跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/21 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉芷伶
研究生(外文):Yeh, Chih-Ling
論文名稱:探討智能數位醫療於大健康產業運用-以 B 公司為例
論文名稱(外文):Exploring the application of intelligent digitization in the healthcare industry: A case study of Company B
指導教授:鍾惠民鍾惠民引用關係黃仕斌黃仕斌引用關係
指導教授(外文):Chung, Hui-MinHuang, Shih-Pin
口試日期:2023-05-21
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:生技醫療經營管理碩士在職學位學程
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:62
中文關鍵詞:智能生活數位醫療製藥產業產品創新用戶體驗產品安全隱私保護資料安全
外文關鍵詞:smart livingdigital healthcarepharmaceutical industryproduct innovationproduct safetyprivacy protectiondata securityuser experience
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
智能生活數位醫療是當前醫療領域的一個熱門話題,它可以為人們提供更 為便捷、高效、個性化的醫療服務,同時也為製藥產業公司帶來了新的機遇和 挑戰。本論文旨在探討了智能生活數位醫療對製藥產業的影響和機遇,以製藥 產業 B 公司為例,並提出了相應的建議和解決方案。
首先,本論文對智能生活數位醫療的概念進行了介紹和分析,強調了其對 大健康產業的重要性和發展趨勢。然後,本論文從探討智能生活數位醫療的角 度出發,分析了智能生活數位醫療對製藥產業的影響和機遇,B 公司是製藥產 業數位化之指標性企業,指出製藥產業公司可以通過發展智能生活數位醫療產 品和服務,實現產業轉型和業務拓展。智能生活數位醫療可以提供更加個性化 的醫療服務,同時也為用戶提供了更便捷、更智能的醫療體驗。
接著,本論文分析了製藥產業公司在發展智能生活數位醫療產品和服務時
需要注意的問題和挑戰和本文研究方法採取文獻分析法及次級資料分析法,包
括技術創新、資源投入、用戶體驗、產品安全、隱私保護和資料安全等問題。
同時,本論文提出了相應的解決方案和建議,如加強技術創新和產品創新、改
善用戶體驗、提高產品安全、加強隱私保護和資料安全等,以實現製藥產業公
司的可持續發展。
Intelligent digital healthcare within the context of smart living is currently a subject of great interest within the healthcare industry. This technology has the potential to offer individuals more convenient, efficient, and personalized healthcare services. Furthermore, it presents both novel opportunities and challenges for pharmaceutical companies. The primary objective of this paper is to analyze the implications of intelligent digital healthcare within smart living for the pharmaceutical industry, utilizing pharmaceutical company B as a case study. This study also endeavors to provide recommendations and solutions in response to the identified challenges and opportunities.
Initially, this paper presents and scrutinizes the notion of intelligent digital healthcare, which is embedded within the ambit of smart living. It accentuates its importance and emerging patterns within the healthcare sector. Subsequently, it examines the effects and prospects of intelligent digital healthcare from a more comprehensive viewpoint and assesses its repercussions on the pharmaceutical industry. The paper suggests that pharmaceutical companies can attain industrial metamorphosis and augment their operations by creating intelligent digital healthcare commodities and facilities. Intelligent digital healthcare possesses the capacity to furnish personalized healthcare services while concurrently affording users a more intelligent and convenient healthcare experience.
Subsequently, this paper delves into the intricacies and complexities that pharmaceutical companies must navigate while creating intelligent digital healthcare products and services. These include technological innovation, resource investment, user experience, product safety, privacy protection, and data security. To gain an in- depth understanding, this study employs a combination of research methods, including literature analysis, and secondary data analysis. Additionally, this paper offers feasible solutions and recommendations, such as augmenting technological and product innovation, refining user experience, fortifying product safety, and reinforcing privacy protection and data security, to facilitate the sustainable development of pharmaceutical companies.
中文摘要 i
英文摘要 ii
目錄 iii
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
第二章 智慧醫療與人工智慧相關文獻探討 5
2.1智能生活數位醫療的特點與優勢 5
2.1.1 智能生活與數位醫療的定義與特點 6
2.1.2智能生活數位醫療的優勢與應用場景 9
2.2製藥產業的數位轉型與智能生活數位醫療的發展趨勢 14
2.2.1製藥產業的數位轉型現狀與挑戰 15
2.2.2智能生活數位醫療對製藥產業的影響與發展趨勢 16
2.2.3智能生活數位醫療在製藥產業中的應用 18
2.3製藥產業的破壞式創新與轉型 22
2.3.1破壞式創新概述 22
2.3.2紫牛理論與競爭策略 24
2.3.3生醫產業Online To Offline(O2O)模型 26
2.3.4破壞式創新在製藥產業中的挑戰 29
2.3.5破壞式創新在製藥產業中的應用 32
第三章 研究方法 35
3.1 個案研究法 35
3.2 研究方法與步驟 35
3.2.1 文獻分析法 36
3.2.2 次級分析法 36
3.2.3 個案研究法 36
3.3 資料蒐集來源與分析方法 37
第四章 智能生活數位醫療之應用 37
4.2 一站式數位服務介紹 39
4.2.1 B公司的一站式數位服務起源 39
4.2.2 一站式數位服務-健康好夥伴簡介 40
4.2.3 健康好夥伴之健康管理功能與效益 41
4.3 智慧型線上健康管理工具與破壞式創新 44
4.4 智慧型線上健康管理工具之挑戰 45
4.5 智慧型線上健康管理工具未來發展 46
第五章 結論與建議 47
5.1 研究結論 47
5.2 研究限制與研究建議 48
參考文獻 49
參考文獻
江和謙、錢岳、王超 (2021)。藥物研發中的數字化醫療。《藥物發現今日》 26(1), 133-138。doi: 10.1016/j.drudis.2020.06.013
吳書瑞、謝小雲、張婧文、謝曼茵(2021)。智慧醫療:技術概述及其應用。 《醫療工程學雜誌》,2021,1-14。
49

