|
[1] Y.-C. Chen, Y.-H. Lin, J.-L. Lin, and H. Wang, "A Ka-Band Transformer-Based Doherty Power Amplifier for Multi-Gb/s Application in 90-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 28, no. 12, pp. 1134-1136, 2018, doi: 10.1109/lmwc.2018.2878133. [2] G. Cho and S. Hong, "Ka-Band CMOS Power Amplifier Based on Transmission Line Transformers With Single-Ended Doherty Network," IEEE Microwave and Wireless Components Letters, vol. 31, no. 11, pp. 1223-1226, 2021, doi: 10.1109/lmwc.2021.3088585. [3] K.-J. Choi et al., "A 5G mm-Wave Single Chip 8-channel FEM with Best-in-class 22% Power Efficiency and Embedded Die Substrate (EDS) Technology," presented at the 2021 IEEE MTT-S International Microwave Symposium (IMS), 2021. [4] X. Fang, J. Xia, and S. Boumaiza, "A 28-GHz Beamforming Doherty Power Amplifier With Enhanced AM-PM Characteristic," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3017-3027, 2020, doi: 10.1109/tmtt.2020.2968318. [5] S.-C. Hung, S.-W. Yoo, and S.-M. Yoo, "A Quadrature Class-G Complex-Domain Doherty Digital Power Amplifier," IEEE Journal of Solid-State Circuits, vol. 56, no. 7, pp. 2029-2039, 2021, doi: 10.1109/jssc.2020.3040973. [6] P. Neininger et al., "Limitations and Implementation Strategies of Interstage Matching in a 6-W, 28–38-GHz GaN Power Amplifier MMIC," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 5, pp. 2541-2553, 2021, doi: 10.1109/tmtt.2021.3065108. [7] G. R. Nikandish, R. B. Staszewski, and A. Zhu, "Unbalanced Power Amplifier: An Architecture for Broadband Back-Off Efficiency Enhancement," IEEE Journal of Solid-State Circuits, vol. 56, no. 2, pp. 367-381, 2021, doi: 10.1109/jssc.2020.3014244. [8] J. J. M. Rubio, R. Quaglia, A. Piacibello, V. Camarchia, P. J. Tasker, and S. Cripps, "3–20-GHz GaN MMIC Power Amplifier Design Through a COUT Compensation Strategy," IEEE Microwave and Wireless Components Letters, vol. 31, no. 5, pp. 469-472, 2021, doi: 10.1109/lmwc.2021.3066282. [9] Y. Xu, J. Pang, X. Wang, and A. Zhu, "Enhancing Bandwidth and Back-Off Range of Doherty Power Amplifier With Modified Load Modulation Network," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 4, pp. 2291-2303, 2021, doi: 10.1109/tmtt.2021.3056402. [10] 林. 邱煥凱, ADS應用於射頻功率放大器設計與模擬. 2014/06/03. [11] W. Jung et al., "A Sub-6GHz 5G New Radio Multi-Band Transmitter with a Switchable Transformer in 14nm FinFET CMOS," in 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 7-9 June 2021 2021, pp. 163-166, doi: 10.1109/RFIC51843.2021.9490416. [12] S. R. Boroujeni, A. Basaligheh, S. Ituah, M. R. Nezhad-Ahmadi, and S. Safavi-Naeini, "A Broadband High-Efficiency Continuous Class-AB Power Amplifier for Millimeter-Wave 5G and SATCOM Phased-Array Transmitters," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 7, pp. 3159-3171, 2020, doi: 10.1109/TMTT.2020.2983703. [13] D. M. Pozar, Microwave Engineering, 4/e 2021. [14] K. Wang, Y. Yan, and X. Liang, "A K-band power amplifier in a 0.15-um GaAs pHEMT process," in 2018 IEEE MTT-S