跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/14 22:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:程佳鋐
研究生(外文):Cheng, Jia-Hong
論文名稱:電磁流推進系統噴流流場之研究
論文名稱(外文):Research on Jet Flow Field of Magnetohydrodynamics Propulsion System
指導教授:陳慶耀
指導教授(外文):Chen, Ching-Yao
口試委員:李彥宏陳慶耀張瑞永潘冠呈趙偉祥
口試日期:2022-12-08
學位類別:博士
校院名稱:國立陽明交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:95
中文關鍵詞:電磁流推進勞倫茲力多相流
外文關鍵詞:MagnetohydrodynamicLorentz forceMultiphase flow
相關次數:
  • 被引用被引用:0
  • 點閱點閱:94
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要聚焦於電磁流推進器系統,並以此為來源驅動一長為三公尺且巡航速度為每秒0.5公尺之實體船模,此乃本研究最終目標。而由於該研究包含多個面向:推進器系統、船模設計、電力系統及控制系統。此著重於推進器設計及性能分析,由於推進器本身重量較重且高磁場強度,且當推進器做動時需供應較大之電流,因以上因素導致實體實驗難以進行,加上並無合適之實驗儀器,故先著重於模擬,本研究利用流量差異及分析磁場平均強度及電流密度大小,獲得較佳推進器排列方式,接著將此龐大的推進器系統微縮至可於實驗室操作之大小,並透過實驗室內常用之分析方式,諸如影像擷取、流場可視化等方式進行定性及定量的分析。而在噴流裝置部分,因選用之工作流體為氯化鈉水溶液即俗稱的鹽水,因此除了上述方式之外,亦以半導體機台上常用之非接觸式微小流量感測計進行不同電流條件下流量的獲得。
The study outlines the design of a magnetohydrodynamic (MHD) thruster system which is capable to power a 3-meter ship model cruising at a speed of V = 0.5 m/s using the Lorentz force generated by the electric field and magnetic field in conducting seawater. The whole system involves propulsion system, electric system, ship model design and control system. The thruster itself is heavy and with high magnetic field strength. Due to the above factors, it is difficult to conduct physical experiments. Additional CFD simulations of the flows through the thruster module, coupled with magnetic and electric fields, are conducted to realize the hydrodynamics. Consequently, several configurations of thruster modules are manufactured and experimented. A particular configuration of a shielded two-unit module is chosen to power the ship model. To make the experiment easily conducted, the huge thruster system is miniaturized to be operable in the laboratory. Because the selected working fluid is sodium chloride, which is commonly known as salt water, the non-contact micro flow sensor commonly used in semiconductor machines is used to measure the flow rate under different current conditions.
摘要 i
ABSTRACT ii
圖目錄 v
符號表 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 5
1.3 研究目的 12
第二章 磁流推進器之研究 21
2.1 研究方法 21
2.2推進單元模擬 24
2.3 推進單元物理幾何模型 25
2.4 統御方程式 26
2.4.1 磁流體力學模型 26
2.4.2 紊流模型 29
2.5 基本假設與邊界條件 30
2.6 推進器模擬結果 31
第三章 磁噴流流場之研究 60
3.1研究方法 60
3.2 物理幾何模型 61
3.3 統御方程式 61
3.3.1 磁流體力學模型 62
3.3.2 紊流模型 64
3.3.3 VOF模型 65
3.4 基本條件與邊界條件 66
3.5 磁噴流模擬與實驗結果 69
3.6 磁噴流流量量測與模擬 70
第四章 結論與未來展望 84
參考文獻 88
[1] Alfvén, H. (1942). Existence of electromagnetic-hydrodynamic waves. Nature, 150(3805), 405-406.
[2] Chan, C.S., Cheng, J. H., Zeng, C.H., Huang, J. R., Chen, Y. H., Chen, Y. J., Pham, Thi. T., Chao, W. H., Jeng, J. T., Liu, T. L., Pan, K. C., & Chen, C. Y. (2020). Design of marine vehicle powered by magnetohydrodynamic thruster. Magnetohydrodynamics, 56(1), 51-65.
[3] Yan, L. G., Wang, Z. K., Xue, C. L., Gao, Z. Y., & Zhao, B. Z. (2000). Development of the superconducting magnet system for HEMS-1 MHD model ship. IEEE transactions on applied superconductivity, 10(1), 955-958.
[4] Yan, L. G., Sha, C. W., Zhou, K., Peng, Y., Yang, A. H., & Qin, J. Q. (2000). Progress of the MHD ship propulsion project in China. IEEE transactions on applied superconductivity, 10(1), 951-954.
[5] Weier, T., Shatrov, V., & Gerbeth, G. (2007). Flow control and propulsion in poor conductors. In Magnetohydrodynamics (pp. 295-312). Springer, Dordrecht.
[6] Jang, J., & Lee, S. S. (2000). Theoretical and experimental study of MHD (magnetohydrodynamic) micropump. Sensors and Actuators A: Physical, 80(1), 84-89.
