跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/16 04:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃心怡
研究生(外文):Huang, Hsin-Yi
論文名稱:設計與合成具生物自組裝特性的多功能連接子
論文名稱(外文):Design and Synthesis of a Multifunctional Linker with Biological Self-Assembly Properties
指導教授:李耀坤李耀坤引用關係
指導教授(外文):Li, Yaw-Kuen
口試委員:吳東昆李博仁
口試委員(外文):Wu, Tung-KungLi, Bor-Ran
口試日期:2023-03-18
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:79
中文關鍵詞:自組裝標靶治療抗體藥物複合物樹枝狀分子多價作用力
外文關鍵詞:Self-AssemblyTargeted TherapyAntibody-Drug ConjugateDendrimerMultivalent Interaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:74
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
多年以來,惡性腫瘤(俗稱癌症)一直是造成人類死亡的主因之一,它是由於致癌基因的活化以及抑癌基因的失活,造成細胞不正常增生所引發的疾病。在科學家們的努力下,已經有許多方法被用於治療癌症,主要的方法是透過手術、放射線治療以及化學治療,但是手術及放射性治療僅能夠針對非轉移性的癌症進行治療,而化學治療的嚴重副作用則會大幅度地降低病人的生存率,因此發展出了能夠針對癌細胞的標靶治療。標靶治療分為小分子抑制劑及單株抗體,它們與癌細胞中的特定分子進行結合,達到抑制癌細胞生長及殺死癌細胞的效果。
近年,抗體藥物複合物(Antibody-Drug Conjugate, ADC)開始蓬勃發展,它是由小分子化療藥物、單株抗體與連接子所組成的新型標靶藥物。它利用單株抗體的靶向性,將化療藥物攜帶至特定癌細胞的位置,並在癌細胞中發揮毒性,將癌細胞毒殺。但是ADC藥物的製備的條件是十分受限的,而且由於抗體複雜的結構,也讓修飾及定量的難度增加。本研究將帶有苯硼酸的樹枝狀分子、螢光及生物素,透過不同的化學反應,修飾到具有三官能基的化合物上。該分子能夠簡便且快速地組裝上抗體和鏈親和素,並利用螢光觀察分子在細胞的分布情形。期望未來,此自組裝平台的開發,能夠連接不同抗體、帶有抗癌藥物的鏈親和素,在癌症治療以及機制的研究上,發揮其應用的潛力。
One of the leading causes of death over the past few decades has been malignant tumors (also known as cancer). An abnormal proliferation of cells is caused by the activation of oncogenes and the inactivation of tumor suppressor genes. To combat cancer, scientists have found many solutions, including surgery, radiation, and chemotherapy. Among them, surgery and radiation are commonly used to treat non-metastatic cancer. Although chemotherapy effectively treats metastatic cancer, it causes severe side effects and substantially lowers survival rates.
Targeted therapy inhibits the growth of cancer cells by binding to the specific molecules regarding the signal transduction. Antibody-Drug Conjugates (ADC) connects conventional chemotherapy drugs, monoclonal antibodies, and linkers through chemical reactions. ADC could target the cancer cells via monoclonal and release the toxic payload. Thus, it can kill cancer cells and reduce the damage to normal cells. However, the complexity of the antibody increases the difficulty of modification and quantification.
In this study, dendrimers with phenylboronic acid, fluorescence, and biotin are modified to compounds with trifunctional groups. The final compound can self-assembled with antibodies and streptavidin, then observe the distribution in cells by fluorescence. The development of this self-assembly platform facilely connects various antibodies and drugs, realizing its application in cancer treatment.