International Wireless Symposium (IWS), 6-10 May 2018 2018, pp. 1-3, doi: 10.1109/IEEE-IWS.2018.8400956. [15] J. Li, L. Peng, Z. Zhang, and G. Zhang, "A mm-Wave Parallel-Combined Power Amplifier Supporting Balanced/Unbalanced Mode for 5G NR FR2 Applications," IEEE Microwave and Wireless Technology Letters, pp. 1-4, 2023, doi: 10.1109/lmwt.2023.3234071. [16] G. Lv, W. Chen, X. Chen, F. M. Ghannouchi, and Z. Feng, "A Compact Ka/Q Dual-Band GaAs MMIC Doherty Power Amplifier With Simplified Offset Lines for 5G Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 7, pp. 3110-3121, 2019, doi: 10.1109/tmtt.2019.2908103. [17] J. Zhang, T. Wu, L. Nie, D. Wei, S. Ma, and J. Ren, "A 20-30 GHz Compact PHEMT Power Amplifier Using Coupled-Line Based MCCR Matching Technique," in 2020 IEEE/MTT-S International Microwave Symposium (IMS), 4-6 Aug. 2020 2020, pp. 956-959, doi: 10.1109/IMS30576.2020.9223797. [18] S. J. Fe, S. H. Lai, and H. Y. Chang, "A 0.5-W 26-31 GHz Power Amplifier Using Pre-matching Technique in 0.15-μm pHEMT Process," in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 25-27 Aug. 2021 2021, pp. 1-2, doi: 10.1109/RFIT52905.2021.9565271. [19] K. J. Chuang, K. P. Tang, Y. H. Lin, T. H. Chen, C. S. Wu, and T. W. Huang, "An Efficient and Linear 24.4dBm Ka-Band GaAs Power Amplifier for 5G Communication," in 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 25-27 Aug. 2021 2021, pp. 1-3, doi: 10.1109/RFIT52905.2021.9565269. [20] B. W. Huang, Z. H. Fu, and K. Y. Lin, "A Millimeter-Wave Ultra-Wide Band Power Amplifier in 0.15-μm GaAs pHEMT for 5G Communication," in 2022 Asia-Pacific Microwave Conference (APMC), 29 Nov.-2 Dec. 2022 2022, pp. 97-99, doi: 10.23919/APMC55665.2022.10000027. [21] L. Liu and D. Zhao, "A 0.5W 33%-PAE Ka-band Power Amplifier in 0.15µm GaAs," presented at the 2022 IEEE MTT-S International Wireless Symposium (IWS), 2022. [22] H.-C. Park et al., "Single Transformer-Based Compact Doherty Power Amplifiers for 5G RF Phased-Array ICs," IEEE Journal of Solid-State Circuits, vol. 57, no. 5, pp. 1267-1279, 2022, doi: 10.1109/jssc.2022.3148044. [23] S. Park, H. Hwang, and S. Jeon, "An mm-Wave Multi-Mode Asymmetric Power Amplifier With Back-off Efficiency Enhancement," IEEE Access, vol. 9, pp. 117282-117291, 2021, doi: 10.1109/access.2021.3107047. [24] M. Pashaeifar, A. K. Kumaran, M. Beikmirza, L. C. N. de Vreede, and M. S. Alavi, "A 24-to-32GHz series-Doherty PA with two-step impedance inverting power combiner achieving 20.4dBm Psat and 38%/34% PAE at Psat/6dB PBO for 5G applications," presented at the 2021 IEEE Asian Solid-State Circuits Conference (A-SSCC), 2021. [25] V. Qunaj and P. Reynaert, "26.2 A Doherty-Like Load-Modulated Balanced Power Amplifier Achieving 15.5dBm Average Pout and 20% Average PAE at a Data Rate of 18Gb/s in 28nm CMOS," presented at the 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021. [26] J. Sheth and S. M. Bowers, "A Four-Way Nested Digital Doherty Power Amplifier for Low-Power Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 69, no. 6, pp. 2782-2794, 2021, doi: 10.1109/tmtt.2021.3057895. [27] F. Wang, T.