周凱. (2020). 智慧醫療發展現狀及對大健康產業的影響. 醫學與社會, 33(9), 54- 56.
周琦、陸云、王嘉 (2020)。智能技術在製藥生產中的應用。《國際工業人體工 程學期刊》79, 103009。doi: 10.1016/j.ergon.2020.103009
林奐呈(2009)。麥可.波特:競爭策略核心概念。經理人月刊。2009-03-27。 段玉芬. (2021). 智能醫療在製藥行業中的應用前景. 科技與經濟, 8, 77-78. 張慧(2020)。醫學數據標準化研究綜述。《醫學與哲學》,41(3),86-88。 趙新華, & 張光. (2020). 智能醫療技術在製藥產業中的應用研究. 科技導報, 22,
85-87. 劉瑤、張莉莉、胡曉慧、王艷、劉玲玲、張慧華(2020)。智能數位醫療在製
藥產業中的應用。《藥物學前沿》,11,1-11。doi:
10.3389/fphar.2020.00030。
蔡慕華、張盼 (2020)。智能醫療技術在製藥產業中的應用現狀與前景。中國現
代商業, 17, 69-70。 衛生福利部(2020)智慧社區防疫。2023 年 4 月取自
https://covid19.mohw.gov.tw/ch/cp-4829-53660-205.html
衛生福利部. (2023). COVID-19 防疫關鍵決策時間軸 .2023 年 4 月 取自 https://covid19.mohw.gov.tw/ch/sp-timeline0-205.html
薛力豪、鍾佩昕、與黃昱綸(2021)。智慧醫療專利技術分析。未出版之研究
報告。
英文文獻
Alharthi, H., Al-Mansour, T., Al-Aboudi, M., & Al-Qahtani, M. (2020). The role of smart healthcare in improving patient satisfaction: An exploratory study. International Journal of Medical Informatics, 137, 104128. doi: 10.1016/j.ijmedinf.2020.104128
50

