跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.174) 您好!臺灣時間:2024/12/03 20:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃品瑄
研究生(外文):Huang, Pin-Hsuan
論文名稱:應用於E頻段之低功耗、寬頻低雜訊放大器積體電路設計
論文名稱(外文):Design of Low-Power, Broadband and Low-Noise Integrated Amplifier for E-Band Applications
指導教授:吳霖堃
指導教授(外文):Wu, Lin-Kun
口試委員:邱佳松黃國威
口試委員(外文):Chiu, Chia-SungHuang, Guo-Wei
口試日期:2023-06-29
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:74
中文關鍵詞:E-band低雜訊放大器低功耗寬頻電流再利用車用雷達
外文關鍵詞:E-bandLNAlow powercurrent-reusedwidebandautomotive radar
相關次數:
  • 被引用被引用:0
  • 點閱點閱:76
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用TSMC提供之標準90-nm CMOS製程,研究可應用於76-81 GHz車用雷達與81-86 GHz點對點通訊系統之E頻段低雜訊放大器。論文內容分為三大部分,第一部分介紹研究動機與背景,第二部分介紹基本放大器參數以及常用架構,第三部分為兩次低雜訊放大器實作的設計流程與實際量測結果。
論文將介紹的兩次晶片實作,設計上主要考量功耗、雜訊、增益與頻寬,使用雜訊圓、增益圓與等Q圓的概念做設計。匹配網路則使用薄膜微帶線取代傳統電感與電容,佈局上須避免相鄰線之間的耦合。第一個電路設計採用四級共源級組態串接,並且各級加上源級退化電感性元件,使電晶體可以在低功耗的狀況下達到穩定並且降低雜訊指數。量測結果在81.5 GHz具有18.4 dB的峰值增益,且3 dB增益頻寬從76.5-87.5 GHz為11 GHz,而在86 GHz有最低5.0 dB的雜訊指數,整體功率消耗為14 mW,晶片面積為0.487 mm^2。第二個電路採用三級電流再利用組態串接,對訊號來說實際上可以等效為六級共源極串接,因此可以在維持高增益的狀況下改善各級貢獻的功耗。量測結果在83.5 GHz具有18.9 dB的峰值增益,且3 dB增益操作頻率從72.5-88.5 GHz,頻寬達到16.5 GHz,而在87 GHz有6.4 dB的最低雜訊指數,整體功率消耗為18 mW,晶片面積為0.487 mm^2。
This thesis uses the standard 90-nm CMOS process provided by TSMC to design the E-band low-noise amplifier (LNA) for 76-81 GHz automotive radar and 81-86 GHz point-to-point communication systems. The thesis is divided into three parts. The first part is about the motivation and background of the research. The second part is to introduce the basic amplifier parameters and various architectures. The third part presents the design flow and the experimental results of two low-noise amplifiers.
The two chips that will be introduced in this paper mainly tradeoffs of power consumption, noise, gain, and bandwidth. The concepts of noise circle, gain circle, and constant-Q lines are used for design. Instead of traditional inductors and capacitors, the matching network is implemented by the thin-film microstrip line and careful layout is needed to avoid mutual coupling between the adjacent parallel line sections. The first circuit presents the design of a four-stage LNA. Each stage used common-source (CS) architecture with source degeneration to enhance stability and reduce noise under low power consumption. The measured peak gain is 18.4 dB at 81.5 GHz and has 3-dB frequency bandwidth of 11 GHz from 76.5 to 87.5 GHz. The measured noise has a minimum value of 5.0 dB at 86 GHz. The chip has an area of 0.487 mm^2 including pads and consumes only 14 mW of DC power.
The second circuit adopts three-stage current-reused configuration, which is actually equivalent to six-stage common-source in cascade. It can improve the power consumption contributed by each stage while maintaining high gain. The measured maximum gain is 18.9 dB at 83.5 GHz and has 3-dB frequency bandwidth of 16.5 GHz from 72.5 to 88.5 GHz. The measured minimum noise is 6.4 dB at 87 GHz. The chip has an area of 0.487 mm^2 including pads and consumes only 18 mW of DC power.
