跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 04:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧翰成
研究生(外文):Lu, Han-Cheng
論文名稱:以含五氟苯酯之固態添加劑控制主動層形貌並提升非富勒烯系統有機太陽能電池之效率
論文名稱(外文):Enhancing the Nonfullerene-based Organic Photovoltaics by Morphology Optimization of Active Layer Using Perfluorophenyl-containing Solid Additives
指導教授:鄭彥如
指導教授(外文):Cheng, Yen-Ju
口試委員:許千樹賴育英曹峯溢
口試委員(外文):Hsu, Chain-ShuLai, Yu-YingCao, Fong-Yi
口試日期:2023-07-31
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:95
中文關鍵詞:有機太陽能電池固態添加劑非富勒烯受體π-π作用力
外文關鍵詞:organic solar cellssolid additivesnonfullerene acceptors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:34
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究設計了兩個以二茂鐵為中心的含五氟苯基酯之固態添加劑Fc-5F和Fc-10F來提升高分子混摻非富勒烯受體材料之有機太陽能電池(OSC)元件的光電轉換效率(PCE)。兩個固態添加劑在適當的比例添加處理後提升PM6:Y6的光電轉換效率至16.92%和17%。為了深入了解Fc-5F及Fc-10F的工作機制,本論文將以三大章節來探討,分別固態添加劑的材料性質、元件電性表現以及主動層形貌變化。在材料面我們以熱重分析、微差掃描卡計分析以及單晶結構分析中,我們確認了兩個固態添加劑的引入在元件製程中確實與材料產生分子間的π-π作用力,進而優化分子的排列,而提升元件效率;在元件電性分析中,藉由元件光強度依賴量測法、載子遷移率變化及激子解離率分析,能夠得到經Fc-5F和Fc-10F處理元件之載子傳輸能力有顯著提升,載子複合等非理想效應顯著地抑制;最後,在形貌方面透過臨界入射角X射線量測(GIWAXS)得到兩個添加劑與混摻材料產生π-π作用並且有效地提升奈米結晶的大小和排列方式。
In this study, we developed two ferrocene-based with perfluorophenyl contained solid additives, Fc-5F and Fc-10F, to enhance the power conversion efficiency (PCE) of non-fullerene-based organic solar cell (OSC). The two solid additives were added in appropriate ratios to enhance the PCE of PM6:Y6 to 16.92% and 17%. To understand the mechanism of Fc-5F and Fc-10F, this article can be divided to three parts, respectively, the material properties of solid additives and materials, the electrical performance of devices, and the morphology improvement of active layers. In thermogravimetric analysis, differential scanning calorimeter analysis and single crystal analysis, the introduction of the two solid additives generates intermolecular π-π interactions between the acceptor and solid additives, thereby optimizing the arrangement of molecules and improving device efficiency. In the electrical analysis, by light intensity dependent measurement, carrier mobility analysis and exciton dissociation rate analysis, it can be found that the performance of the devices treated with Fc-5F and Fc-10F has been significantly improved, and the non-ideal effects such as carrier recombination are significantly suppressed. Finally, the grazing-incidence wide angle X-ray scattering (GIWAXS) showed that the two additives interacted with the molecules by π-π noncovalent supramolecular interactions and effectively enhanced the size and arrangement of the nanocrystals.
誌謝 ⅰ
摘要 ⅱ
ABSTRACT ⅳ
目錄 ⅵ
圖目錄 ⅹ
表目錄 ⅹⅰⅰⅰ
第 1 章 緒論 1
1.1 前言 1
1.2 太陽能電池介紹 2
1.2.1 太陽能電池分類 2
1.2.2 太陽能電池操作原理 4
1.2.3 太陽能電池效率發展狀況 6
1.3 有機高分子太陽能電池簡介 8
1.3.1 有機高分子太陽能電池優勢及材料分類 8
1.3.2 有機高分子太陽能電池理論及工作原理 9
1.4 太陽能電池的各項參數 13
1.4.1 光電轉換效率(Power conversion efficiency, PCE) 14
1.4.2 開路電壓(Open circuit-voltage, Voc) 14
