跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/10 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳平安
研究生(外文):Ignatius Alex Wijayanto
論文名稱:比較視覺顯像真實度對虛擬與真實環境中物件尺寸判斷的影響-使用雙手比劃與口語表達
論文名稱(外文):Comparing the Effects of Visual Realism on Size Perception in VR versus Real World Viewing through Physical and Verbal Judgments
指導教授:莊榮宏莊榮宏引用關係
指導教授(外文):Chuang, Jung-Hong
口試委員:胡敏君蔡侑庭
口試委員(外文):Hu, Min-ChunTsai, Yu-Ting
口試日期:2022-11-23
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電機資訊國際學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:55
中文關鍵詞:虛擬實境尺寸感知
外文關鍵詞:Virtual RealitySize Perception
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
虛擬實境 (VR) 以其在跨領域的應用和研究而聞名。這些應用的視覺呈現也將根據其用途和硬體之限制而有所不同,其中某些應用會需要具備精確感知物件大小的能力。
然而,文獻中鮮少探索 VR 中物件尺寸感知與視覺示真實度之間的關係。
在本論文中,我們使用受試者間設計(between-subjects design)對四種渲染風格條件(即擬真、局部照明、卡通和素描)探討對同一場景中目標物件的尺寸感知之影響並進行了量化評估。此外,我們透過受試者內設計(within-subjects design)實驗收集了參與者在真實世界中的大小估計。
我們同時採用口頭報告以及雙手比畫來測量尺寸感知。我們的結果顯示,儘管參與者的尺寸感知在擬真條件下是準確的,令人驚訝的是,他們仍然可以將現實環境中不變且富有意義的訊息調諧至環境中,並準確估計非擬真渲染風格下物件的大小。我們還發現口頭和雙手比畫的大小估計在現實世界和 VR 觀看中基本上不同,並與序列的評估回報與目標物件寬度有所關聯。
Virtual Reality (VR) is well-known for its use in interdisciplinary applications and research. The visual representation of these applications would also vary depending in their purpose and hardware limitation, and some of them would require an accurate perception
of size for task performance. However, the relationship between size perception and visual realism in VR has not yet been explored.
In this contribution, we conducted an empirical evaluation using a between-subject design over four conditions of visual realism, namely Realistic, Local Lighting, Cartoon, and Sketch on size perception of target objects in the same environment. Additionally, we gathered participants’ size estimates in the real world via in a within-subject session. We measured size perception using concurrent verbal reports and physical judgments. Our result showed that although participants’ size perception was accurate in the realistic condition, surprisingly they could still tune into the invariant but meaningful information in the environment to accurately estimate the size of targets in the non-photorealistic conditions as well.
We also found that size estimates in verbal and physical responses were generally different in real world and VR viewing and were moderated by trial presentation over time and target box widths.
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Research Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Size Perception in Virtual Reality . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 Body-based Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Spatial Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Size Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Size Constancy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Size Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 The Effect of Visual Realism in VR Applications . . . . . . . . . . . . . . . . 8
2.5 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Apparatus and Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Rendering method of the Experiment Conditions . . . . . . . . . . . . . . . . 13
3.3.1 Realistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.2 Local Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Cartoon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.4 Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Task Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.6 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1 Objective Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Physical Judgements . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Verbal Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Size Perception Accuracy in Physical Judgements . . . . . . . . . . . . 21
4.1.4 Size Perception Accuracy in Verbal Reports . . . . . . . . . . . . . . . 23
4.2 Subjective Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.1 Confidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.2 NASA TLX Load Index . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2.3 Igroup Presence Questionnaire . . . . . . . . . . . . . . . . . . . . . . 27
5 Discussion and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Appendix A Questionnaires . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
[1] J. Jerald, The VR book: Humancentered
design for virtual reality. Morgan & Claypool,
2015.
[2] S. V. Babu, T. Y. Grechkin, B. Chihak, C. Ziemer, J. K. Kearney, J. F. Cremer, and J. M.
Plumert, “An immersive virtual peer for studying social influences on child cyclists’ roadcrossing
behavior,” IEEE transactions on visualization and computer graphics, vol. 17,
no. 1, pp. 14–25, 2010.
[3] D. Opdyke, J. S. Williford, and M. North, “Effectiveness of computergenerated
(virtual
reality) graded exposure in the treatment of acrophobia,” Am J psychiatry, vol. 1, no. 152,
pp. 626–628, 1995.
