跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/22 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉玟妤
研究生(外文):Liu, Wen-Yu
論文名稱:應用於心電圖監測與心律變異具右肢驅動電路與雙極性電極組織阻抗量測電路之互補式金氧半類比前端放大器設計
論文名稱(外文):Design of CMOS Analog Front-End Electrocardiography (ECG) Amplifier with Right-Leg Driven Circuit and Bipolar Electrode-Tissue Impedance Measurement Circuit for ECG Monitoring and Heart Rate Variability (HRV) Applications
指導教授:洪崇智
指導教授(外文):Hung, Chung-Chih
口試委員:吳重雨柯明道邱進峯洪崇智
口試委員(外文):Wu, Chung-YuKer, Ming-DouChiu, Chin-FongHung, Chung-Chih
口試日期:2023-06-13
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:92
中文關鍵詞:類比前端放大器心電圖電極組織阻抗測量電路截波調變高共模拒斥比心律變異
外文關鍵詞:analog front-end amplifierelectrocardiogram (ECG)electrode-tissue impedance measurement circuitchopper modulationhigh CMRRHRV
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
Table of Contents iv
List of Figures vi
List of Tables x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Review on AFE ECG Amplifiers 6
1.3 Review on Electrode-Tissue Impedance Measurement Circuits 11
1.4 Motivation 13
1.5 Main Results and Thesis Organization 14
Chapter 2 Circuit Design 17
2.1 Design Consideration and Circuit Architecture 17
2.1.1 Design Consideration 20
2.1.2 Circuit Architecture 22
2.2 Analog Front-End Amplifier 26
2.2.1 Capacitively Coupled-Chopper Instrumentation Amplifier 26
2.2.2 Right-Leg Driven Circuit 34
2.2.3 Post-Layout Simulation Results 37
2.3 Bipolar Electrode-Tissue Impedance Measurement Circuit 44
2.3.1 Bipolar Electrode-Tissue Impedance Measurement Circuit 44
2.3.2 Post-Layout Simulation Results 50
Chapter 3 Experimental Results 54
3.1 Full Chip Layout 54
3.2 Measurement Results of AFE Amplifier 56
3.2.1 Measurement Setup 58
3.2.2 Measurement Results 62
3.3 Measurement Results of ECG Electrodes and Bipolar Electrode-Tissue Impedance Measurement Circuit 70
3.3.1 Measurement Setup and Results of ECG Electrodes 70
3.3.2 Measurement Setup of Bipolar Electrode-Tissue Impedance Measurement Circuit 71
3.3.3 Measurement Results of Bipolar Electrode-Tissue Impedance Measurement Circuit 72
3.4 Measurement Results of HRV 74
3.4.1 Measurement Setup 74
3.4.2 Measurement Results 75
3.5 Discussions 79
3.5.1 Discussion of the ECG AFE Amplifier 79
3.5.2 Discussion of the Bipolar Electrode-Tissue Impedance Measurement Circuit 83
Chapter 4 Conclusion and Future Work 86
4.1 Conclusion 86
4.2 Future Work 88
Reference 89
[1]Cardiovascular Diseases (CVDs), [online] Available: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).
[2]R. F. Yazicioglu, P. Merken, R. Puers, and C. Van Hoof, “A 60 µW 532 60 nV/√ Hz readout front-end for portable biopotential acquisition sys- 533 tems,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp. 1100–1110, 534 May 2007.
[3]N. Verma, A. Shoeb, J. Bohorquez, J. Dawson, J. Guttag, and A. P. Chandrakasan, “A micro-power EEG acquisition SoC with integrated feature extraction processor for a chronic seizure detection system,” IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 804-816, Apr. 2010.
[4]M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan, “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE Journal of Solid-State Circuits, vol. 22, no. 6, pp. 1163–1168, Dec. 1987.
[5]N. Koo and S. Cho, “A 24.8µW Biopotential Amplifier Tolerant to 15Vpp Common-Mode Interference for Two Electrode ECG Recording in 180nm CMOS ", IEEE J. Solid-State Circuits, vol. 56, no. 2, pp. 591-600, Feb. 2021.
[6]J. Xu et al., “A 0.6 V 3.8 μW ECG/bio-impedance monitoring IC for disposable health patch in 40 nm CMOS,” in Proc. IEEE Custom Integr. Circuits Conf., Apr. 2018, pp. 1–4.
[7]M. Chen et al., " A 400 GΩ Input-Impedance Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition With Large Linear-Input-Range and High CM-Interference-Tolerance ", IEEE Trans. Biomed. Circuits and Syst., vol. 13, no. 2, pp. 376-386, April 2019.
[8]C. Huang, C. Chung, R. Syu and C. Wu, "The Design of CMOS Electrode-Tissue Impedance Measurement Circuit Using Differential Current Switch with CMFB Bias for Implantable Neuro-Modulation SoCs," IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, 2019, pp. 1-4.
[9]"ANSI/AAMI-EC13", American National Standards for Cardiac Monitors Hearth Rate Meters and Alarms, 2002.
[10]C. C Enz, F. Krummenacher, and E.A. Vittoz, “An Analytical MOS Transistor Model Valid in ALL Regions of Operation and Dedicated to Low-Voltage and Low-Current Applications,” Analog integrated circuits and signal processing, vol. 8, no. 1, pp. 83–114, 1995.
[11]Y. P. Tsividis, Operation and Modeling of the MOS Transistor. New York: McGraw-Hill, 1987.
[12]Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8 µW 60 nV/rtHz capacitively-coupled chopper instrumentation amplifier in 65nm CMOS for wireless sensor nodes,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1534-1543, Jul. 2011.