1.4.3 短路電流密度(Short circuit current, Jsc) 15
1.4.4 填充因子(Fill factor) 16
1.4.5 並聯電阻與串聯電阻(Shunt resistance and Series resistance) 16
1.4.6 外部量子效率 (External quantum efficiency, EQE) 17
1.5 有機高分子太陽能電池結構 18
1.5.1 正結構有機太陽能電池元件(Conventional structure devices) 19
1.5.2 反結構有機太陽能電池元件(Inverted structure devices) 20
1.6 主動層結構演進 21
1.6.1 單層結構(Single layer structure) 21
1.6.2 雙層異質接面結構(Bilayer heterojunction) 22
1.6.3 混摻異質接面結構(Bulk heterojunction, BHJ) 24
1.7 有機高分子太陽能電池材料 25
1.7.1 有機高分子太陽能電池予體材料(Donor materials) 25
1.7.2 有機高分子太陽能電池受體材料(Acceptor materials) 27
1.7.3 有機高分子太陽能電池添加劑(Additives) 30
1.8 研究動機 39
第 2 章 實驗部分 42
2.1 藥品及基板來源 42
2.2 元件製程 42
2.2.1 ITO玻璃基板清潔及前處理 42
2.2.2 ZnO電子傳輸層製程 42
2.2.3 主動層製程 43
2.2.4 電洞傳輸層及陽極電極之製程 44
2.2.5 電子傳輸及電洞傳輸元件(hole only devices and electron only devices) 44
2.2.6 臨介入射廣角X射線散射量測(GIWAXS)樣品製備 45
2.2.7 原子力顯微鏡(AFM)樣品製備 45
2.3 電性量測方法 45
2.3.1 太陽光模擬器量測系統(One sun simulator measurement) 45
2.3.2 外部轉換效率(External Quantum Efficiency, EQE) 46
2.3.3 空間電荷限制電流量測(Space charge limited current measurement) 46
2.3.4 光強依賴(Light intensity dependence measurement) 46
2.3.5 激子解離及電荷收集(Exciton dissication and charge collection) 47
2.4 材料鑑定及其他量測 47
2.4.1 核磁共振光譜(Nuclear Magnetic Resonance, NMR) 47
2.4.2 熱重分析儀(Thermal Gravimetric Analyzer, TGA) 47
2.4.3 紫外-可見光吸收光譜(UV-Vis Spectrophotometer, UV-Vis) 48
2.4.4 微差掃描卡計(Differential Scanning Calorimeter, DSC) 48
2.5 主動層形貌量測 48
2.5.1 原子力顯微鏡(AFM) 48
2.5.2 低掠角廣角度X光散射(GIWAXS) 49
2.5.3 探針式輪廓儀(Alpha step) 49
第 3 章 結果與討論 50
3.1 材料性質分析 51
3.1.1 熱重分析儀量測(TGA) 51
3.1.2 微差掃描卡計量測(DSC) 53
3.1.3 紫外-可見光吸收光譜量測(UV-Vis) 56
3.1.4 單晶結構(single crystal structure) 58
3.2 元件光電轉換效率量測 60
3.2.1 Fc-5F及Fc-10F於PM6:Y6混摻系統比例最佳化 60
3.2.2 Fc-5F及Fc-10F於PM6:Y6混摻系統中之元件熱穩定性之研究 63
3.2.3 Fc-5F及Fc-10F於不同混摻系統中的效率表現 65
3.3 元件電性量測 67
3.3.1 載子遷移率分析(carrier mobility analysis) 67
3.3.2 光強度依賴量測及分析(light dependent measurement) 68
3.3.3 激子解離及電荷收集(exciton dissociation and charge collection) 70
3.4 主動層形貌分析 73
3.4.1 低掠角廣角X光散射(GIWAXS)量測 73
3.4.2 原子力顯微鏡(AFM)量測 79
第 4 章 結論與未來展望 84
第 5 章 參考文獻 87
第 6 章 附圖 94
1. NERL, Best Research-Cell Efficiencies. 2023.
2. Sun, H.; Tang, Y.; Koh, C. W.; Ling, S.; Wang, R.; Yang, K.; Yu, J.; Shi, Y.; Wang, Y.; Woo, H. Y.; Guo, X., High‐Performance All‐Polymer Solar Cells Enabled by an n‐Type Polymer Based on a Fluorinated Imide‐Functionalized Arene. Adv. Mater. 2019, 31, 1807220.
3. Hu, D.; Yang, Q.; Chen, H.; Wobben, F.; Le Corre, V. M.; Singh, R.; Liu, T.; Ma, R.; Tang, H.; Koster, L. J. A.; Duan, T.; Yan, H.; Kan, Z.; Xiao, Z.; Lu, S., 15.34% efficiency all-small-molecule organic solar cells with an improved fill factor enabled by a fullerene additive. Energy Environ. Sci. 2020, 13, 2134-2141.
4. Cai, Y.; Li, Y.; Wang, R.; Wu, H.; Chen, Z.; Zhang, J.; Ma, Z.; Hao, X.; Zhao, Y.; Zhang, C.; Huang, F.; Sun, Y., A Well‐Mixed Phase Formed by Two Compatible Non‐Fullerene Acceptors Enables Ternary Organic Solar Cells with Efficiency over 18.6%. Adv. Mater. 2021, 33, 2101733.