中文摘要 i
Abstract ii
目錄 iii
圖目錄 v
化合物縮寫與說明對照表 viii
第一章 緒論 1
1.1 癌症 1
1.1.1 癌症的成因 1
1.1.2 治療方法 2
1.2 標靶治療 3
1.2.1 小分子藥物 3
1.2.2 單株抗體 4
1.3 第二型人類表皮生長因子受體及曲妥珠單株抗體 6
1.3.1 第二型人類表皮生長因子受體 6
1.3.2 曲妥珠單株抗體 7
1.4 抗體藥物複合物 8
1.5 研究目的 10
第二章 實驗步驟 13
2.1 G1 PAMAM Dendrimer的合成 13
2.1.1 star-PAMAM–(CO2Me)4(-0.5) 13
2.1.2 star-PAMAM–(NH2)4(0) 14
2.1.3 star-PAMAM–(CO2Me)8(0.5) 15
2.1.4 star-PAMAM–(NH2)8(1) 16
2.2 PBA-PD的合成 17
2.3 H-PBA-PD的合成 18
2.4 連接子的合成 19
2.4.1 Boc-mPD的合成 19
2.4.2 M-Boc-mPD的合成 19
2.4.3 M-mPD的合成 20
2.4.4 N-M-mPD的合成 20
2.5 修飾螢光與樹枝狀分子的TFT 21
2.5.1 F- TFT的合成 21
2.5.2 L-F-TFT的合成 22
2.5.3 D-F-TFT的合成 22
2.6 修飾螢光、生物素和樹枝狀分子的TFT 23
2.6.1 B-F-TFT的合成 23
2.6.2 deboc-B-F-TFT的合成 23
2.6.3 L-B-F-TFT的合成 24
2.6.4 D-B-F-TFT的合成 24
2.7 修飾後TFT分子和抗體的組裝 25
2.8 吸光值的測定 25
2.9 Bradford assay蛋白質定量 25
2.10 酵素免疫分析法檢測抗體活性 26
2.11 MCF7與A431細胞的培養及標靶實驗 26
2.12 H-D-B-F-TFT結合能力的鑑定 27
2.12.1 生物膜干涉技術 27
2.12.2 酵素免疫分析法 27
2.12.3 Protein G磁珠 27
第三章 藥品與儀器 28
3.1 實驗藥品 28
3.2 實驗儀器 30
第四章 實驗結果與討論 31
4.1 樹枝狀分子的合成與修飾 31
4.2 連接子的設計與合成 38
4.3 TFT與螢光與樹枝狀分子半球的連接 45
4.4 D-F-TFT 和Herceptin的組裝與定量 51
4.5 組裝後的抗體活性檢測 54
4.6 H-D-F-TFT對癌細胞的標靶能力 56
4.7 D-B-F-TFT分子的合成與組裝 58
4.8 H-D-B-F-TFT作用力的檢測 64
第五章 結論 68
第六章 未來展望 69
第七章 光譜 70
第八章 參考文獻 76
1. Patel, A., Benign vs malignant tumors. JAMA Oncol. 2020, 6 (9), 1488-1488.
2. Abraham, J.; Staffurth, J., Hormonal therapy for cancer. Medicine 2020, 48 (2), 103-107.
3. Baskar, R.; Lee, K. A.; Yeo, R.; Yeoh, K.-W., Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 2012, 9 (3), 193.
4. Pérez-Herrero, E.; Fernández-Medarde, A., Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52-79.
5. Chu, E.; Sartorelli, A., Cancer chemotherapy. Basic Clin. Pharmacol. 2018, 948-976.
6. Gerber, D. E., Targeted therapies: a new generation of cancer treatments. Am. Fam. Physician 2008, 77 (3), 311-319.
7. Lee, Y. T.; Tan, Y. J.; Oon, C. E., Molecular targeted therapy: Treating cancer with specificity. Eur. J. Pharmacol. 2018, 834, 188-196.
8. Paul, M. K.; Mukhopadhyay, A. K., Tyrosine kinase–role and significance in cancer. Int. J. Med. Sci. 2004, 1 (2), 101.
9. Bhullar, K. S.; Lagarón, N. O.; McGowan, E. M.; Parmar, I.; Jha, A.; Hubbard, B. P.; Rupasinghe, H., Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer 2018, 17 (1), 1-20.
10. Chari, R. V.; Miller, M. L.; Widdison, W. C., Antibody–drug conjugates: an emerging concept in cancer therapy. Angew. Chem., Int. Ed. Engl. 2014, 53 (15), 3796-3827.