[4] J. Jerald, “What Is Virtual Reality?” in The VR Book. Association for Computing Machinery,
10 2015, p. 9.
[5] A. Bhargava, J. W. Bertrand, A. K. Gramopadhye, K. C. Madathil, and S. V. Babu, “Evaluating
multiple levels of an interaction fidelity continuum on performance and learning in
nearfield
training simulations,” IEEE transactions on visualization and computer graphics,
vol. 24, no. 4, pp. 1418–1427, 2018.
[6] M. Nagendran, K. S. Gurusamy, R. Aggarwal, M. Loizidou, and B. R. Davidson, “Virtual
reality training for surgical trainees in laparoscopic surgery,” 2013. [Online]. Available:
www.cochranelibrary.com
[7] C. E. Lathan and M. Tracey, “The effects of operator spatial perception and sensory feedback
on humanrobot
teleoperation performance,” Presence, vol. 11, no. 4, pp. 368–377,
2002.
[8] F. D. Rose, E. A. Attree, B. M. Brooks, D. M. Parslow, and P. R. Penn, “Training in
virtual environments: transfer to real world tasks and equivalence to real task training,”
Ergonomics, vol. 43, no. 4, pp. 494–511, 2000.
[9] J. J. Gibson, The ecological approach to visual perception: classic edition. Psychology
Press, 2014.
[10] S. A. Linkenauger, J. K. Witt, and D. R. Proffitt, “Taking a HandsOn
Approach:
Apparent Grasping Ability Scales the Perception of Object Size,” Journal of Experimental
Psychology: Human Perception and Performance, vol. 37, no. 5, pp. 1432–1441, 10
2011. [Online]. Available: /record/201113625001
[11] D. R. Proffitt, M. Bhalla, R. Gossweiler, and J. Midgett, “Perceiving geographical slant,”
Psychonomic Bulletin & Review, vol. 2, no. 4, pp. 409–428, 12 1995.
[12] R. Wesp, P. Cichello, E. B. Gracia, and K. Davis, “Observing and engaging in purposeful
actions with objects influences estimates of their size,” Perception \& Psychophysics,
vol. 66, no. 8, pp. 1261–1267, 2004.
[13] J. K. Witt and D. R. Proffitt, “See the ball, hit the ball: Apparent ball size is correlated with
batting average,” Psychological Science, vol. 16, no. 12, pp. 937–938, 12 2005.
[14] J. K. Witt, D. R. Proffitt, and W. Epstein, “Tool use affects perceived distance, but only
when you intend to use it.” Journal of experimental psychology: Human perception and
performance, vol. 31, no. 5, p. 880, 2005.
[15] S. A. Linkenauger, V. Ramenzoni, and D. R. Proffitt, “Illusory shrinkage and growth:
Bodybased
rescaling affects the perception of size,” Psychological Science, vol. 21, no. 9,
pp. 1318–1325, 2010.
[16] S. A. Linkenauger, M. Leyrer, H. H. Bülthoff, and B. J. Mohler, “Welcome to Wonderland:
The Influence of the Size and Shape of a Virtual Hand On the Perceived Size and Shape
of Virtual Objects,” PLOS ONE, vol. 8, no. 7, p. e68594, 7 2013. [Online]. Available:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0068594
[17] S. Jung, G. Bruder, P. J. Wisniewski, C. Sandor, and C. E. Hughes, “Over my hand: Using
a personalized hand in VR to improve object size estimation, body ownership, and
presence,” in SUI 2018 Proceedings
of the Symposium on Spatial User Interaction. Association
for Computing Machinery, Inc, 10 2018, pp. 60–68.
[18] N. Ogawa, T. Narumi, and M. Hirose, “Object Size Perception in Immersive Virtual Reality:
Avatar Realism Affects the Way We Perceive,” in 25th IEEE Conference on Virtual
Reality and 3D User Interfaces, VR 2018 Proceedings.
Institute of Electrical and Electronics
Engineers Inc., 8 2018, pp. 647–648.
[19] N. Ogawa, T. Narumi, and M. Hirose, “Virtual Hand Realism Affects Object Size Perception
in BodyBased
Scaling,” in 2019 IEEE Conference on Virtual Reality and 3D User
Interfaces, 2019.