5. Han, J.; Xu, H.; Paleti, S. H. K.; Wen, Y.; Wang, J.; Wu, Y.; Bao, F.; Yang, C.; Li, X.; Jian, X.; Wang, J.; Karuthedath, S.; Gorenflot, J.; Laquai, F.; Baran, D.; Bao, X., Vertical Stratification Engineering of Insulating Poly(aryl ether)s Enables 18.6% Organic Solar Cells with Improved Stability. ACS Energy Lett. 2022, 7, 2927-2936.
6. Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J., Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171-184.
7. Liu, Y.; Zhang, J.; Tian, C.; Shen, Y.; Wang, T.; Zhang, H.; He, C.; Qiu, D.; Shi, Y.; Wei, Z., Efficient Large Area All‐Small‐Molecule Organic Solar Cells Fabricated by Slot‐Die Coating with Nonhalogen Solvent. Adv. Funct. Mater. 2023.
8. Horowitz, G., Validity of the concept of band edge in organic semiconductors. J. Appl. Phys. 2015, 118, 115502.
9. Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S., Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chem. Rev. 2009, 109, 5868-5923.
10. Bi, P.; Zhang, S.; Wang, J.; Ren, J.; Hou, J., The Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chin. J. Chem. 2021.
11. Yao, J.; Kirchartz, T.; Vezie, M. S.; Faist, M. A.; Gong, W.; He, Z.; Wu, H.; Troughton, J.; Watson, T.; Bryant, D.; Nelson, J., Quantifying Losses in Open-Circuit Voltage in Solution-Processable Solar Cells. Phys. Rev. Appl. 2015, 4.
12. Li, C.; Zhou, J.; Song, J.; Xu, J.; Zhang, H.; Zhang, X.; Guo, J.; Zhu, L.; Wei, D.; Han, G.; Min, J.; Zhang, Y.; Xie, Z.; Yi, Y.; Yan, H.; Gao, F.; Liu, F.; Sun, Y., Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605-613.
13. Shockley, W.; Queisser, H. J., Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells. J. Appl. Phys. 1961, 32, 510-519.
14. Haomiao Yu, R. Y., Jiawei Zhang, Anran Yu, Huan Peng, Jiajun Qin and Xiaoyuan Hou, Effect of diffusion current on fill factor in organic solar cells. J. Phys. D. 2016, 49, 205105.
15. Tress, W.; Petrich, A.; Hummert, M.; Hein, M.; Leo, K.; Riede, M., Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells. Appl. Phys. Lett. 2011, 98, 063301.
16. Lin, Y.; Firdaus, Y.; Isikgor, F. H.; Nugraha, M. I.; Yengel, E.; Harrison, G. T.; Hallani, R.; El-Labban, A.; Faber, H.; Ma, C.; Zheng, X.; Subbiah, A.; Howells, C. T.; Bakr, O. M.; McCulloch, I.; Wolf, S. D.; Tsetseris, L.; Anthopoulos, T. D., Self-Assembled Monolayer Enables Hole Transport Layer-Free Organic Solar Cells with 18% Efficiency and Improved Operational Stability. ACS Energy Lett. 2020, 5, 2935-2944.
17. De Jong, M. P.; Van Ijzendoorn, L. J.; De Voigt, M. J. A., Stability of the interface between indium-tin-oxide and poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) in polymer light-emitting diodes. Appl. Phys. Lett. 2000, 77, 2255-2257.
18. Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X.; Meng, W.; Li, N.; Brabec, C. J.; Zhou, Y., An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 2022, 7, 352-359.
19. Li, G.; Chu, C. W.; Shrotriya, V.; Huang, J.; Yang, Y., Efficient inverted polymer solar cells. Appl. Phys. Lett. 2006, 88, 253503.
20. He, C.; Pan, Y.; Lu, G.; Wu, B.; Xia, X.; Ma, C. Q.; Chen, Z.; Zhu, H.; Lu, X.; Ma, W.; Zuo, L.; Chen, H., Versatile Sequential Casting Processing for Highly Efficient and Stable Binary Organic Photovoltaics. Adv. Mater. 2022, 34, 2203379.
21. Tang, C. W.; Albrecht, A. C., Photovoltaic effects of metal–chlorophyll‐a–metal sandwich cells. J. Chem. Phys. 1975, 62, 2139-2149.
22. Merritt, V. Y.; Hovel, H. J., Organic solar cells of hydroxy squarylium. Appl. Phys. Lett. 1976, 29, 414-415.
23. Tang, C. W.; Albrecht, A. C., Transient photovoltaic effects in metal–chlorophyll‐a–metal sandwich cells. J. Chem. Phys. 1975, 63, 953-961.
24. Tang, C. W., Two‐layer organic photovoltaic cell. Appl. Phys. Letts. 1986, 48, 183-185.
25. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced Electron Transfer from a Conducting Polymer to Buckminsterfullerene. Sci. 1992, 258, 1474-1476.
26. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network of Internal Donor-Acceptor Heterojunctions. Sci. 1995, 270, 1789-1791.
27. Gao, L.; Zhang, Z. G.; Bin, H.; Xue, L.; Yang, Y.; Wang, C.; Liu, F.; Russell, T. P.; Li, Y., High‐Efficiency Nonfullerene Polymer Solar Cells with Medium Bandgap Polymer Donor and Narrow Bandgap Organic Semiconductor Acceptor. Adv. Mater. 2016, 28, 8288-8295.
28. Bin, H.; Yang, Y.; Peng, Z.; Ye, L.; Yao, J.; Zhong, L.; Sun, C.; Gao, L.; Huang, H.; Li, X.; Qiu, B.; Xue, L.; Zhang, Z. G.; Ade, H.; Li, Y., Effect of Alkylsilyl Side‐Chain Structure on Photovoltaic Properties of Conjugated Polymer Donors. Adv. Energy Mater. 2018, 8, 1702324.
29. Bin, H.; Zhang, Z.-G.; Gao, L.; Chen, S.; Zhong, L.; Xue, L.; Yang, C.; Li, Y., Non-Fullerene Polymer Solar Cells Based on Alkylthio and Fluorine Substituted 2D-Conjugated Polymers Reach 9.5% Efficiency. J. Am. Chem. Soc. 2016, 138, 4657-4664.
30. Qian, D.; Ye, L.; Zhang, M.; Liang, Y.; Li, L.; Huang, Y.; Guo, X.; Zhang, S.; Tan, Z. A.; Hou, J., Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules 2012, 45, 9611-9617.
31. Wu, Y.; Zou, Y.; Yang, H.; Li, Y.; Li, H.; Cui, C.; Li, Y., Achieving over 9.8% Efficiency in Nonfullerene Polymer Solar Cells by Environmentally Friendly Solvent Processing. ACS Appl Mater Interfaces 2017, 9, 37078-37086.
32. Zhang, S.; Qin, Y.; Zhu, J.; Hou, J., Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Adv. Mater. 2018, 30, 1800868.
33. Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganäs, O.; Gao, F.; Hou, J., Fullerene-Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Adv. Mater. 2016, 28, 4734-4739.
34. Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J., Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. J. Am. Chem. Soc. 2017, 139, 7148-7151.
35. Lin, Y.; Wang, J.; Zhang, Z.-G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X., An Electron Acceptor Challenging Fullerenes for Efficient Polymer Solar Cells. Adv. Mater. 2015, 27, 1170-1174.
36. Yuan, J.; Zhang, Y.; Zhou, L.; Zhang, G.; Yip, H.-L.; Lau, T.-K.; Lu, X.; Zhu, C.; Peng, H.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y.; Zou, Y., Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140-1151.
37. Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; He, C.; Wei, Z.; Gao, F.; Hou, J., Single‐Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205.
38. Abbas, Z.; Ryu, S. U.; Haris, M.; Song, C. E.; Lee, H. K.; Lee, S. K.; Shin, W. S.; Park, T.; Lee, J.-C., Optimized vertical phase separation via systematic Y6 inner side-chain modulation for non-halogen solvent processed inverted organic solar cells. Nano Energy 2022, 101, 107574.
39. Hong, L.; Yao, H.; Wu, Z.; Cui, Y.; Zhang, T.; Xu, Y.; Yu, R.; Liao, Q.; Gao, B.; Xian, K.; Woo, H. Y.; Ge, Z.; Hou, J., Eco‐Compatible Solvent‐Processed Organic Photovoltaic Cells with Over 16% Efficiency. Adv. Mater. 2019, 31, 1903441.
40. Cui, Y.; Yao, H.; Hong, L.; Zhang, T.; Tang, Y.; Lin, B.; Xian, K.; Gao, B.; An, C.; Bi, P.; Ma, W.; Hou, J., Organic photovoltaic cell with 17% efficiency and superior processability. Natl. Sci. Rev. 2020, 7, 1239-1246.
41. Lin, F.; Jiang, K.; Kaminsky, W.; Zhu, Z.; Jen, A. K. Y., A Non-fullerene Acceptor with Enhanced Intermolecular π-Core Interaction for High-Performance Organic Solar Cells. J. Am. Chem. Soc. 2020, 142, 15246-15251.
42. Yang, J.; Geng, Y.; Li, J.; Zhao, B.; Guo, Q.; Zhou, E., A-DA′D-A-Type Non-fullerene Acceptors Containing a Fused Heptacyclic Ring for Poly(3-hexylthiophene)-Based Polymer Solar Cells. J. Phys. Chem. C 2020, 124, 24616-24623.