[7] Timofeev, V. N., Khatsayuk, M. Y., & Kizhaev, I. V. (2019). Mathematical simulation of electromagnetic and hydrodynamic processes in the MHD pump. Magnetohydrodynamics (0024-998X), 55(3).
[8] Al-Habahbeh, O. M., Al-Saqqa, M., Safi, M., & Khater, T. A. (2016). Review of magnetohydrodynamic pump applications. Alexandria Engineering Journal, 55(2), 1347-1358.
[9] Haghparast, M., Reza Alizadeh Pahlavani, M., & Azizi, D. (2018). Numerical investigation of the effects of magnetic field and fluid electrical conductivity on the performance of marine magnetohydrodynamic motors. IET Electric Power Applications, 12(8), 1207-1214.
[10] Lin, C. H., Chen, P. W., & Chen, C. Y. (2011). Simulations of silicon Cz growth in a cusp magnetic field. Magnetohydrodynamics, 47(1), 17-28.
[11] Selimefendigil, F., & Öztop, H. F. (2016). Mixed convection of nanofluid filled cavity with oscillating lid under the influence of an inclined magnetic field. Journal of the Taiwan Institute of Chemical Engineers, 63, 202-215.
[12] Ghadikolaei, S. S., Gholinia, M., Hoseini, M. E., & Ganji, D. D. (2019). Natural convection MHD flow due to MoS2–Ag nanoparticles suspended in C2H6O2-H2O hybrid base fluid with thermal radiation. Journal of the Taiwan Institute of Chemical Engineers, 97, 12-23.
[13] Hamid, A., & Khan, M. (2019). Multiple solutions for MHD transient flow of Williamson nanofluids with convective heat transport. Journal of the Taiwan Institute of Chemical Engineers, 103, 126-137.
[14] Alizadeh, R., Mesgarpour, M., Ameri, A., Abad, J. M. N., & Wongwises, S. (2021). Artificial intelligence prediction of natural convection of heat in an oscillating cavity filled by CuO nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 124, 75-90.
[15] Zhang, L., Bhatti, M. M., Shahid, A., Ellahi, R., Beg, O. A., & Sait, S. M. (2021). Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface: A robust spectral approach. Journal of the Taiwan Institute of Chemical Engineers, 124, 98-105.
[16] Ferrari, A. (1998). Modeling extragalactic jets. Annual Review of Astronomy and Astrophysics, 36(1), 539-598.
[17] Bellan, P. M. (2018). Experiments and models of MHD jets and their relevance to astrophysics and solar physics. Physics of Plasmas, 25(5), 055601.
[18] Yuan, M. H., Chang, C. C., Chang, C. Y., Lin, Y. Y., Shie, J. L., Wu, C. H., Tseng, J. Y., & Ji, D. R. (2014). Radio-frequency-powered atmospheric pressure plasma jet for the destruction of binary mixture of naphthalene and n-butanol with Pt/Al2O3 catalyst. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 468-474.
[19] Sar, A. B., Shabani, E. G., Haghighi, M., & Shabani, M. (2022). Synergistic catalytic degradation of ciprofloxacin using magnetic carbon nanomaterial/NiFe2O4 promoted cold atmospheric pressure plasma jet: Influence of charcoal, multi walled carbon nanotubes and walnut shell. Journal of the Taiwan Institute of Chemical Engineers, 132, 104131.
[20] Rice, W. A. (1961). U.S. Patent No. 2,997,013. Washington, DC: U.S. Patent and Trademark Office.
[21] Friauf, J. B. (1961). Electromagnetic ship propulsion. Journal of the American Society for Naval Engineers, 73(1), 139-142.
[22] Phillips, O. M. (1962). The prospects for magnetohydrodynamic ship propulsion. Journal of ship research, 43, 43-51.
[23] Mitchell, D. L., & Gubser, D. U. (1988). Magnetohydrodynamic ship propulsion with superconducting magnets. Journal of Superconductivity, 1(4), 349-364.
[24] Meng, J. C. S., Hrubes, J. D., Hendricks, P. J., Thivierge, D. P., & Henoch, C. W. (1991). Experimental studies of a superconducting electromagnetic thruster for seawater propulsion and future technological challenges. In Proceedings of oceans' 91.
[25] Swallom, D. W., Sadovnik, I., Gibbs, J. S., Choi, D., Gurol, H., Nguyen, L., & Van Der Bergh, H. (1991, October). Magnetohydrodynamic submarine propulsion system performance analysis results. In Proceedings of MHDS 91 (pp. 277-289).
[26] Thibault, J. P., Alemany, A., & Pilaud, A. (1991). Some aspects of seawater MHD Thrusters. In Proceedings of MHDS (Vol. 91, pp. 211-218).
[27] Doss, E. D., & Geyer, H. K. (1990). The need for superconducting magnets for MHD seawater propulsion (No. CONF-900801-18). Argonne National Lab., IL (USA).