[20] M. Bertamini, T. L. Yang, D. Proffiti, and G. Hall, “Relative size perception at a distance
is best at eye level,” Tech. Rep. 4, 1998.
[21] M. Wraga, “The role of eye height in perceiving affordances and object dimensions,” Tech.
Rep. 3, 1999.
[22] M. Leyrer, S. A. Linkenauger, H. H. Bülthoff, U. Kloos, and B. Mohler, “The influence
of eye height and avatars on egocentric distance estimates in immersive virtual environments,”
in Proceedings of the ACM SIGGRAPH symposium on applied perception in
graphics and visualization, 2011, pp. 67–74.
[23] R. McDonnell, M. Breidty, and H. H. Bülthoff, “Render me real? Investigating
the effect of render style on the perception of animated virtual humans,” ACM
Transactions on Graphics, vol. 31, no. 4, 7 2012. [Online]. Available: https:
//doi.org/10.1145/2185520.2185587
[24] M. Volonte, A. T. Duchowski, and S. V. Babu, “Effects of a virtual human appearance
fidelity continuum on visual attention in virtual reality,” in IVA 2019 Proceedings
of the
19th ACM International Conference on Intelligent Virtual Agents, ser. IVA ’19. New
York, NY, USA: Association for Computing Machinery, 2019, pp. 141–147. [Online].
Available: https://doi.org/10.1145/3308532.3329461
[25] E. Zell, C. Aliaga, A. Jarabo, K. Zibrek, D. Gutierrez, R. McDonnell, and M. Botsch, “To
stylize or not to stylize? The effect of shape and material stylization on the perception
of computergenerated
faces,” ACM Transactions on Graphics (TOG), vol. 34, no. 6, pp.
1–12, 2015.
[26] K. Mania, S. Badariah, M. Coxon, and P. Watten, “Cognitive transfer of spatial awareness
states from immersive virtual environments to reality,” ACM Transactions on Applied Perception
(TAP), vol. 7, no. 2, pp. 1–14, 2010.
[27] N. Ogawa, T. Narumi, and M. Hirose, “Distortion in perceived size and bodybased
scaling
in virtual environments,” in ACM International Conference Proceeding Series. Association
for Computing Machinery, 3 2017.
[28] R. S. Renner, B. M. Velichkovsky, and J. R. Helmert, “The perception of egocentric
distances in virtual environmentsA
review,” ACM Reference Format, vol. 46, no. 23,
2013. [Online]. Available: http://dx.doi.org/10.1145/2543581.2543590
[29] R. N. Haber and C. A. Levin, “The independence of size perception and distance perception,”
Perception \& psychophysics, vol. 63, no. 7, pp. 1140–1152, 2001.
[30] A. P. Duchon and W. H. Warren Jr, “A visual equalization strategy for locomotor control:
of honeybees, robots, and humans,” Psychological Science, vol. 13, no. 3, pp. 272–278,
2002.
[31] J. Tozawa, “Role of a texture gradient in the perception of relative size,” Perception,
vol. 39, no. 5, pp. 641–660, 2010.
[32] M. S. Landy, L. T. Maloney, E. B. Johnston, and M. Young, “Measurement and modeling
of depth cue combination: in defense of weak fusion,” Vision research, vol. 35, no. 3, pp.
389–412, 1995.
[33] J. E. Cutting and P. M. Vishton, “Perceiving Layout and Knowing Distances: The Integration,
Relative Potency, and Contextual Use of Different Information about Depth,”
Perception of Space and Motion, pp. 69–117, 1 1995.
[34] Z. Deng and V. Interrante, “Am I Floating or Not? : Sensitivity to Eye Height
Manipulations in HMDbased
Immersive Virtual Environments,” ACM Symposium on
Applied Perception 2019, 2019. [Online]. Available: https://doi.org/10.1145/3343036.
3343135
[35] M. W. Dixon, M. Wraga, D. R. Proffitt, and G. C. Williams, “Eye height scaling of absolute
size in immersive and nonimmersive displays,” Journal of Experimental Psychology:
Human Perception and Performance, vol. 26, no. 2, pp. 582–593, 2000.