43. Sun, C.; Qin, S.; Wang, R.; Chen, S.; Pan, F.; Qiu, B.; Shang, Z.; Meng, L.; Zhang, C.; Xiao, M.; Yang, C.; Li, Y., High Efficiency Polymer Solar Cells with Efficient Hole Transfer at Zero Highest Occupied Molecular Orbital Offset between Methylated Polymer Donor and Brominated Acceptor. J. Am. Chem. Soc. 2020, 142, 1465-1474.
44. Li, X.; Duan, X.; Liang, Z.; Yan, L.; Yang, Y.; Qiao, J.; Hao, X.; Zhang, C.; Zhang, J.; Li, Y.; Huang, F.; Sun, Y., Benzo[1,2‐b:4,5‐b′]difuran Based Polymer Donor for High‐Efficiency (>16%) and Stable Organic Solar Cells. Adv. Energy Mater. 2022, 12, 2103684.
45. Liu, T.; Zhang, Y.; Shao, Y.; Ma, R.; Luo, Z.; Xiao, Y.; Yang, T.; Lu, X.; Yuan, Z.; Yan, H.; Chen, Y.; Li, Y., Asymmetric Acceptors with Fluorine and Chlorine Substitution for Organic Solar Cells toward 16.83% Efficiency. Adv. Funct. Mater. 2020, 30, 2000456.
46. Li, S.; Zhan, L.; Jin, Y.; Zhou, G.; Lau, T. K.; Qin, R.; Shi, M.; Li, C. Z.; Zhu, H.; Lu, X.; Zhang, F.; Chen, H., Asymmetric Electron Acceptors for High‐Efficiency and Low‐Energy‐Loss Organic Photovoltaics. Adv. Mater. 2020, 32, 2001160.
47. Yang, C.; An, Q.; Bai, H. R.; Zhi, H. F.; Ryu, H. S.; Mahmood, A.; Zhao, X.; Zhang, S.; Woo, H. Y.; Wang, J. L., A Synergistic Strategy of Manipulating the Number of Selenophene Units and Dissymmetric Central Core of Small Molecular Acceptors Enables Polymer Solar Cells with 17.5 % Efficiency. Angew. Chem. 2021, 133, 19390-19401.
48. Cui, Y.; Yao, H.; Zhang, J.; Zhang, T.; Wang, Y.; Hong, L.; Xian, K.; Xu, B.; Zhang, S.; Peng, J.; Wei, Z.; Gao, F.; Hou, J., Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat. Commun. 2019, 10.
49. Liang, Q.; Li, W.; Lu, H.; Yu, Z.; Zhang, X.; Dong, Q.; Song, C.; Miao, Z.; Liu, J., Recent Advances of Solid Additives Used in Organic Solar Cells: Toward Efficient and Stable Solar Cells. ACS Appl. Energy Mater. 2023, 6, 31-50.
50. Lee, J. K.; Ma, W. L.; Brabec, C. J.; Yuen, J.; Moon, J. S.; Kim, J. Y.; Lee, K.; Bazan, G. C.; Heeger, A. J., Processing Additives for Improved Efficiency from Bulk Heterojunction Solar Cells. J. Am. Chem. Soc. 2008, 130, 3619-3623.
51. Zhao, W.; Ye, L.; Li, S.; Liu, X.; Zhang, S.; Zhang, Y.; Ghasemi, M.; He, C.; Ade, H.; Hou, J., Environmentally-friendly solvent processed fullerene-free organic solar cells enabled by screening halogen-free solvent additives. Sci. China Mater. 2017, 60, 697-706.
52. Choi, H.; Ko, S.-J.; Kim, T.; Morin, P.-O.; Walker, B.; Lee, B. H.; Leclerc, M.; Kim, J. Y.; Heeger, A. J., Small-Bandgap Polymer Solar Cells with Unprecedented Short-Circuit Current Density and High Fill Factor. Adv. Mater. 2015, 27, 3318-3324.
53. Woo, C. H.; Beaujuge, P. M.; Holcombe, T. W.; Lee, O. P.; Fréchet, J. M. J., Incorporation of Furan into Low Band-Gap Polymers for Efficient Solar Cells. J. Am. Chem. Soc. 2010, 132, 15547-15549.
54. Yu, R.; Yao, H.; Hong, L.; Qin, Y.; Zhu, J.; Cui, Y.; Li, S.; Hou, J., Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nat. Commun. 2018, 9.
55. Cheng, P.; Yan, C.; Lau, T.-K.; Mai, J.; Lu, X.; Zhan, X., Molecular Lock: A Versatile Key to Enhance Efficiency and Stability of Organic Solar Cells. Adv. Mater. 2016, 28, 5822-5829.
56. Zhang, Q.; Bao, C.; Cui, S.; Zhong, P.; Zhang, K.; Zhu, W.; Liu, Y., Boosting the efficiency of PTB7-Th:PC71BM polymer solar cells via a low-cost halogen-free supramolecular solid additive. J. Mater. Chem. C 2020, 8, 16551-16560.