11. Arora, A.; Scholar, E. M., Role of tyrosine kinase inhibitors in cancer therapy. J. Pharmacol. Exp. Ther. 2005, 315 (3), 971-979.
12. Savage, D. G.; Antman, K. H., Imatinib mesylate—a new oral targeted therapy. N. Engl. J. Med. 2002, 346 (9), 683-693.
13. Wang, W.; Wang, E.; Balthasar, J., Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84 (5), 548-558.
14. Bayer, V. In An overview of monoclonal antibodies, Semin. Oncol. Nurs., Elsevier: 2019; p 150927.
15. Ryman, J. T.; Meibohm, B., Pharmacokinetics of monoclonal antibodies. CPT: Pharmacomet. Syst. Pharmacol. 2017, 6 (9), 576-588.
16. Zahavi, D.; Weiner, L., Monoclonal antibodies in cancer therapy. Antibodies 2020, 9 (3), 34.
17. Peters, C.; Brown, S., Antibody–drug conjugates as novel anti-cancer chemotherapeutics. Biosci. Rep. 2015, 35 (4).
18. Rimawi, M. F.; Schiff, R.; Osborne, C. K., Targeting HER2 for the treatment of breast cancer. Annu. Rev. Med. 2015, 66.
19. Tai, W.; Mahato, R.; Cheng, K., The role of HER2 in cancer therapy and targeted drug delivery. J Control Release 2010, 146 (3), 264-275.
20. Iqbal, N.; Iqbal, N., Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol. Biol. Int. 2014.
21. Yarden, Y., Biology of HER2 and its importance in breast cancer. Oncology 2001, 61 (Suppl. 2), 1-13.
22. Pohlmann, P. R.; Mayer, I. A.; Mernaugh, R., Resistance to trastuzumab in breast cancer. Clin. Cancer Res. 2009, 15 (24), 7479-7491.
23. Hudis, C. A., Trastuzumab—mechanism of action and use in clinical practice. N. Engl. J. Med. 2007, 357 (1), 39-51.
24. Nahta, R.; Esteva, F. J., Herceptin: mechanisms of action and resistance. Cancer Lett. 2006, 232 (2), 123-138.
25. Birrer, M. J.; Moore, K. N.; Betella, I.; Bates, R. C., Antibody-drug conjugate-based therapeutics: state of the science. J. Natl. Cancer Inst. 2019, 111 (6), 538-549.
26. Fu, Z.; Li, S.; Han, S.; Shi, C.; Zhang, Y., Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 2022, 7 (1), 1-25.
27. Beck, A.; Goetsch, L.; Dumontet, C.; Corvaïa, N., Strategies and challenges for the next generation of antibody–drug conjugates. Nat. Rev. Drug Discov. 2017, 16 (5), 315-337.
28. De Jong, S. E.; Selman, M. H.; Adegnika, A. A.; Amoah, A. S.; Van Riet, E.; Kruize, Y.; Raynes, J. G.; Rodriguez, A.; Boakye, D.; Von Mutius, E., IgG1 Fc N-glycan galactosylation as a biomarker for immune activation. Sci. Rep. 2016, 6 (1), 1-9.
29. Kiyoshi, M.; Tsumoto, K.; Ishii-Watabe, A.; Caaveiro, J. M., Glycosylation of IgG-Fc: a molecular perspective. Int. Immunol. 2017, 29 (7), 311-317.
30. Fujita, N.; Shinkai, S.; James, T. D., Boronic acids in molecular self‐assembly. Chem. Asian J. 2008, 3 (7), 1076-1091.
31. Zhai, W.; Sun, X.; James, T. D.; Fossey, J. S., Boronic acid‐based carbohydrate sensing. Chem. Asian J. 2015, 10 (9), 1836-1848.
32. Zhang, X.-t.; Liu, G.-j.; Ning, Z.-w.; Xing, G.-w., Boronic acid-based chemical sensors for saccharides. Carbohydr. Res. 2017, 452, 129-148.
33. Kane, R. S., Thermodynamics of multivalent interactions: influence of the linker. Langmuir 2010, 26 (11), 8636-8640.
34. Haag, R.; Kratz, F., Polymer therapeutics: concepts and applications. Angew. Chem., Int. Ed. Engl. 2006, 45 (8), 1198-1215.