[36] J. Kim and V. Interrante, “Dwarf or giant: The influence of interpupillary
distance and eye height on size perception in virtual environments,” in International
Conference on Artificial Reality and Telexistence and Eurographics
Symposium on Virtual Environments, ICATEGVE
2017. Eurographics Association,
2017, pp. 153–160. [Online]. Available: https://experts.umn.edu/en/publications/
dwarforgianttheinfluenceofinterpupillarydistanceandeyeh
[37] X. Luo, R. Kenyon, D. Kamper, D. Sandin, and T. DeFanti, “The effects of scene complexity,
stereovision, and motion parallax on size constancy in a virtual environment,”
Proceedings IEEE
Virtual Reality, pp. 59–66, 2007.
[38] B. H. Thomas, “Examining user perception of the size of multiple objects in virtual
reality,” Applied Sciences (Switzerland), vol. 10, no. 11, 2020. [Online]. Available:
www.mdpi.com/journal/applsci
[39] A. G. De Siqueira, R. Venkatakrishnan, R. Venkatakrishnan, A. Bharqava, K. Lucaites,
H. Solini, M. Nasiri, A. Robb, C. Pagano, B. Ullmer, and S. V. Babu, “Empirically evaluating
the effects of perceptual information channels on the size perception of tangibles in
nearfield
virtual reality,” Proceedings 2021
IEEE Conference on Virtual Reality and 3D
User Interfaces, VR 2021, pp. 606–615, 3 2021.
[40] T. Piumsomboon, G. A. Lee, B. Ens, B. H. Thomas, and M. Billinghurst, “Superman vs
giant: A study on spatial perception for a multiscale
mixed reality flying telepresence
interface,” IEEE Transactions on Visualization and Computer Graphics, vol. 24, no. 11,
pp. 2974–2982, 11 2018.
[41] I. Sperandio and P. A. Chouinard, “The mechanisms of size constancy,” Multisensory research,
vol. 28, no. 34,
pp. 253–283, 2015.
[42] M. Geuss, J. Stefanucci, S. CreemRegehr,
and W. B. Thompson, “Can i pass?: Using
affordances to measure perceived size in virtual environments,” in Proceedings APGV
2010: Symposium on Applied Perception in Graphics and Visualization, 2010, pp. 61–64.
[43] P. E. Napieralski, B. M. Altenhoff, J. W. Bertrand, L. O. Long, S. V. Babu, C. C. Pagano,
J. Kern, and T. A. Davis, “Nearfield
distance perception in real and virtual environments
using both verbal and action responses,” ACM Transactions on Applied Perception, vol. 8,
no. 3, 8 2011. [Online]. Available: https://doi.org/10.1145/2010325.2010328
[44] J. M. Loomis and J. W. Philbeck, “Measuring spatial perception with spatial updating and
action.” in Embodiment, egospace,
and action., ser. Carnegie Mellon symposia on cognition.
New York, NY, US: Psychology Press, 2008, pp. 1–43.
[45] R. A. Weast and D. R. Proffitt, “Can I reach that? Blind reaching as an accurate measure
of estimated reachable distance,” Consciousness and Cognition, vol. 64, pp. 121–134, 9
2018.
[46] J. A. Ferwerda, “Three varieties of realism in computer graphics,” in Human Vision and
Electronic Imaging VIII, B. E. Rogowitz and T. N. Pappas, Eds., vol. 5007. SPIE, 2003,
p. 290 –297. [Online]. Available: https://doi.org/10.1117/12.473899
[47] W. Xiao, Z. Qin, Z. Guo, H. Shi, and Y. Tai, “Human Heart Model Rendering Based
on BRDF Algorithm,” in Advances in 3D Image and Graphics Representation, Analysis,
Computing and Information Technology. Springer, 2020, pp. 179–184.
[48] A. A. Gooch, J. Long, L. Ji, A. Estey, and B. S. Gooch, “Viewing progress in nonphotorealistic
rendering through Heinlein’s lens,” in Proceedings of the 8th International
Symposium on NonPhotorealistic
Animation and Rendering, 2010, pp. 165–171.
[49] P. Rademacher, J. Lengyel, E. Cutrell, and T. Whitted, “Measuring the Perception of
Visual Realism in Images,” in Rendering Techniques 2001, Gortler Steven J., , and
K. Myszkowski, Eds. Vienna: Springer Vienna, 2001, pp. 235–247
[50] M. Elhelw, M. Nicolaou, A. Chung, G.Z.
Yang, and M. S. Atkins, “A gazebased
study
for investigating the perception of visual realism in simulated scenes,” ACM Transactions
on Applied Perception (TAP), vol. 5, no. 1, pp. 1–20, 2008.