[13]C.-Y. Wu and C.-S. Ho, “An 8-channel Chopper-Stabilized Analog Front-End Amplifier for EEG Acquisition in 65-nm CMOS,” in Proc. Asian Solid-State Circuits Conf., pp. 1- 4, Nov. 2015.
[14]J. Yoo, et al., “An 8-channel scalable EEG acquisition SoC with patient-specific seizure classification and recording processor,” IEEE J. Solid-State Circuits, vol. 48, no. 1, pp. 214-228, Jan. 2013.
[15]P.-W. Chen, C.-W. Huang, and C.-Y. Wu, “An 1.97μW/Ch 65nm-CMOS 8-channel analog front-end acquisition circuit with fast-settling hybrid DC servo loop for EEG monitoring,” IEEE Symposium on Circuits and Systems (ISCAS), May 2018.
[16]R. Wu, K. A. A. Makinwa, and J. H. Huijsing, “A Chopper Current-Feedback Instrumentation Amplifier with a 1mHz 1/f Noise corner and an AC-Couple Ripple Reduction Loop,” IEEE Journal of Solid-State Circuits, vol. 44, no. 12, pp. 3232–3243, Dec. 2009.
[17]T. Denison, K. Consoer, W. Santa, A. T. Avestruz, J. Cooley, and A. Kelly, “A 2 µW 100 nV/rtHz chopper stabilized instrumentation amplifier for chronic measurement of neural field potentials,” IEEE J. Solid-State Circuits, vol. 42, no. 12, pp. 2934-2945, Dec. 2007.
[18]Deng Luo , Milin Zhang , and Zhihua Wang, “Design of A Low Noise Neural Recording Amplifier for Closed-loop Neuromodulation Applications,” 2018 IEEE international Symposium on Circuits and Systems (ISCAS)
[19]Medical electrical equipment – Part 2-26: Particular requirements for the basic safety and essential performance of electroencephalographs, Standard IEC 80601-2-26, May 2019.
[20]J.-P. Hou, “The Design of a Fully Differential Bypass Window Successive Approximation Register Analog-to-Digital Converter and an Electrode-Tissue Impedance Measurement Circuit for Cochlear Implants,” National Chiao Tung University, unpublished master degree’s dissertation.
[21]Y. Park, J.-H. Cha, S.-H. Han, J.-H. Park, and S.-J. Kim, “A 3.8-μW 1.5-NEF 15-G total input impedance chopper stabilized amplifier with auto-calibrated dual positive feedback in 110-nm CMOS,” IEEE J. Solid State Circuits, vol. 57, no. 8, pp. 2449–2461, Aug. 2022.
[22]S. Pavan, N. Krishnapura and P. Sankar, “A power optimized continuous-time ΔΣ ADC for audio applications” IEEE J. Solid-State Circuits, vol. 43, no. 2, pp. 351-360, Feb., 2008.
[23]C.-Y. Chen, “The Design of CMOS Electrically Evoked Compound Action Potential (ECAP) Analog Front-End Acquisition Unit (AFEAU) with Electrode-Tissue Impedance Measurement Circuit for Cochlear Implants,” National Chiao Tung University, unpublished master degree’s dissertation.
[24]Weixun Yan and Horst Zimmermann, “Continuous-Time Common-Mode Feedback Circuit for Applications with Large Output Swing and High Output Impedance” in 11th 2008 DDECS, 2008.
[25]Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 1996, Vol. 93 Issue 5, pp. 1043–1065.
[26]https://www.primemedicaltraining.com/12-lead-ecg-placement/
[27]R.-S. Syu, “The Design of CMOS Analog Front-End Acquisition Circuits for Electrocorticography (ECoG) and Evoked Compound Action Potential (ECAP) Recording in Implantable Medical Devices,” M.S. thesis, Institute of Electronics National Chiao Tung University, Hsinchu, 2019.
[28]Safe current limits for electromedical apparatus. ANSI/AAMI ES1-1993.
電子全文 電子全文(網際網路公開日期:20280624)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 應用於癲癇控制系統晶片具偽影消除功能結合類比模板消除和同步 採樣和保持偽影消影技術之互補式金氧半類比前端放大器設計
2. 應用於失智症顱外腦電圖紀錄具雙頻偽影消除及可調電流式電極組織阻抗量測電路之互補式金氧半類比前端放大器設計
3. 具有內置增益比較器每週期三位元之每秒六千五百萬次取樣非二進制八位元循序漸進類比數位轉換器
4. 用於植入式生醫晶片系統生理訊號擷取單元具偏移電壓校正雙級比較器之低功率十二位元每秒十萬次取樣切換逐次漸進式類比數位轉換器
5. 應用於PCI Express 之展頻電路系統
6. 應用於失智鼠研究具電極組織阻抗量測電路之互補式金氧半類比前端腦電訊號放大器
7. 應用於失智鼠顱外腦電圖紀錄具正負一伏共模與正負十毫伏差模偽影訊號去除及電極組織阻抗量測電路之互補式金氧半類比前端放大器設計
8. 應用於癲癇控制系統晶片具偽影訊號去除及右肢驅動電路之互補式金氧半類比前端腦皮層電圖放大器設計
9. 應用於神經訊號感測具刺激干擾對策之低功率低雜訊類比前端電路
10. 具快速暫態響應技巧之雙模式直流-直流降壓穩壓器
11. 應用於生醫領域之低雜訊類比前端電路
12. 具備冗位配置技術之高效能中高速循序漸進類比數位轉換器
13. 應用於植入式生醫系統之超低壓頻率合成器和逐次逼近類比數位轉換器
14. 無外部電容之低壓降線性穩壓器
15. 應用於神經訊號感測包含右肢驅動及偽右肢驅動電路之低雜訊低功率類比前端電路