跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王博鈞
研究生(外文):Wang, Po-Chun
論文名稱:利用核苷酸為基礎之水凝膠實現微藻脂質的綠色萃取
論文名稱(外文):Green extraction of microalgal lipids realized by nucleotide-based hydrogel
指導教授:許馨云許馨云引用關係
指導教授(外文):Hsu, Hsin-Yun
口試委員:許馨云黃意真王翔郁
口試委員(外文):Hsu, Hsin-YunHuang, Yi-ChengWang, Hsiang-Yu
口試日期:2023-03-31
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:51
中文關鍵詞:微藻培養深共熔溶劑核苷酸水凝膠脂肪酶固定化生質柴油
外文關鍵詞:microalgae culturedeep eutectic solventnucleotide-based hydrogellipase immobilizationbiodiesel
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要 i
Abstract ii
Acknowledgement iii
Contents iv
List of Figures vi
List of Tables viii
Supplementary Figures and Tables ix
Chapter 1-Introduction 1
1.1 Processing of microalgae 3
1.1.1 Deep eutectic solvents (DES) 6
1.2 Transesterification 7
Chapter 2 – Motivation 13
Chapter 3 – Materials and Methods 14
3.1 Materials 14
3.2 Preparation of NBH 14
3.3 Characteristics of NBH 15
3.4 Preparation of DES 15
3.5 Stability of NBH in DES 15
3.6 Microalgae culture and cell harvesting 15
3.7 Microalgae encapsulation in NBH 16
3.8 Lipid extraction by DES/DMC 17
3.9 Synthesis of magnetic nanoparticles (MNPs) 17
3.10 Immobilization of lipases on MNPs 18
3.11 Characteristics of MNP-L 18
3.12 Evaluation of lipase activity of MNP-L and the
transesterification in microalgae encapsulated NBH 19
3.13 Reusability of MNP-L 20
Chapter 4 – Results and Discussions 21
4.1 Microalgae culture in NBH 21
4.1.1 Characterization of NBH 21
4.1.2 Encapsulation of Chlorella vulgaris 23
4.2 The in situ lipid extraction and transesterification 27
4.2.1 Lipase-immobilized MNPs for transesterification 28
4.2.2 Assessment of MNP-L recovery 34
Chapter 5 – Conclusion 35
Reference 36
Supplementary Information 45
(1) Das, P.; Chandramohan, V. P.; Mathimani, T.; Pugazhendhi, A. Recent Advances in Thermochemical Methods for the Conversion of Algal Biomass to Energy. Science of the Total Environment 2021, 766, 144608.
(2) Zulqarnain; Ayoub, M.; Yusoff, M. H. M.; Nazir, M. H.; Zahid, I.; Ameen, M.; Sher, F.; Floresyona, D.; Nursanto, E. B. A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies. Sustainability 2021, 13 (2), 788.
(3) Fabris, M.; Abbriano, R. M.; Pernice, M.; Sutherland, D. L.; Commault, A. S.; Hall, C. C.; Labeeuw, L.; McCauley, J. I.; Kuzhiuparambil, U.; Ray, P.; et al. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science 2020, 11, 279.
(4) Vasilieva, S.; Lobakova, E.; Solovchenko, A. Biotechnological Applications of Immobilized Microalgae. In Environmental Biotechnology Vol. 3, Gothandam, K. M., Ranjan, S., Dasgupta, N., Lichtfouse, E. Eds.; Springer International Publishing, 2021; pp 193.
(5) Hu, H. Q.; Zhong, D. N.; Li, W. L.; Lin, X. H.; He, J.; Sun, Y. C.; Wu, Y.; Shi, M. Q.; Chen, X. Y.; Xu, F.; et al. Microalgae-Based Bioactive Hydrogel Loaded with Quorum Sensing Inhibitor Promotes Infected Wound Healing. Nano Today 2022, 42, 101368.
(6) Han, M. A.; Zhang, C. F.; Ho, S. H. Immobilized Microalgal System: An Achievable Idea for Upgrading Current Microalgal Wastewater Treatment. Environmental Science and Ecotechnology 2023, 14, 100227.
(7) Han, M. N.; Zhang, C. F.; Li, F. H.; Ho, S. H. Data-Driven Analysis on Immobilized Microalgae System: New Upgrading Trends for Microalgal Wastewater Treatment. Science of the Total Environment 2022, 852, 158514.
(8) Aguilar-May, B.; Sanchez-Saavedra, M. D.; Lizardi, J.; Voltolina, D. Growth of Synechococcus Sp Immobilized in Chitosan with Different Times of Contact with Naoh. Journal of Applied Phycology 2007, 19 (2), 181.