Alomari, M. A., Alabdallah, O., & Khasawneh, F. A. (2021). The role of artificial intelligence and big data in enhancing supply chain management in pharmaceutical industry. International Journal of Information Management, 61, 102136. https://doi.org/10.1016/j.ijinfomgt.2021.102136
Aminpour, F., Sadoughi, F., & Yousefzadeh, N. (2019). Clinical decision support systems for in-hospital care: A review to analyze clinical outcomes. Health Information Management Journal, 48(2), 62-68. https://doi.org/10.1177/1833358318784281
Barnes, S. J., Arner, T. D., & Hwang, J. (2019). Intelligent pharmaceutical manufacturing: machine learning, AI, and the Internet of things. Expert Opinion on Drug Safety, 18(5), 365-373. doi: 10.1080/14740338.2019.1590429
Bender, M. S., Choi, J., Arai, S., Paul, S. M., Gonzalez, P., & Fukuoka, Y. (2017). Digital storytelling: An innovative tool for practice, education, and research. Journal of Nursing Education and Practice, 7(11), 43–51. https://doi.org/10.5430/jnep.v7n11p43
Bourgeois, F. C., & Olson, K. L. (2020). Wearable technology and its impact on health and wellness. American Journal of Lifestyle Medicine, 14(3), 318-321. https://doi.org/10.1177/155982762090707
Chan, K. S., Fowles, J. B., & Weiner, J. P. (2010). Electronic health records and the reliability and validity of quality measures: A review of the literature. Medical Care Research and Review, 67(5), 503–527. https://doi.org/10.1177/1077558709355968
Chang, P., & Chiang, C.-Y. (2020). Smart healthcare services: A systematic review. Journal of Medical Systems, 44(7), 129. https://doi.org/10.1007/s10916-020- 01615-3
51

Chen, B., Gao, Y., Wu, H., & Ding, Y. (2021). The application of bioinformatics in cancer immunotherapy. Journal of Immunology Research, 2021. https://doi.org/10.1155/2021/9728676
Chen, X., Wang, Y., Zhang, J., Zhou, L., Deng, X., & Wang, Q. (2018). Health management empowered by internet of things and big data: A review. IEEE Access, 6, 35665-35677. https://doi.org/10.1109/ACCESS.2018.2855474
Chen, Y., Cheng, P., & Chiang, T. H. C. (2021). Data analytics for precision medicine. Journal of industrial information integration, 22, 100150. https://doi.org/10.1016/j.jii.2021.100150
Chen, Y., Wang, Y., & Wang, L. (2021). Application of intelligent digital healthcare in pharmaceutical industry. Journal of medical systems, 45(12), 1-9.
Chen, Z., Song, Q., Chen, Y., & Huang, Y. (2021). Bioinformatics methods and applications in the field of gene therapy. Frontiers in Genetics, 12, 616657. https://doi.org/10.3389/fgene.2021.616657
Chiang, C.-Y., Wang, Y.-H., & Tsai, C.-C. (2020). Development of an intelligent online health management system based on deep learning for the elderly. Journal of Medical Systems, 44(9), 170. https://doi.org/10.1007/s10916-020-01684-7
Christensen, C. M., Bohmer, R., & Kenagy, J. (2000). Will disruptive innovations cure health care? Harvard Business Review, 78(5), 102-112.
Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches. Sage publications.
CynergisTek. (2019). 2019 Annual Report: Moving Forward: Setting the Direction. Retrieved from https://cynergistek.com/2019-annual-report/
52

De Quincey, C., & Hardiker, K. (2019). Healthcare and the effect of technology: Developments, challenges and advancements. Healthcare Technology Letters, 6(3), 67-71. doi: 10.1049/htl.2019.0009
Dong, X., Chen, Y., & Guan, X. (2021). Application of artificial intelligence in the diagnosis and treatment of digestive system diseases. World journal of gastroenterology, 27(12), 1179-1189. doi: 10.3748/wjg.v27.i12.1179
Dong, X., Zhang, X., & Zhu, H. (2018). Design and Implementation of Medical Data Security System Based on Block Chain. Wireless Personal Communications, 102(2), 1477-1486. https://doi.org/10.1007/s11277-018-5673-y
Doucet, M., & Soucy, M. (2018). Disruptive innovation and the pharmaceutical industry. Journal of Pharmaceutical Policy and Practice, 11(1), 1-11. https://doi.org/10.1186/s40545-018-0151-7
Duan, X., & Chen, X. (2020). The implementation and challenges of data security in healthcare big data. Journal of medical systems, 44(10), 1-7.
Gance-Cleveland, B. (2013). Health risk assessment: Tools for promoting healthy living. Journal of Pediatric Health Care, 27(1), 77–81. https://doi.org/10.1016/j.pedhc.2012.08.008
Ganguly, A., & Kumar, C. (2022). DISRUPTIVE INNOVATION IN HEALTHCARE: A REVIEW AND FUTURE RESEARCH AGENDAS. International Journal of Innovation Management, 26(01), 2250002. https://doi.org/10.1142/S1363919622500025
Gao, X., & Jiang, F. (2018). Big data analytics in healthcare: promise and potential. Health Information Science and Systems, 6(1), 3.
53