-W. Li, S. Hu, and H. Wang, "A Super-Resolution Mixed-Signal Doherty Power Amplifier for Simultaneous Linearity and Efficiency Enhancement," IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3421-3436, 2019, doi: 10.1109/jssc.2019.2937435. [28] M. Wu, L. Zhang, B. Zhang, and Y. Wang, "A Compact Mixed-Mode 62 GHz Doherty Power Amplifier with 28.9% Peak PAE and 14.2 dBm OP1dB Using Dynamic Power Allocation," presented at the 2021 IEEE MTT-S International Wireless Symposium (IWS), 2021. [29] B. Yang, H. J. Qian, and X. Luo, "26.5 A Watt-Level Quadrature Switched/Floated-Capacitor Power Amplifier with Back-Off Efficiency Enhancement in Complex Domain Using Reconfigurable Self-Coupling Canceling Transformer," presented at the 2021 IEEE International Solid- State Circuits Conference (ISSCC), 2021. [30] S. Kim, H.-C. Park, D. Kang, D. Minn, and S.-G. Yang, "A 24.5–29.5GHz Broadband Parallel-to-Series Combined Compact Doherty Power Amplifier in 28-nm Bulk CMOS for 5G Applications," presented at the 2021 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2021. [31] M. Mortazavi, Y. Shen, D. Mul, L. C. N. de Vreede, M. Spirito, and M. Babaie, "A Four-Way Series Doherty Digital Polar Transmitter at mm-Wave Frequencies," IEEE Journal of Solid-State Circuits, vol. 57, no. 3, pp. 803-817, 2022, doi: 10.1109/jssc.2021.3133861. [32] P. C. Huang, K. Jing-Lin, Z. M. Tsai, K. Y. Lin, and H. Wang, "A 22-dBm 24-GHz power amplifier using 0.18-µm CMOS technology," in 2010 IEEE MTT-S International Microwave Symposium, 23-28 May 2010 2010, pp. 248-251, doi: 10.1109/MWSYM.2010.5518261. [33] H. T. Nguyen and H. Wang, "A Coupler-Based Differential mm-Wave Doherty Power Amplifier With Impedance Inverting and Scaling Baluns," IEEE Journal of Solid-State Circuits, vol. 55, no. 5, pp. 1212-1223, 2020, doi: 10.1109/JSSC.2020.2970708. [34] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, "Fully integrated CMOS power amplifier design using the distributed active-transformer architecture," IEEE Journal of Solid-State Circuits, vol. 37, no. 3, pp. 371-383, 2002, doi: 10.1109/4.987090. [35] D. Manente, F. Padovan, D. Seebacher, M. Bassi, and A. Bevilacqua, "A 28-GHz Stacked Power Amplifier with 20.7-dBm Output P1dB in 28-nm Bulk CMOS," IEEE Solid-State Circuits Letters, vol. 3, pp. 170-173, 2020, doi: 10.1109/lssc.2020.3009973. [36] F. Wang and H. Wang, "24.6 An Instantaneously Broadband Ultra-Compact Highly Linear PA with Compensated Distributed-Balun Output Network Achieving >17.8dBm P1dB and >36.6% PAEP1dB over 24 to 40GHz and Continuously Supporting 64-/256-QAM 5G NR Signals over 24 to 42GHz," in 2020 IEEE International Solid- State Circuits Conference - (ISSCC), 16-20 Feb. 2020 2020, pp. 372-374, doi: 10.1109/ISSCC19947.2020.9063157. [37] C. W. Wang, Y. C. Chen, W. J. Lin, J. H. Tsai, and T. W. Huang, "A 20.8-41.6-GHz Transformer-Based Wideband Power Amplifier with 20.4-dB Peak Gain Using 0.9-V 28-nm CMOS Process," in 2020 IEEE/MTT-S International Microwave Symposium (IMS), 4-6 Aug. 2020 2020, pp. 1323-1326, doi: 10.1109/IMS30576.2020.9223905. [38] J. Lee and S. Hong, "A 24–30 GHz 31.7% Fractional Bandwidth Power Amplifier With an Adaptive Capacitance Linearizer," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 4, pp. 1163-1167, 2021, doi: 10.1109/tcsii.2020.3036645. [39] T.