[28] Motora, S., Takezawa, S., & Tamama, H. (1991, October). Development of the MHD ship YAMATO-1. In OCEANS 91 Proceedings (pp. 1636-1641). IEEE.
[29] Takezawa, S., Tamama, H., Sugawawa, K., Sakai, H., Matsuyama, C., Morita, H., Suzuki, H., & Ueyama, Y. (1995). Operation of the thruster for superconducting electromagnetohydrodynamic propulsion ship “YAMATO 1”. Bulletin of the MESJ, 23(1), 46.
[30] Boissonneau, P., & Thibault, J. P. (1999). Experimental analysis of couplings between electrolysis and hydrodynamics in the context of MHD in seawater. Journal of Physics D: Applied Physics, 32(18), 2387.
[31] Daoud, A., & Kandev, N. (2008, November). Magneto-hydrodynamic numerical study of DC electromagnetic pump for liquid metal. In Proceedings of the COMSOL Conference, Hannover, Germany (Vol. 5).
[32] Timofeev, V., Khatsayuk, M., & Timofeev, S. (2017). Analysis of the transverse end effect in the MHD stirrer for molten metals. Magnetohydrodynamics (0024-998X), 53(3).
[33] Andreev, O., Kolesnikov, Y., & Thess, A. (2007). Corrected Article:“Experimental study of liquid metal channel flow under the influence of a nonuniform magnetic field”[Phys. Fluids 18, 065108 (2006)]. Physics of fluids, 19(3), 039902.
[34] Gutfleisch, O., Willard, M. A., Brück, E., Chen, C. H., Sankar, S. G., & Liu, J. P. (2011). Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Advanced materials, 23(7), 821-842.
[35] Kramer, M. J., McCallum, R. W., Anderson, I. A., & Constantinides, S. (2012). Prospects for non-rare earth permanent magnets for traction motors and generators. Jom, 64(7), 752-763.
[36] Abdelbasir, S., & Shalan, A. E. (2019). Intriguing properties and applications of functional magnetic materials. Functional Materials.
[37] Wong, Y. J., Chang, H. W., Lee, Y. I., Chang, W. C., Chiu, C. H., & Mo, C. C. (2020). Coercivity enhancement of thicker sintered NdFeB magnets by grain boundary diffusion with low-melting Tb75− xCexCu25 (x= 0–45) alloys. Journal of Magnetism and Magnetic Materials, 515, 167287.
[38] Potticary, J., Avery, M. P., Mills, D., & Hall, S. R. (2018). DONALD: A 2.5 T wide sample space permanent magnet. HardwareX, 3, 39-48.
[39] Shiroyanagi, Y., Ghosh, A. K., Gupta, R., & Sampson, W. B. (2011). The construction and testing of YBCO pancake coils for a high field solenoid. IEEE transactions on applied superconductivity, 21(3), 1649-1652.
[40] Strickland, N. M., Hoffmann, C., & Wimbush, S. C. (2014). A 1 kA-class cryogen-free critical current characterization system for superconducting coated conductors. Review of Scientific Instruments, 85(11), 113907.
[41] Maeda, H., & Yanagisawa, Y. (2019). Future prospects for NMR magnets: A perspective. Journal of Magnetic Resonance, 306, 80-85.
[42] Cébron, D., Viroulet, S., Vidal, J., Masson, J. P., & Viroulet, P. (2017). Experimental and theoretical study of magnetohydrodynamic ship models. PloS one, 12(6), e0178599.
[43] Y. Sasakawa, YAMATO-1 World’s First Superconducting Magnetohydrodynamic Propulsion Ship, Ship & Ocean Foundation, 1997.
[44] https://www.pengky.cn/Magnetohydrodynamics/Direct-MHD-propulsion/Direct-MHD-propulsion.html
[45] Haghparast, M., & Pahlavani, M. R. A. (2019). A comparative study on the performance of marine magnetohydrodynamic motors with helical and linear channels. IEEE Transactions on Magnetics, 55(11), 1-8.
[46] Merkle, C. L., & Deutsch, S. (1992). Microbubble drag reduction in liquid turbulent boundary layers. Applied Mechanics Reviews, 45(12).
[47] Merkle, C. L., & Deutsch, S. (1990). Drag reduction in liquid boundary layers by gas injection. Progress in Astronautics and Aeronautics, 123, 351-412.
[48] Fontaine, A. A., & Deutsch, S. (1992). The influence of the type of gas on the reduction of skin friction drag by microbubble injection. Experiments in fluids, 13(2), 128-136.
[49] ANSYS, Inc. ANSYS Fluent Theory Guide (ANSYS, Inc., Southpointe, 2017).
[50] 鄭力瑋(2021)。三相電磁噴流之研究。國立陽明交通大學機械工程系所碩士論文,新竹市。
[51] 曾慶輝(2020)。電磁流推進器構型設計及動態性能分析。國防大學理工學院機械工程碩士班碩士論文,桃園縣。
[52] http://ansoft-maxwell.narod.ru/english.html
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top