Ghassemi, T. M., Naumann, A., Doshi-Velez, P., & Ruiz, F. J. R. (2019). Practical guidance on artificial intelligence for healthcare data. The Lancet Digital Health, 1(4), e157-e159. doi: 10.1016/S2589-7500(19)30056-1
Gkoulalas-Divanis, A., & Loukides, G. (2019). Privacy-preserving data mining in healthcare: A survey. Artificial Intelligence in Medicine, 98, 1-26.
Gualano, M. R., Bert, F., Passi, S., Stillo, M., & Galasso, L. (2019). Use of mobile phone applications for health promotion: A review of the literature. Journal of Medical Systems, 43(3), 1-15. https://doi.org/10.1007/s10916-019-1166-5
Gurumurthy, R., & Venkataraman, R. (2018). Blockchain disruption in pharma supply chains. Strategic Change, 27(5), 457-465.
Haddad, P., Darwish, A., & Al Asadi, S. (2021). Intelligent Healthcare Monitoring System Using IoT and Artificial Intelligence. Journal of Healthcare Engineering, 2021, 1-14. https://doi.org/10.1155/2021/6621942
Haidari, M., & Wong, W. (2018). Big Data in the pharmaceutical industry: opportunities and challenges. British Journal of Clinical Pharmacology, 84(9), 1635-1641.
Health Europa. (2018). Digital health revolution: What can wearable devices offer? Retrieved from https://www.healtheuropa.eu/digital-health-revolution-what-can- wearable-devices-offer/88334/
Hou, C., & Chen, Y. (2021). Application of artificial intelligence in medical diagnosis and treatment. Journal of Healthcare Engineering, 2021, 1-9. https://doi.org/10.1155/2021/6689585
Hsu, W. C., Lin, Y. C., Cheng, Y. J., et al. (2019). The effect of health information technology on healthcare providers’ attitudes towards adoption of clinical
54

decision support systems. BMC Medical Informatics and Decision Making,
19(1), 35. https://doi.org/10.1186/s12911-019-0761-8
Hu, Y., & Chen, Y. (2021). The development of digital healthcare platform for
chronic disease management. Journal of medical systems, 45(4), 1-9.
https://doi.org/10.1007/s10916-021-01752-4
Huang, Y., Xu, Z., & Cheng, J. (2021). Blockchain-based pharmaceutical supply
chain: A systematic review. IEEE Access, 9, 17662-17673.
https://doi.org/10.1109/ACCESS.2021.3051368
IDC. (2020). Worldwide Artificial Intelligence Market Forecast, 2020–2024: Market Resilience Through COVID-19. Retrieved from https://www.idc.com/getdoc.jsp?containerId=prUS46998420
Iyamu, T., & Aghoja, O. V. (2021). Blockchain technology and the pharmaceutical supply chain: a review of the literature. Journal of Pharmaceutical Health Services Research, 12(2), 179-186. doi: 10.1111/jphs.12451
Jia, J., Yang, H., Pan, X., & Yu, B. (2020). Privacy preservation and secure data sharing in biomedical big data era. Computers, Materials & Continua, 65(1), 369-384.
Jia, S., Li, Y., & Yu, J. (2018). Research on the Application of Online-to-Offline Model in Medical Industry. In 2018 International Conference on Management Science and Innovative Education (MSIE 2018) (pp. 73-77). Atlantis Press.
Jiang, N., & Ryan, J. (2020). How does digital technology help in the fight against COVID-19? World Bank. Retrieved June 16, 2020, from https://blogs.worldbank.org/health/how-does-digital-technology-help-fight- against-covid-19
55