(9) Homburg, S. V.; Patel, A. V. Silica Hydrogels as Entrapment Material for Microalgae. Polymers 2022, 14 (7), 1391.
(10) Martin, N.; Bernat, T.; Dinasquet, J.; Stofko, A.; Damon, A.; Deheyn, D. D.; Azam, F.; Smith, J. E.; Davey, M. P.; Smith, A. G.; et al. Synthetic Algal-Bacteria Consortia for Space-Efficient Microalgal Growth in a Simple Hydrogel System. Journal of Applied Phycology 2021, 33 (5), 2805.
(11) Balasubramanian, S.; Yu, K.; Meyer, A. S.; Karana, E.; Aubin-Tam, M. E. Bioprinting of Regenerative Photosynthetic Living Materials. Advanced Functional Materials 2021, 31 (31), 2011162.
(12) Gomez-Florit, M.; Pardo, A.; Domingues, R. M. A.; Graca, A. L.; Babo, P. S.; Reis, R. L.; Gomes, M. E. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules 2020,25 (24), 5858.
(13) Sang, Y. T.; Liu, M. H. Nanoarchitectonics through Supramolecular Gelation: Formation and Switching of Diverse Nanostructures. Molecular Systems Design & Engineering 2019, 4 (1), 11.
(14) He, M. H.; Nandu, N.; Uyar, T. B.; Royzen, M.; Yigit, M. V. Small Molecule-Induced DNA Hydrogel with Encapsulation and Release Properties. Chemical Communications 2020, 56 (53), 7313.
(15) del Prado, A.; Gonzalez-Rodriguez, D.; Wu, Y. L. Functional Systems Derived from Nucleobase Self-Assembly. Chemistryopen 2020, 9 (4), 409.
(16) Lopez, A.; Liu, J. Self-Assembly of Nucleobase, Nucleoside and Nucleotide Coordination Polymers: From Synthesis to Applications. ChemNanoMat 2017, 3 (10), 670.
(17) Cheng, S. J.; Zhang, M. Q.; Dixit, N.; Moore, R. B.; Long, T. E. Nucleobase Self-Assembly in Supramolecular Adhesives. Macromolecules 2012, 45 (2), 805.
(18) Sikder, A.; Esen, C.; O’Reilly, R. K. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly. Accounts of Chemical Research 2022, 55 (12), 1609.
(19) Peters, G. M.; Davis, J. T. Supramolecular Gels Made from Nucleobase, Nucleoside and Nucleotide Analogs. Chemical Society Reviews 2016, 45 (11), 3188.
(20) Wang, Q. Q.; Liu, Y.; Zhang, C. J.; Zhang, C.; Zhu, P. Alginate/Gelatin Blended Hydrogel Fibers Cross-Linked by Ca2+ and Oxidized Starch: Preparation and Properties. Materials Science and Engineering C-Materials for Biological Applications 2019, 99, 1469.
(21) Taira, N.; Ino, K.; Robert, J.; Shiku, H. Electrochemical Printing of Calcium Alginate/Gelatin Hydrogel. Electrochimica Acta 2018, 281, 429.
(22) Leyva-Jimenez, F. J.; Oliver-Simancas, R.; Castangia, I.; Rodriguez-Garcia, A. M.; Alanon, M. E. Comprehensive Review of Natural Based Hydrogels as an Upcoming Trend for Food Packing. Food Hydrocolloids 2023, 135, 108124.
(23) Wang, F.; Gao, Y.; Li, H.; Zhou, L. H.; Shi, H. J.; Feng, S. N.; Chen, J.; Mei, Z. Q. Effect of Natural-Based Biological Hydrogels Combined with Growth Factors on Skin Wound Healing. Nanotechnology Reviews 2022, 11 (1), 2493.
(24) Ozel, B.; Cikrikci, S.; Aydin, O.; Oztop, M. H. Polysaccharide Blended Whey Protein Isolate- (WPI) Hydrogels: A physicochemical and Controlled Release Study. Food Hydrocolloids 2017, 71, 35.
(25) Wang, X.; Gou, C. C.; Gao, C. Y.; Song, Y. Z.; Zhang, J. M.; Huang, J. H.; Hui, M. Synthesis of Casein-Gamma-Polyglutamic Acid Hydrogels by Microbial Transglutaminase-Mediated Gelation for Controlled Release of Drugs. Journal of Biomaterials Applications 2021, 36 (2), 237.