57. Yu, R.; Yao, H.; Xu, Y.; Li, J.; Hong, L.; Zhang, T.; Cui, Y.; Peng, Z.; Gao, M.; Ye, L.; Tan, Z. A.; Hou, J., Quadrupole Moment Induced Morphology Control Via a Highly Volatile Small Molecule in Efficient Organic Solar Cells. Adv. Funct. Mater. 2021, 31, 2010535.
58. Bao, S.; Yang, H.; Fan, H.; Zhang, J.; Wei, Z.; Cui, C.; Li, Y., Volatilizable Solid Additive‐Assisted Treatment Enables Organic Solar Cells with Efficiency over 18.8% and Fill Factor Exceeding 80%. Adv. Mater. 2021, 33, 2105301.
59. Yang, W.; Luo, Z.; Sun, R.; Guo, J.; Wang, T.; Wu, Y.; Wang, W.; Guo, J.; Wu, Q.; Shi, M.; Li, H.; Yang, C.; Min, J., Simultaneous enhanced efficiency and thermal stability in organic solar cells from a polymer acceptor additive. Nat. Commun. 2020, 11.
60. Zhang, X.; Cai, J.; Guo, C.; Li, D.; Du, B.; Zhuang, Y.; Cheng, S.; Wang, L.; Liu, D.; Wang, T., Simultaneously Enhanced Efficiency and Operational Stability of Nonfullerene Organic Solar Cells via Solid‐Additive‐Mediated Aggregation Control. Small 2021, 17, 2102558.
61. Cai, J.; Wang, H.; Zhang, X.; Li, W.; Li, D.; Mao, Y.; Du, B.; Chen, M.; Zhuang, Y.; Liu, D.; Qin, H.-L.; Zhao, Y.; Smith, J. A.; Kilbride, R. C.; Parnell, A. J.; Jones, R. A. L.; Lidzey, D. G.; Wang, T., Fluorinated solid additives enable high efficiency non-fullerene organic solar cells. J. Mater. Chem. A 2020, 8, 4230-4238.
62. Fan, H.; Yang, H.; Wu, Y.; Yildiz, O.; Zhu, X.; Marszalek, T.; Blom, P. W. M.; Cui, C.; Li, Y., Anthracene‐Assisted Morphology Optimization in Photoactive Layer for High‐Efficiency Polymer Solar Cells. Adv. Funct. Mater. 2021, 31, 2103944.
63. Xie, Y.; Ryu, H. S.; Han, L.; Cai, Y.; Duan, X.; Wei, D.; Woo, H. Y.; Sun, Y., High-efficiency organic solar cells enabled by an alcohol-washable solid additive. Sci China Chem. 2021, 64, 2161-2168.
64. Fan, C.; Yang, H.; Zhang, Q.; Bao, S.; Fan, H.; Zhu, X.; Cui, C.; Li, Y., Synergistic effect of solvent and solid additives on morphology optimization for high-performance organic solar cells. Sci China Chem. 2021, 64, 2017-2024.
65. Fu, J.; Chen, S.; Yang, K.; Jung, S.; Lv, J.; Lan, L.; Chen, H.; Hu, D.; Yang, Q.; Duan, T.; Kan, Z.; Yang, C.; Sun, K.; Lu, S.; Xiao, Z.; Li, Y., A “σ-Hole”-Containing Volatile Solid Additive Enabling 16.5% Efficiency Organic Solar Cells. iScience 2020, 23, 100965.
66. Fu, Z.; Yu, W.; Song, H.; Zhang, G.; Chen, H.; Kan, Z.; Du, L.; Li, J.; Lu, S., A new simple volatile solid additive triggers morphological optimization and performance stabilization in polymer solar cells. Sustain. Energy Fuels 2022, 6, 2191-2197.
67. Song, X.; Zhang, K.; Guo, R.; Sun, K.; Zhou, Z.; Huang, S.; Huber, L.; Reus, M.; Zhou, J.; Schwartzkopf, M.; Roth, S. V.; Liu, W.; Liu, Y.; Zhu, W.; Müller‐Buschbaum, P., Process‐Aid Solid Engineering Triggers Delicately Modulation of Y‐Series Non‐Fullerene Acceptor for Efficient Organic Solar Cells. Adv. Mater. 2022, 34, 2200907.
68. Ye, L.; Cai, Y.; Li, C.; Zhu, L.; Xu, J.; Weng, K.; Zhang, K.; Huang, M.; Zeng, M.; Li, T.; Zhou, E.; Tan, S.; Hao, X.; Yi, Y.; Liu, F.; Wang, Z.; Zhan, X.; Sun, Y., Ferrocene as a highly volatile solid additive in non-fullerene organic solar cells with enhanced photovoltaic performance. Energy Environ. Sci. 2020, 13, 5117-5125.