Jiang, X., Yao, X., Liu, Y., & Zhang, Y. (2021). A novel data security framework for pharmaceutical enterprises based on cloud computing. International Journal of Medical Informatics, 147, 104360.
Johnson, A. E. W., Pollard, T. J., Shen, L., Lehman, L. H., Feng, M., Ghassemi, M., Moody, B., Szolovits, P., Celi, L. A., & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific Data, 3, 160035.
Katsanis, J., Arora, K., Brownlee, S., Friedland, J., Gundlapalli, A. V., Haselkorn, A., ... & Tcheng, J. E. (2020). Smart Health and Innovation: Facilitating health- related research with artificial intelligence, privacy, and ethics. Journal of the American Medical Informatics Association, 27(7), 1058-1064. https://doi.org/10.1093/jamia/ocaa045
Lazonick, W., & Tulum, Ö. (2011). US biopharmaceutical finance and the sustainability of the biotech business model. Research Policy, 40(9), 1170-1187.
Lee, J. Y., Lee, S., Kim, J. H., Kim, H., Kang, S. J., Kim, S., & Lee, S. (2019). A survey of artificial intelligence applications in healthcare. Journal of medical systems, 43(3), 58. https://doi.org/10.1007/s10916-019-1160-1
Lee, Y. T., Huang, S. C., & Hung, S. Y. (2020). Analysis of the impact of smart healthcare on healthcare personnel employment. International Journal of Environmental Research and Public Health, 17(8), 2878.
Li, J., Yao, L., & Cao, X. (2021). Intelligent medication management based on Internet of Things: Challenges and solutions. IEEE Access, 9, 54802-54811.
Li, Y., Liang, W., & Zhang, Q. (2016). An intelligent and integrated approach to patient monitoring and assessment for telemedicine. Journal of medical systems, 40(8), 188
56

Li, Y., Wu, Q., Liu, J., Zhang, R., & Huang, C. (2019). The impact of WeChat social interaction on healthcare service quality and medical satisfaction. Technological Forecasting and Social Change, 146, 135-142. https://doi.org/10.1016/j.techfore.2019.05.009
Lin, C., & Chen, Y. (2019). Exploring the Determinants of Online-to-Offline (O2O) Commerce Adoption: Evidence from the Healthcare Industry. International Journal of Information Management, 49, 27-37.
Liu, L., Chen, X., & Wang, J. (2020). Application of artificial intelligence in histopathological diagnosis. Advances in experimental medicine and biology, 1213, 365-377. doi: 10.1007/978-981-15-1025-0_23
Liu, Q., Peng, W., Zhang, F., Hu, R., Li, Y., & Yan, S. (2020). Intelligent healthcare: A review. Artificial Intelligence Review, 53(4), 2793-2830. https://doi.org/10.1007/s10462-020-09841-1
Liu, Y., Sun, Y., Du, J., & Liang, C. (2017). The Effects of Online and Offline Advertising: Evidence from the Health and Fitness Industry. Journal of Interactive Marketing, 37, 1-17.
Liu, Z., Huang, D., & Zhao, Y. (2021). A comprehensive review of blockchain in pharmaceutical supply chain management. Journal of Intelligent Manufacturing, 32(1), 161-174. https://doi.org/10.1007/s10845-020-01589-9
Liu, Z., Wang, J., Li, X., Li, Y., & Zhang, Y. (2019). Intelligent healthcare: A review of the 2018 literature. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 17(1), 323-335. https://doi.org/10.1109/TCBB.2019.2900913
Lupton, D., & Jutel, A. (2015). Digitized health promotion: Personal responsibility for health in the web 2.0 era. In The Handbook of Communication and Corporate
57