[51] P. J. Pardo, M. I. Suero, and . L. Pérez, “Correlation between perception of color, shadows,
and surface textures and the realism of a scene in virtual reality,” JOSA A, vol. 35,
no. 4, p. B130–B135, 2018.
[52] L. Phillips, B. Ries, V. Interrante, M. Kaeding, and L. Anderson, “Distance perception in
NPR immersive virtual environments, revisited,” in Proceedings of the 6th Symposium on
Applied Perception in Graphics and Visualization, 2009, pp. 11–14.
[53] C. C. Pagano, R. P. Grutzmacher, and J. C. Jenkins, “Comparing verbal and reaching responses
to visually perceived egocentric distances,” Ecological Psychology, vol. 13, no. 3,
pp. 197–226, 2001.
[54] B. Rudolph, G. Musick, L. Wiitablake, K. B. Lazar, C. Mobley, D. M. Boyer, S. Moysey,
A. Robb, and S. V. Babu, “Investigating the Effects of Display Fidelity of Popular HeadMounted
Displays on Spatial Updating and Learning in Virtual Reality,” in International
Symposium on Visual Computing, 2020, pp. 666–679.
[55] E. Ebrahimi, A. Robb, L. S. Hartman, C. C. Pagano, and S. V. Babu, “Effects of anthropomorphic
fidelity of selfavatars
on reach boundary estimation in immersive virtual
environments,” in Proceedings of the 15th ACM Symposium on Applied Perception, 2018,
pp. 1–8.
[56] B. Karis, “Real Shading in Unreal Engine 4,” Acm Siggraph 2013, pp.
1–21, 2013. [Online]. Available: https://cdn2.unrealengine.com/Resources/files/
2013SiggraphPresentationsNotes26915738.
pdf
[57] B. E. Holaday, Die Grössenkonstanz der Sehdinge bei Variation der inneren und äusseren
Wahrnehmungsbedingungen. na, 1932.
[58] A. Lake, C. Marshall, M. Harris, and M. Blackstein, “Stylized rendering techniques for
scalable realtime
3D animation,” in Proceedings first International Symposium on Non
Photorealistic Animation and Rendering. Association for Computing Machinery (ACM),
2000, pp. 13–20.
[59] E. Praun, H. Hoppe, M. Webb, and A. Finkelstein, “Realtime
hatching,” in Proceedings
of the 28th annual conference on Computer graphics and interactive techniques, 2001, p.
581.
[60] R. V. Kenyon, D. Sandin, R. C. Smith, R. Pawlicki, and T. Defanti, “Sizeconstancy
in the
CAVE,” Presence: Teleoperators and Virtual Environments, vol. 16, no. 2, pp. 172–187,
2007.
[61] C. MacLachlan and H. C. Howland, “Normal values and standard deviations for pupil
diameter and interpupillary distance in subjects aged 1 month to 19 years,” Ophthalmic
and Physiological Optics, vol. 22, no. 3, pp. 175–182, 2002.
[62] G. P. Bingham and C. C. Pagano, “The necessity of a perception–action approach to definite
distance perception: Monocular distance perception to guide reaching.” Journal of
Experimental Psychology: Human Perception and Performance, vol. 24, no. 1, p. 145,
1998.
[63] C. C. Pagano and G. P. Bingham, “Comparing measures of monocular distance perception:
Verbal and reaching errors are not correlated.” Journal of Experimental Psychology:
Human Perception and Performance, vol. 24, no. 4, p. 1037, 1998.
[64] J. VasconcelosRaposo,
M. Bessa, M. Melo, L. Barbosa, R. Rodrigues, C. M. Teixeira,
L. Cabral, and A. A. Sousa, “Adaptation and validation of the Igroup Presence Questionnaire
(IPQ) in a Portuguese sample,” Presence, vol. 25, no. 3, pp. 191–203, 2016.
[65] S. G. Hart, “NASAtask
load index (NASATLX)
; 20 years later,” in Proceedings of the
human factors and ergonomics society annual meeting, vol. 50, no. 9, 2006, pp. 904–908.
[66] R. Withagen and C. F. Michaels, “The role of feedback information for calibration and
attunement in perceiving length by dynamic touch.” Journal of Experimental Psychology:
Human Perception and Performance, vol. 31, no. 6, p. 1379, 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top