中文摘要 i
Abstract ii
誌謝 iv
目錄 v
表目錄 vii
圖目錄 viii
第一章 前言 1
1.1 研究背景與動機 1
1.2 論文架構 4
第二章 基本概念及低雜訊放大器架構 5
2.1 基本概念 5
2.1.1 S參數 5
2.1.2 雜訊源與雜訊指數 6
2.1.3 非線性效應 12
2.1.4 穩定度 14
2.2 低雜訊放大器設計架構 15
2.2.1 放大級基本設計架構 15
2.2.2 低功耗設計技巧 18
2.2.3 寬頻設計技巧 21
第三章 匹配電路設計與佈局相關考量 24
3.1 匹配電路設計 24
3.1.1 被動元件高頻特性 25
3.1.2 寬頻匹配電路設計 27
3.2 佈局相關考量 30
3.2.1 偏壓電路設計與佈局 30
3.2.2 PAD與微帶線佈局考量 33
3.2.3 靜電防護考量 36
第四章 晶片量測結果與討論 37
4.1 E-band量測系統簡介 37
4.1.1 雜訊量測系統架設 38
4.1.2 大訊號量測系統架設 39
4.2 應用於E-band低雜訊低功耗放大器設計 40
4.2.1 電路設計流程 40
4.2.2 電路與佈局圖 50
4.2.3 模擬與量測結果 52
4.2.4 結果討論與模擬修正 55
4.3 應用於E-band低功耗寬頻低雜訊放大器設計 60
4.3.1 電路架構與設計 60
4.3.2 電路與佈局圖 63
4.3.3 模擬結果 65
4.3.4 模擬與量測結果討論 67
第五章 結論 71
參考文獻 72
[1] H. Tataria, K. Haneda, A. F. Molisch, M. Shafi, and F. Tufvesson, ‘‘Standardization of propagation models for terrestrial cellular systems: A historical perspective,’’ Int. J. Wireless Inf. Netw., vol. 28, no. 1, pp. 20–44, Mar. 2021.
[2] L. Shi, S. Du, Y. Miao, and S. Lan, “Modeling and performance analysis of satellite network moving target defense system with Petri nets,” Remote Sens., vol. 13, no. 7, pp. 1262–1286, 2021.
[3] 自駕車毫米波雷達技術發展探討.
[Online]Available:https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=155
[4] D. M. Pozar, Microwave Engineering, 4th ed., Hoboken, NJ, USA: Wiley, 2012.
[5] 高曜煌, 射頻技術在行動通訊的應用. 全華圖書, 2017.
[6] B. Razavi, R.-H. Yan, and K. F. Lee, “Impact of distributed gate resistance on the performance of MOS devices,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 41, no. 11, pp. 750–754, Nov. 1994.
[7] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 745–759, May 1997.
[8] B. Razavi, Analog CMOS Integrated Circuits. 2nd ed., McGraw Hill, 2017.
[9] S. Marsh, Practical MMlC Design, Norwood, MA: Artech House, 2006.
[10] B. Razavi, RF Microelectronics. 2nd ed., Prentice Hall, 2011.
[11] K.-J. Sun, Z.-M. Tsai, K.-Y. Lin, and H. Wang, “A noise optimization formulation for CMOS low-noise amplifiers with on-chip low-Q inductors,” IEEE Trans. Microw. Theory Techn., vol. 54, no. 4, pp. 1554–1560, Apr. 2006.
[12] B.-J. Huang, H. Wang, and K.-Y. Lin, “Millimeter-wave low power and miniature CMOS multi-cascode low noise amplifiers with noise reduction topology,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3049–3059, Dec. 2009.
[13] D. Wu, R. Huang, W. Wong, and Y. Wang, “A 0.4-V low noise amplifier using forward body bias technology for 5 GHz application,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 543–545, Jul. 2007.
[14] T.-P. Wang, “A low-voltage low-power K-band CMOS LNA using DC-current-path split technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp. 519–521, Sep. 2010.
[15] H.-T. Chou, Z.-L. Ke and H.-K. Chiou, “A low-power, compact size millimeter-wave two-stage current-reused low noise amplifier in 90-nm CMOS technology,” in Proc. 2012 Asia-Pacific Microw. Conf. (APMC), Kaohsiung, Taiwan, 2012, pp. 750-752.
[16] Y.-L. Wei, S. S. H. Hsu, and J.-D. Jin, “A low-power low-noise amplifier for K-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 116–118, Feb. 2009.
[17] J. Zhang, D. Zhao, and X. You, “A 20-GHz 1.9-mW LNA using gm-boost and current-reuse techniques in 65-nm CMOS for satellite communications,” IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2714–2723, Oct. 2020.
[18] A. Bevilacqua and A. M. Niknejad, “An ultrawideband CMOS low-noise amplifier for 3.1–10.6-GHz wireless receivers,” IEEE J. Solid-State Circuits, vol. 39, no. 12, pp. 2259–2268, Dec. 2004.