Social Responsibility (pp. 585-604). John Wiley & Sons, Ltd.
https://doi.org/10.1002/9781119051962.ch32
Lyons, E. J., Lewis, Z. H., Mayrsohn, B. G., & Rowland, J. L. (2014). Behavior change techniques implemented in electronic lifestyle activity monitors: A systematic content analysis. Journal of Medical Internet Research, 16(8), e192. https://doi.org/10.2196/jmir.3469
Majeed, B., Batool, A., Majeed, U., Aslam, B., Ullah, S., & Shahzad, F. (2021). Security and privacy of smart healthcare systems: A systematic literature review. IEEE Access, 9, 72217-72236. https://doi.org/10.1109/ACCESS.2021.3082435
McKinsey & Company. (2018). AI’s potential to transform healthcare. Retrieved from https://www.mckinsey.com/industries/pharmaceuticals-and-medical- products/our-insights/ais-potential-to-transform-healthcare.
Medical News Today. (2020, September 21). WIRED Health:Tech 2020: Latest advances and the fight against COVID-19. https://www.medicalnewstoday.com/articles/wired-healthtech-2020-latest- advances-and-the-fight-against-covid-19#Tech-for-the-future-of-medicine
Merriam, S. B. (2009). Qualitative research: A guide to design and implementation. John Wiley & Sons.
Munos, B. H. and J. J. Orloff. 2016. Disruptive Innovation and Transformation of the Drug Discovery and Development Enterprise. NAM Perspectives. Discussion Paper, National Academy of Medicine, Washington, DC. https://doi.org/10.31478/201607c
Patel, R., Chang, T., Greysen, S. R., Chopra, V., & Sohoni, A. (2018). Leveraging virtual technology to provide interdisciplinary education in caring for patients
58

with multiple chronic conditions. Journal of interprofessional care, 32(3), 337-
339.
Peng, W., Yuan, S., & Holtz, B. E. (2016). Exploring the challenges and opportunities
of health mobile apps for individuals with type 2 diabetes living in rural communities. Telemedicine and e-Health, 22(4), 313-318. https://doi.org/10.1089/tmj.2015.0084
Philips. (2021). The Future Health Index 2021: Healthcare Leaders Look Beyond the Crisis. Retrieved from https://www.philips.com/a-w/about/news/future-health- index/reports/2021/healthcare-leaders-look-beyond-the-crisis.html
Sánchez-Pi, N., García-Teodoro, P., & de la Cruz, R. L. P. (2018). A review of anonymization techniques for privacy preservation of medical data. Future Generation Computer Systems, 87, 420-431. https://doi.org/10.1016/j.future.2018.04.017
Shen, D., Wu, G., & Suk, H. I. (2017). Deep learning in medical image analysis. Annual Review of Biomedical Engineering, 19, 221-248. https://doi.org/10.1146/annurev-bioeng-071516-044442
Shen, M., Shi, H., & Xu, D. (2019). Research on the Application of O2O Model in the Medical Industry. In 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA 2019) (pp. 318-321). IEEE.
Song, Y., Hou, Z., & Sun, Y. (2020). Data-driven health: A new healthcare reform Sule, D., Babatunde, O. A., & Adeloye, D. (2020). Big data analytics in healthcare: a
systematic review of literature and use cases. Healthcare informatics research,
26(1), 3-13. https://doi.org/10.4258/hir.2020.26.1.3
Sun, Y., Hu, X., Xie, J., Chen, X., & Li, Y. (2020). A review of wearable technology
for elderly care that can accurately track indoor position, recognize physical
59

activities and monitor vital signs in real time. Sensors, 20(15), 4275.
https://doi.org/10.3390/s20154275
Tibor, N., & Gajdosik, T. (2021). Wearable technologies in healthcare: a review of
the current trends, challenges and future opportunities. Healthcare Technology
Letters, 8(1), 13-22. https://doi.org/10.1049/htl2.12017
Topol, E. J. (2019). High-performance medicine: the convergence of human and
artificial intelligence. Nature medicine, 25(1), 44-56. doi: 10.1038/s41591-018-
0300-7
Wac, K., Benda, P. T., Burkowicz, A., Giokas, M., & Jacyno, S. (2017). Smart health
and IoT: The future of healthcare. Journal of Medical Systems, 41(8), 139. doi:
10.1007/s10916-017-0772-4
Wang, H., Hu, X., & Chen, C. (2021). A review of smart healthcare systems based on
artificial intelligence. Computational and mathematical methods in medicine,
2021, 1-13.
Wang, Q., Markopoulos, P., Yu, B., Chen, W., & Timmermans, A. (2017). Interactive
wearable systems for upper body rehabilitation: A systematic review. Journal of Neuroengineering and Rehabilitation, 14(1), 20. https://doi.org/10.1186/s12984- 017-0235-2
Wang, Y., Chen, M., Liu, Z., Zhang, X., & Chen, G. (2017). MRI-based white matter lesion detection using 3D fully convolutional networks. In Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 886-889). IEEE. https://doi.org/10.1109/BIBM.2017.8217723
Weng, S. F., Reps, J., Kai, J., Garibaldi, J. M., & Qureshi, N. (2018). Can machine- learning improve cardiovascular risk prediction using routine clinical data? PLoS One, 13(10), e0206005. doi:10.1371/journal.pone.0206005
60