(26) Guan, L.; Yan, S.; Liu, X.; Li, X. Y.; Gao, G. H. Wearable Strain Sensors Based on Casein- Driven Tough, Adhesive and Anti-Freezing Hydrogels for Monitoring Human-Motion. Journal of Materials Chemistry B 2019, 7 (34), 5230.
(27) Yi, J. Z.; Li, Y. Q.; Yang, L. Q.; Zhang, L. M. Kinetics and Thermodynamics of Adsorption of Cu2+ and Methylene Blue to Casein Hydrogels. Journal of Polymer Research 2019, 26 (9), 235.
(28) Qamruzzaman, M.; Ahmed, F.; Mondal, M. I. H. An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects. Journal of Polymers and the Environment 2022, 30 (1), 19.
(29) Chen, W. C.; Yuan, S. J.; Shen, J.; Chen, Y. S.; Xiao, Y. A Composite Hydrogel Based on Pectin/Cellulose Via Chemical Cross-Linking for Hemorrhage. Frontiers in Bioengineering and Biotechnology 2021, 8, 627351.
(30) Han, S. S.; Ji, S. M.; Park, M. J.; Suneetha, M.; Uthappa, U. T. Pectin Based Hydrogels for Drug Delivery Applications: A Mini Review. Gels 2022, 8 (12), 834.
(31) Ishwarya, S. P.; Sandhya, R.; Nisha, P. Advances and Prospects in the Food Applications of Pectin Hydrogels. Critical Reviews in Food Science and Nutrition 2022, 62 (16), 4393.
(32) Chen, M.; Lin, W. M.; Hong, L.; Ji, N.; Zhao, H. The Development and Lifetime Stability Improvement of Guanosine-Based Supramolecular Hydrogels through Optimized Structure. Biomed Research International 2019, 2019, 6258248.
(33) Yoneda, J. S.; de Araujo, D. R.; Sella, F.; Liguori, G. R.; Liguori, T. T. A.; Moreira, L. F. P.; Spinozzi, F.; Mariani, P.; Itri, R. Self-Assembled Guanosine-Hydrogels for Drug-Delivery Application: Structural and Mechanical Characterization, Methylene Blue Loading and Controlled Release. Materials Science and Engineering: C 2021, 121, 111834.
(34) Bhattacharyya, T.; Saha, P.; Dash, J. Guanosine-Derived Supramolecular Hydrogels: Recent Developments and Future Opportunities. ACS Omega 2018, 3 (2), 2230.
(35) Wang, Z.; Chen, R.; Yang, S.; Li, S.; Gao, Z. Design and Application of Stimuli-Responsive DNA Hydrogels: A Review. Materials Today Bio 2022, 16, 100430.
(36) Morya, V.; Walia, S.; Mandal, B. B.; Ghoroi, C.; Bhatia, D. Functional DNA Based Hydrogels: Development, Properties and Biological Applications. ACS Biomaterials Science & Engineering 2020, 6 (11), 6021.
(37) Hu, Q.; Dong, K.; Ming, J.; Yang, W.; Wang, H.; Xiao, X.; Huang, T. A Flexible Rapid Self- Assembly Scaffold-Net DNA Hydrogel Exhibiting Cell Mobility Control. Materials Today Chemistry 2022, 23, 100680.
(38) Mulvee, M.; Vasiljevic, N.; Mann, S.; Patil, A. J. Stimuli-Responsive Nucleotide–Amino Acid Hybrid Supramolecular Hydrogels. Gels 2021, 7 (3), 146.
(39) Thakur, N.; Sharma, B.; Bishnoi, S.; Mishra, S. K.; Nayak, D.; Kumar, A.; Sarma, T. K. Multifunctional Inosine Monophosphate Coordinated Metal-Organic Hydrogel: Multistimuli Responsiveness, Self-Healing Properties, and Separation of Water from Organic Solvents. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8659.
(40) Liang, H.; Zhang, Z. J.; Yuan, Q. P.; Liu, J. W. Self-Healing Metal-Coordinated Hydrogels Using Nucleotide Ligands. Chemical Communications 2015, 51 (82), 15196.
(41) Miao, Y.; Tang, Z.; Zhang, Q.; Reheman, A.; Xiao, H.; Zhang, M.; Liu, K.; Huang, L.; Chen, L.; Wu, H. Biocompatible Lignin-Containing Hydrogels with Self-Adhesion, Conductivity, Uv Shielding, and Antioxidant Activity as Wearable Sensors. ACS Applied Polymer Materials 2022,4 (2), 1448.