[19] H.-K. Chen, Y.-S. Lin, and S.-S. Lu, “Analysis and design of a 1.6-28-GHz compact wideband LNA in 90-nm CMOS using a π-match input network,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 8, pp. 2092–2104, 2010
[20] Y.-S. Lin et al., “Analysis and design of a CMOS UWB LNA with dual-RLC-branch wideband input matching network,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 2, pp. 287–296, Feb. 2010.
[21] B. Y. Banyamin and M. Berwick, "Analysis of the performance of four-cascaded single-stage distributed amplifiers," IEEE Trans. Microw. Theory Techn., vol. 48, no. 12, pp. 2657–2663, Dec. 2000.
[22] R.-C. Liu, C.-S. Lin, K.-L. Deng, and H. Wang, “Design and analysis of DC-to-14-GHz and 22-GHz CMOS cascode,” IEEE J. Solid-State Circuits, vol. 39, no. 8, pp. 1370–1374, Aug. 2004.
[23] J.-C. Kao, P. Chen, P.-C. Huang, and H. Wang, “A novel distributed amplifier with high gain, low noise, and high output power in 0.18-µm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1533–1542, Apr. 2013.
[24] T.-Y. Chiu, Y. Wang, and H. Wang, “A 3.7–43.7-GHz low-power consumption variable gain distributed amplifier in 90-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 2, pp. 169–172, Feb. 2021.
[25] G. Feng, C. C. Boon, F. Meng, X. Yi, and C. Li, “An 88.5–110 GHz CMOS low-noise amplifier for millimeter-wave imaging applications,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 2, pp. 134–136, Feb. 2016.
[26] M.-H. Tsai, S. S. H. Hsu, F.-L. Hsueh, C.-P. Jou, and T.-J. Yeh, “Design of 60-GHz low-noise amplifiers with low NF and robust ESD protection in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 553–561, Jan. 2013.
[27] M.-D. Ker, C.-Y. Lin, and Y.-W. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device Mater. Rel., vol. 11, no. 2, pp. 207–218, Jun. 2011.
[28] L. Gao, E. Wagner, and G. M. Rebeiz, “Design of E- and W-band low-noise amplifiers in 22-nm CMOS FD-SOI,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 1, pp. 132–143, Jan. 2020.
[29] Y.-S. Lin et al., “A 7.2 mW 74∼82 GHz CMOS low-noise amplifier with 17.3±1.5 dB gain and 7.7±0.3 dB NF for automotive radar system,” in Proc. IEEE Radio Wireless Symp., Jan. 2016, pp. 111–114.
[30] Y. Wang, C.-N. Chen, Y.-C. Wu, and H. Wang, “An E-Band variable gain low noise amplifier in 90-nm CMOS process using body-floating and noise reduction techniques, ” in Proc. 48th Eur. Microw. Conf. (EuMC), Madrid, Spain, 2018, pp. 1245–1248.
[31] D. Pan, Z. Duan, S. Chakraborty, L. Sun, and P. Gui, “A 60–90-GHz CMOS double-neutralized LNA technology with 6.3-dB NF and −10 dBm P−1dB,” IEEE Microw. Wireless Compon. Lett., vol. 29, no. 7, pp. 489–491, Jul. 2019.
[32] Y. Zhang, Z. Wei, X. Tang, L. Zhang and F. Huang, “A 76.5–92.6 GHz CMOS LNA using two-port kQ-product theory for transformer design,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 10, pp. 1187–1190, Oct. 2022.
[33] Y.-S. Lin, G.-L. Lee, C.-C. Wang, and C.-C. Chen, “A 21.1 mW 6.2 dB NF 77∼81 GHz CMOS low-noise amplifier with 13.5 ± 0.5 dB S21 and excellent input and output matching for automotive radars,” in Proc. IEEE Radio Wireless Symp. (RWS), Newport Beach, CA, USA, 2014, pp. 73–75.
[34] J.-H. Tsai, C.-C. Hung, J.-H. Cheng, C.-F. Lin, and R.-A. Chang, “An E-Band transformer-based 90-nm CMOS LNA,” in Proc. 2018 Asia-Pacific Microw. Conf. (APMC), Kyoto, Japan, 2018, pp. 660–662.
[35] F. Meng et al., “A compact 57–67 GHz bidirectional LNAPA in 65-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 8, pp. 628–630, Aug. 2016.
[36] Y. Chang and H. Lu, “A V-Band low-power digital variable-gain low-noise amplifier using current-reused technique with stable matching and maintained OP1dB,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 11, pp. 4404–4417, Nov. 2019.
電子全文 電子全文(網際網路公開日期:20280714)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