Wu, J., Liu, X., & Zhao, S. (2020). Big data-driven precision medicine: challenges, opportunities, and implementation. Journal of Healthcare Engineering, 2020, 8851747.
Xia, M., & Wang, J. (2021). Intelligent healthcare: Challenges and opportunities. International Journal of Intelligent Systems, 36(7), 3899-3916. https://doi.org/10.1002/int.22420
Xie, J., Huang, J., Li, X., Xie, M., Wu, Z., Huang, Z., Huang, X., & Zhu, Y. (2020). Clinical application of bioinformatics in cancer research: A review. Cancer Letters, 493, 199-206. https://doi.org/10.1016/j.canlet.2020.08.018
Xu, Y., Zhang, J., Wang, S., & He, J. (2020). Intelligent diagnosis and treatment system based on medical big data and artificial intelligence. Journal of medical systems, 44(5), 1-8.
Yang, J., Shi, Y., & Zhu, Q. (2021). Research on the automation of pharmaceutical production based on the industrial robot. Journal of Intelligent & Fuzzy Systems, 41(4), 6045-6054. https://doi.org/10.3233/JIFS-201978
Yin, R. K. (2014). Case study research: Design and methods (5th ed.). Sage.
Yuan, C., Zhou, Q., Wu, Y., Li, J., Xie, G., Liu, X., Huang, J., & Cai, H. (2020). An
integrated framework for medical big data based on hybrid computing and machine learning. IEEE Access, 8, 9197-9211. https://doi.org/10.1109/ACCESS.2020.2968285
Zameer, A., & Shafique, F. (2021). Blockchain technology in pharmaceutical supply chain: a systematic review. Technology in Society, 64, 101450. doi: 10.1016/j.techsoc.2020.101450
Zhang, J., Cai, Y., Yu, Q., & He, C. (2019). Artificial intelligence in healthcare: past, present and future. Seminars in cancer biology, 2020(60), 298-306.
61

Zhang, J., Gao, X., Song, Q., Zhao, J., Liu, Y., & Chen, Y. (2019). Clinical decision support systems for disease diagnosis and treatment: A review of the research landscape. Journal of Healthcare Engineering, 2019, 1-16. https://doi.org/10.1155/2019/5418735
Zhang, P. E. (2014). Big data analytics in healthcare: Promise and potential. Health Information Science and Systems, 2(1), 3. doi: 10.1186/2047-2501-2-3
Zhang, Y., & Zhang, Y. (2020). Challenges and considerations of medical big data privacy and security. Journal of medical systems, 44(3), 1-6.
Zhang, Z., Li, J., & Wang, X. (2020). The Influence of Online to Offline (O2O) Healthcare Service Integration on User Satisfaction: The Mediating Role of Perceived Value and Trust. BMC Health Services Research, 20(1), 1-15.
Zhao, X., & Gong, Y. (2019). Intelligent healthcare: Progress and challenges. Journal of Healthcare Engineering, 2019, 8625724. https://doi.org/10.1155/2019/8625724
Zhao, Z., Zheng, S., Zhang, Y., et al. (2018). Securing Medical Data Sharing by Combination of Homomorphic Encryption and Blockchain. Journal of Medical Systems, 42(8), 140. https://doi.org/10.1007/s10916-018-1022-x
Zhou, T., Duan, J., & Zhou, H. (2020). Medical image analysis with deep learning: A review. IEEE Access, 8, 107687-107703. doi: 10.1109/ACCESS.2020.3008854 Zhou, X., Snoswell, C. L., Harding, L. E., Bambling, M., Edirippulige, S., Bai, X., & Smith, A. C. (2020). The role of telehealth in reducing the mental health burden
from COVID-19. Telemedicine and e-Health, 26(4), 377-379.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