69. Yu, R.; Wu, G.; Cui, Y.; Wei, X.; Hong, L.; Zhang, T.; Zou, C.; Hu, S.; Hou, J.; Tan, Z. A., Multi‐Functional Solid Additive Induced Favorable Vertical Phase Separation and Ordered Molecular Packing for Highly Efficient Layer‐by‐Layer Organic Solar Cells. Small 2021, 17, 2103497.
70. Oh, J.; Jung, S.; Kang, S.-H.; Park, G.; Jeong, M.; Kim, S.; Lee, S.; Kim, W.; Lee, B.; Lee, S. M.; Yang, C., Highly efficient layer-by-layer large-scale manufacturing of polymer solar cells with minimized device-to-device variations by employing benzothiadiazole-based solid additives. J. Mater. Chem. A 2022, 10, 20606-20615.
71. Liu, L.; Kan, Y.; Gao, K.; Wang, J.; Zhao, M.; Chen, H.; Zhao, C.; Jiu, T.; Jen, A. K. Y.; Li, Y., Graphdiyne Derivative as Multifunctional Solid Additive in Binary Organic Solar Cells with 17.3% Efficiency and High Reproductivity. Adv. Mater. 2020, 32, 1907604.
72. He, Y.; Wang, Q.; Jing, X.; Zhao, Y.; Gao, C.; Zhai, X.; Wang, X.; Yu, L.; Sun, M., Simple benzothiadiazole-based small molecules as additives for efficient organic solar cells. Org. Electron. 2022, 101, 106424.
73. Fan, P.; Sun, W.; Zhang, X.; Wu, Y.; Hu, Q.; Zhang, Q.; Yu, J.; Russell, T. P., Bifunctional Bis‐benzophenone as A Solid Additive for Non‐Fullerene Solar Cells. Adv. Funct. Mater. 2021, 31, 2008699.
74. You, W.; Zhou, D.; Hu, L.; Xu, H.; Tong, Y.; Hu, B.; Xie, Y.; Li, Z.; Li, M.; Chen, L., Adjusting the Active Layer Morphology via an Amorphous Acceptor Solid Additive for Efficient and Stable Nonfullerene Organic Solar Cells. Solar RRL 2021, 5, 2100532.
75. Yang, T.; Ma, R.; Cheng, H.; Xiao, Y.; Luo, Z.; Chen, Y.; Luo, S.; Liu, T.; Lu, X.; Yan, H., A compatible polymer acceptor enables efficient and stable organic solar cells as a solid additive. J. Mater. Chem. A 2020, 8, 17706-17712.
76. Du, X.; Li, X.; Lin, H.; Zhou, L.; Zheng, C.; Tao, S., High performance opaque and semi-transparent organic solar cells with good tolerance to film thickness realized by a unique solid additive. J. Mater. Chem. A 2019, 7, 7437-7450.
77. Lee, J.; Shim, J.; Lee, J. S.; Choi, C.-J.; Yim, S.-Y.; Jin, Y.; Yu, K.; Park, Y. J.; Ahn, S.; Son, D. I., Improving the performance of photovoltaic cells based on nanocomposites with contorted polycyclic aromatic hydrocarbon additive in bulk heterojunction. J. Mater. Chem. C 2021, 9, 13081-13089.
78. Wu, C.-G.; Chiang, C.-H.; Han, H.-C., Manipulating the horizontal morphology and vertical distribution of the active layer in BHJ-PSC with a multi-functional solid organic additive. J. Mater. Chem. A 2014, 2, 5295-5303.
79. Hung, K. E.; Lin, Y. S.; Xue, Y. J.; Yang, H. R.; Lai, Y. Y.; Chang, J. W.; Su, C. J.; Su, A. C.; Hsu, C. S.; Jeng, U. S.; Cheng, Y. J., Non‐Volatile Perfluorophenyl‐Based Additive for Enhanced Efficiency and Thermal Stability of Nonfullerene Organic Solar Cells via Supramolecular Fluorinated Interactions. Adv. Energy Mater. 2022, 12, 2270047.
80. 洪凱恩. 藉含五氟苯基酯之添加劑透過超分子氟-π作用力改良富勒烯及非富勒烯系統之高分子太陽能電池效率及形貌穩定性. 國立陽明交通大學, 新竹市, 2022.
81. Janjić, G. V.; Jelić, S. T.; Trišović, N. P.; Popović, D. M.; Đorđević, I. S.; Milčić, M. K., New Theoretical Insight into Fluorination and Fluorine–Fluorine Interactions as a Driving Force in Crystal Structures. Cryst. Growth Des. 2020, 20, 2943-2951.