(42) Morales, A.; Labidi, J.; Gullón, P. Influence of Lignin Modifications on Physically Crosslinked Lignin Hydrogels for Drug Delivery Applications. Sustainable Materials and Technologies 2022, 33, e00474.
(43) Gao, F.; Zhang, X. L.; Zhu, C. J.; Huang, K. H.; Liu, Q. High-Efficiency Biofuel Production by Mixing Seawater and Domestic Sewage to Culture Freshwater Microalgae. Chemical Engineering Journal 2022, 443, 136361.
(44) Alam, M. A.; Vandamme, D.; Chun, W.; Zhao, X. Q.; Foubert, I.; Wang, Z. M.; Muylaert, K.; Yuan, Z. H. Bioflocculation as an Innovative Harvesting Strategy for Microalgae. Reviews in Environmental Science and Bio-Technology 2016, 15 (4), 573.
(45) Huang, W. C.; Kim, J. D. Simultaneous Cell Disruption and Lipid Extraction in a Microalgal Biomass Using a Nonpolar Tertiary Amine. Bioresource Technology 2017, 232, 142.
(46) Pohndorf, R. S.; Camara, A. S.; Larrosa, A. P. Q.; Pinheiro, C. P.; Strieder, M. M.; Pinto, L. A. A. Production of Lipids from Microalgae Spirulina Sp.: Influence of Drying, Cell Disruption and Extraction Methods. Biomass & Bioenergy 2016, 93, 25.
(47) Singh, G.; Patidar, S. K. Microalgae Harvesting Techniques: A Review. Journal of Environmental Management 2018, 217, 499.
(48) Xu, K. W.; Zou, X. T.; Chang, W. J.; Qu, Y. H.; Li, Y. P. Microalgae Harvesting Technique Using Ballasted Flotation: A Review. Separation and Purification Technology 2021, 276, 119439.
(49) Lee, S. Y.; Khoiroh, I.; Vo, D. V. N.; Kumar, P. S.; Show, P. L. Techniques of Lipid Extraction from Microalgae for Biofuel Production: A Review. Environmental Chemistry Letters 2021, 19 (1), 231.
(50) Deshmukh, S.; Kumar, R.; Bala, K. Microalgae Biodiesel: A Review on Oil Extraction, Fatty Acid Composition, Properties and Effect on Engine Performance and Emissions. Fuel Processing Technology 2019, 191, 232.
(51) Sati, H.; Mitra, M.; Mishra, S.; Baredar, P. Microalgal Lipid Extraction Strategies for Biodiesel Production: A Review. Algal Research 2019, 38, 101413.
(52) Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M. S. L. Microalgae Disruption Techniques for Product Recovery: Influence of Cell Wall Composition. Journal of Applied Phycology 2019, 31 (1), 61.
(53) Lai, Y. S.; Zhou, Y.; Eustance, E.; Straka, L.; Wang, Z.; Rittmann, B. E. Cell Disruption by Cationic Surfactants Affects Bioproduct Recovery from Synechocystis Sp. Pcc 6803. Algal Research 2018, 34, 250.
(54) El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environmental Chemistry Letters 2021, 19 (4), 3397.
(55) Florindo, C.; Branco, L. C.; Marrucho, I. M. Development of Hydrophobic Deep Eutectic Solvents for Extraction of Pesticides from Aqueous Environments. Fluid Phase Equilibria 2017, 448, 135.
(56) Zuo, J. L.; Ma, P. R.; Geng, S. Q.; Kong, Y. Z.; Li, X.; Fan, Z. S.; Zhang, Y. L.; Dong, A.; Zhou, Q. Optimization of the Extraction Process of Flavonoids from Trollius Ledebouri with Natural Deep Eutectic Solvents. Journal of Separation Science 2022, 45 (3), 717.
(57) Li, M. Y.; Liu, Y. Z.; Hu, F. J.; Ren, H. W.; Duan, E. H. Amino Acid-Based Natural Deep Eutectic Solvents for Extraction of Phenolic Compounds from Aqueous Environments. Processes 2021, 9 (10), 1716.
(58) Cherkashina, K.; Pochivalov, A.; Simonova, V.; Shakirova, F.; Shishov, A.; Bulatov, A. A Synergistic Effect of Hydrophobic Deep Eutectic Solvents Based on Terpenoids and Carboxylic Acids for Tetracycline Microextraction. Analyst 2021, 146 (11), 3449.
