L. Sun, and P. Gui, “A 60–90-GHz CMOS double-neutralized LNA technology with 6.3-dB NF and −10 dBm P−1dB,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 7, pp. 489–491, Jul. 2019. [32] Y. Zhang, Z. Wei, X. Tang, L. Zhang and F. Huang, “A 76.5–92.6 GHz CMOS LNA using two-port kQ-product theory for transformer design,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 10, pp. 1187–1190, Oct. 2022. [33] Y.-S. Lin, G.-L. Lee, C.-C. Wang, and C.-C. Chen, “A 21.1 mW 6.2 dB NF 77∼81 GHz CMOS low-noise amplifier with 13.5 ± 0.5 dB S21 and excellent input and output matching for automotive radars,” in Proc. IEEE Radio Wireless Symp. (RWS), Newport Beach, CA, USA, 2014, pp. 73–75. [34] J.-H. Tsai, C.-C. Hung, J.-H. Cheng, C.-F. Lin, and R.-A. Chang, “An E-Band transformer-based 90-nm CMOS LNA,” in Proc. 2018 Asia-Pacific Microw. Conf. (APMC), Kyoto, Japan, 2018, pp. 660–662. [35] F. Meng et al., “A compact 57–67 GHz bidirectional LNAPA in 65-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 8, pp. 628–630, Aug. 2016. [36] Y. Chang and H. Lu, “A V-Band low-power digital variable-gain low-noise amplifier using current-reused technique with stable matching and maintained OP1dB,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4404–4417, Nov. 2019.
|