82. Su, Y.; Zhang, L.; Ding, Z.; Zhang, Y.; Wu, Y.; Duan, Y.; Zhang, Q.; Zhang, J.; Han, Y.; Xu, Z.; Zhang, R.; Zhao, K.; Liu, S., Carrier Generation Engineering toward 18% Efficiency Organic Solar Cells by Controlling Film Microstructure. Adv. Energy Mater. 2022, 12, 2103940.
83. Kirchartz, T.; Deledalle, F.; Tuladhar, P. S.; Durrant, J. R.; Nelson, J., On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells. J. Phys. Chem. Lett. 2013, 4, 2371-2376.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 不對稱非富勒烯受體之側鏈修飾及其對有機太陽能電池效率之影響
2. 以咔唑熔合噻吩和咔唑熔合噻吩并噻吩之稠環分子為主體之非富勒烯受體於有機太陽能電池之元件優化
3. 以芴為主體之氮架橋七環與九環熔合梯形非富勒烯受體:合成、鑑定及其於有機太陽能電池之應用
4. 以 2,7-二溴-9,9-二甲基芴作為固態添加劑控制活性層形貌並提升有機太陽能電池之效率
5. 藉含五氟苯基酯之添加劑透過超分子氟-π作用力改良富勒烯及非富勒烯系統之高分子太陽能電池效率及形貌穩定性
6. 以喹喔啉與噻吩并噻吩熔合之七環非富勒烯受體之合成與鑑定及其於有機太陽能電池之應用
7. 以LED燈箱模擬太陽光之有機太陽能電池穩定性研究
8. 以稠環結構為主體之非富勒烯受體合成與鑑定及其於有機太陽能電池之應用:綠色溶劑製程、室內光應用及穩定性
9. 環戊烷二噻吩小分子與雙噻吩吡咯併吡咯高分子之開發
10. 含紫質之有機半導體:1.以萘并噻吩雙亞醯胺作為末端拉電子基之含紫質非富勒烯小分子合成與鑑定;2.以喹喔啉噻吩為主體之含紫質共軛高分子應用於有機太陽能電池
11. 以咔唑及雙咔唑為主體之稠環非富勒烯受體之合成與鑑定及其於有機太陽能電池之應用
12. 具新型含硫雙鍵側鏈於茚基雙噻吩及茚基雙噻吩并噻吩為核心之有機半導體小分子合成與鑑定及其於有機場效電晶體及有機太陽能電池之應用
13. 紫質小分子受體的側鏈工程對非富勒烯有機太陽能電池的影響
14. 以多環熔合分子為主體之P型高分子與N型非富勒烯受體:合成、鑑定及其於有機太陽能電池之應用
15. 高效率三元小分子之有機太陽能電池之製備及以生質材料製備奈米碳點於有機太陽能電池介面修飾層之應用研究
 
無相關期刊
 
1. 以芴為主體之氮架橋七環與九環熔合梯形非富勒烯受體:合成、鑑定及其於有機太陽能電池之應用
2. 以雙馬來醯亞胺萘并雙噻吩為主體之寬能隙高分子:合成、鑑定與其在非富勒烯太陽能電池之應用
3. 以多環熔合分子為主體之P型高分子與N型非富勒烯受體:合成、鑑定及其於有機太陽能電池之應用
4. 鈀催化直接芳香化反應與交叉脫氫炔化反應合成多取代碲吩化合物
5. 以萘作為新型六員環末端拉電子基之非富勒烯小分子:合成、鑑定及有機太陽能電池之應用
6. 調控有機半導體材料之分子排列取向以及其於能源採集元件之應用
7. 以咔唑熔合噻吩和咔唑熔合噻吩并噻吩之稠環分子為主體之非富勒烯受體於有機太陽能電池之元件優化
8. 藉含五氟苯基酯之添加劑透過超分子氟-π作用力改良富勒烯及非富勒烯系統之高分子太陽能電池效率及形貌穩定性
9. 利用聚(3-己基噻吩交替-3-己基碲吩)之有機場效電晶體感測器感測溴氣之應用
10. 鈀催化直接脫氫烯化反應與脫氫炔化反應:單取代與雙取代之對稱及非對稱硒吩化合物之合成
11. 以催化轉移縮聚反應合成之新穎交替/週期/嵌段聚硫族吩高分子:合成、硫族效應及有機半導體之應用
12. 以溴苯并噻吩和四氟苯并噻吩作為末端拉電子基之非富勒烯小分子:合成、鑑定及於有機太陽能電池之應用
13. 以萘并雙噻吩梯型分子為主體之八環非富勒烯受體 : 合成、性質鑑定及其於太陽能電池之應用
14. 有機太陽能電池製程及模組優化
15. 用於染料敏化電池的無金屬有機染料之結構設計