-H. Fan, Y. Wang, and H. Wang, "A Broadband Transformer-Based Power Amplifier Achieving 24.5-dBm Output Power Over 24–41 GHz in 65-nm CMOS Process," IEEE Microwave and Wireless Components Letters, vol. 31, no. 3, pp. 308-311, 2021, doi: 10.1109/lmwc.2020.3040786. [40] T.-W. Huang, H.-C. Yen, J.-H. Tsai, W.-T. Bai, J.-C. Hung, and Y.-J. Liang, "A 19.7–38.9-GHz Ultrabroadband PA With Phase Linearization for 5G in 28-nm CMOS Process," IEEE Microwave and Wireless Components Letters, vol. 32, no. 4, pp. 327-330, 2022, doi: 10.1109/lmwc.2021.3125960. [41] M. J. Zavarei, K. Kim, and H.-J. Song, "A 26–40 GHz Wideband Power Amplifier With Transformer-Based High-Order Matching Networks in 28-nm CMOS FD-SOI," IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, pp. 1079-1082, 2022, doi: 10.1109/lmwc.2022.3168264. [42] R. Giofre, F. Costanzo, W. Ciccognani, S. Colangeli, and E. Limiti, "A GaN Single-Chip Front End With Improved Efficiency and Power by Using Class F Approach," IEEE Microwave and Wireless Components Letters, vol. 29, no. 2, pp. 140-142, 2019, doi: 10.1109/lmwc.2018.2886066. [43] C. Ramella, V. Camarchia, A. Piacibello, M. Pirola, and R. Quaglia, "Watt-Level 21–25-GHz Integrated Doherty Power Amplifier in GaAs Technology," IEEE Microwave and Wireless Components Letters, vol. 31, no. 5, pp. 505-508, 2021, doi: 10.1109/lmwc.2021.3069555. [44] M. Ghazizadeh and V. Nayyeri, "Design of a 50-W Power Amplifier With Two- Octave Bandwidth and High-Efficiency Using a Systematic Optimization Approach," IEEE Microwave and Wireless Components Letters, vol. 31, no. 5, pp. 501-504, 2021, doi: 10.1109/lmwc.2021.3069508. [45] J. Park and H. Wang, "A 26-to-39GHz Broadband Ultra-Compact High-Linearity Switchless Hybrid N/PMOS Bi-Directional PA/LNA Front-End for Multi-Band 5G Large-Scaled MIMO System," presented at the 2022 IEEE International Solid- State Circuits Conference (ISSCC), 2022. [46] T.-Y. Chiu, Y. Wang, and H. Wang, "A Ka-Band Transformer-Based Switchless Bidirectional PA-LNA in 90-nm CMOS Process," presented at the 2021 IEEE MTT-S International Microwave Symposium (IMS), 2021. [47] P. E. Longhi et al., "GaN-on-Si Ka-band Single-Chip Front-End MMIC for Earth Observation Payloads," presented at the 2022 IEEE/MTT-S International Microwave Symposium - IMS 2022, 2022. [48] Q. Lin, H. Wu, Y. Chen, L. Hu, S. Chen, and X. Zhang, "A Compact Ultra-broadband GaN MMIC T/R Front-End Module," in 2020 IEEE/MTT-S International Microwave Symposium (IMS), 4-6 Aug. 2020 2020, pp. 1231-1234, doi: 10.1109/IMS30576.2020.9223795. [49] QPF4001 Data Sheet.
|