35. Dundas, C. M.; Demonte, D.; Park, S., Streptavidin–biotin technology: improvements and innovations in chemical and biological applications. Appl. Microbiol. Biotechnol. 2013, 97, 9343-9353.
36. Tomalia, D.; Huang, B.; Swanson, D.; Brothers II, H.; Klimash, J., Structure control within poly (amidoamine) dendrimers: size, shape and regio-chemical mimicry of globular proteins. Tetrahedron 2003, 59 (22), 3799-3813.
37. Valeur, E.; Bradley, M., Amide bond formation: beyond the myth of coupling reagents. Chem. Soc. Rev. 2009, 38 (2), 606-631.
38. Tsuchido, Y.; Horiuchi, R.; Hashimoto, T.; Ishihara, K.; Kanzawa, N.; Hayashita, T., Rapid and selective discrimination of Gram-positive and Gram-negative bacteria by boronic acid-modified poly (amidoamine) dendrimer. Anal. Chem. 2019, 91 (6), 3929-3935.
39. Montalbetti, C. A.; Falque, V., Amide bond formation and peptide coupling. Tetrahedron 2005, 61 (46), 10827-10852.
40. Mthembu, S. N.; Sharma, A.; Albericio, F.; de la Torre, B. G., Breaking a couple: disulfide reducing agents. ChemBioChem 2020, 21 (14), 1947-1954.
41. Sinclair, A. J.; Del Amo, V.; Philp, D., Structure–reactivity relationships in a recognition mediated [3+ 2] dipolar cycloaddition reaction. Org. Biomol. Chem. 2009, 7 (16), 3308-3318.
42. Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X., Cu-catalyzed click reaction in carbohydrate chemistry. Chem. Rev. 2016, 116 (5), 3086-3240.
43. Liang, L.; Astruc, D., The copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC)“click” reaction and its applications. An overview. Coord. Chem. Rev. 2011, 255 (23-24), 2933-2945.
44. El Ayouchia, H. B.; Bahsis, L.; Anane, H.; Domingo, L. R.; Stiriba, S.-E., Understanding the mechanism and regioselectivity of the copper (I) catalyzed [3+ 2] cycloaddition reaction between azide and alkyne: a systematic DFT study. RSC Adv. 2018, 8 (14), 7670-7678.
45. Wang, C.; Ikhlef, D.; Kahlal, S.; Saillard, J.-Y.; Astruc, D., Metal-catalyzed azide-alkyne “click” reactions: Mechanistic overview and recent trends. Coord. Chem. Rev. 2016, 316, 1-20.
46. Worrell, B.; Malik, J.; Fokin, V., Direct evidence of a dinuclear copper intermediate in Cu (I)-catalyzed azide-alkyne cycloadditions. Science 2013, 340 (6131), 457-460.
47. Rehan, M.; Younus, H., Effect of organic solvents on the conformation and interaction of catalase and anticatalase antibodies. Int. J. Biol. Macromol. 2006, 38 (3-5), 289-295.
48. Busa, L. S. A.; Maeki, M.; Ishida, A.; Tani, H.; Tokeshi, M., Simple and sensitive colorimetric assay system for horseradish peroxidase using microfluidic paper-based devices. Sens. Actuators B Chem. 2016, 236, 433-441.
49. Do, T.; Ho, F.; Heidecker, B.; Witte, K.; Chang, L.; Lerner, L., A rapid method for determining dynamic binding capacity of resins for the purification of proteins. Protein Expr. Purif. 2008, 60 (2), 147-150.
50. Kumaraswamy, S.; Tobias, R., Label-free kinetic analysis of an antibody–antigen interaction using biolayer interferometry. Protein-Protein Interactions: Methods and Applications 2015, 165-182.
51. Wilson, J. L.; Scott, I. M.; McMurry, J. L., Optical biosensing: Kinetics of protein A‐IGG binding using biolayer interferometry. Biochem. Mol. Biol. Educ. 2010, 38 (6), 400-407.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