(59) Li, Y. B.; Hsieh, Y. H.; Pan, Z. C.; Zhang, L.; Yu, W.; Wang, B. S.; Zhang, J. H. Extraction of Alkaloids from Coptidis Rhizoma Via Betaine-Based Deep Eutectic Solvents. Chemistryselect 2020, 5 (16), 4973.
(60) Das, A. K.; Sharma, M.; Mondal, D.; Prasad, K. Deep Eutectic Solvents as Efficient Solvent System for the Extraction of Kappa-Carrageenan from Kappaphycus Alvarezii. Carbohydrate Polymers 2016, 136, 930.
(61) Pan, Y.; Alam, M. A.; Wang, Z. M.; Huang, D. L.; Hu, K. Q.; Chen, H. X.; Yuan, Z. H. One-Step Production of Biodiesel from Wet and Unbroken Microalgae Biomass Using Deep Eutectic Solvent. Bioresource Technology 2017, 238, 157.
(62) Danilovic, B. R.; Djordjevic, N. G.; Karabegovic, I. T.; Troter, D. Z.; Savic, D. S.; Veljkovic, V. B. Enhancing Lipid Extraction from Green Microalgae Chlorella Sp. Using a Deep Eutectic Solvent Pretreatment. Chemical Industry & Chemical Engineering Quarterly 2021, 27 (4), 313.
(63) Tommasi, E.; Cravotto, G.; Galletti, P.; Grillo, G.; Mazzotti, M.; Sacchetti, G.; Samori, C.; Tabasso, S.; Tacchini, M.; Tagliavini, E. Enhanced and Selective Lipid Extraction from the Microalga P. Tricornutum by Dimethyl Carbonate and Supercritical CO2 Using Deep Eutectic Solvents and Microwaves as Pretreatment. ACS Sustainable Chemistry & Engineering 2017, 5 (9), 8316.
(64) Li, L. N.; Liu, Y. M.; Wang, Z. T.; Yang, L.; Liu, H. W. Development and Applications of Deep Eutectic Solvent Derived Functional Materials in Chromatographic Separation. Journal of Separation Science 2021, 44 (6), 1098.
(65) Tang, B.; Zhang, H.; Row, K. H. Application of Deep Eutectic Solvents in the Extraction and Separation of Target Compounds from Various Samples. Journal of Separation Science 2015, 38 (6), 1053.
(66) Mandari, V.; Devarai, S. K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts Via Transesterification and Esterification Reactions: A Critical Review. Bioenergy Research 2022, 15 (2), 935.
(67) Ahmad, A. F.; Zulkurnain, N.; Rosid, S. J. M.; Azid, A.; Endut, A.; Toemen, S.; Ismail, S.; Abdullah, W. N. W.; Aziz, S. M.; Yusoff, N. M.; et al. Catalytic Transesterification of Coconut Oil in Biodiesel Production: A Review. Catalysis Surveys from Asia 2022, 26 (3), 129.
(68) Christopher, L. P.; Kumar, H.; Zambare, V. P. Enzymatic Biodiesel: Challenges and Opportunities. Applied Energy 2014, 119, 497.
(69) Quayson, E.; Amoah, J.; Hama, S.; Kondo, A.; Ogino, C. Immobilized Lipases for Biodiesel Production: Current and Future Greening Opportunities. Renewable & Sustainable Energy Reviews 2020, 134, 110355.
(70) Remonatto, D.; Miotti, R. H.; Monti, R.; Bassan, J. C.; de Paula, A. V. Applications of Immobilized Lipases in Enzymatic Reactors: A Review. Process Biochemistry 2022, 114, 1.
(71) Wu, S. C.; Wu, S. M.; Su, F. M. Novel Process for Immobilizing an Enzyme on a Bacterial Cellulose Membrane through Repeated Absorption. Journal of Chemical Technology and Biotechnology 2017, 92 (1), 109.
(72) Santos, M. P.; Brito, M. J.; Junior, E. C.; Bonomo, R. C.; Veloso, C. M. Pepsin Immobilization on Biochar by Adsorption and Covalent Binding, and Its Application for Hydrolysis of Bovine Casein. Journal of Chemical Technology & Biotechnology 2019, 94 (6), 1982.
(73) Sneha, H. P.; Beulah, K. C.; Murthy, P. S. Chapter 37 - Enzyme Immobilization Methods and Applications in the Food Industry. In Enzymes in Food Biotechnology, Kuddus, M. Ed.; Academic Press, 2019; pp 645.
(74) Tokuyama, H.; Naito, A.; Kato, G. Transesterification of Triolein with Ethanol Using Lipase- Entrapped Nipa-Co-Pegmea Gel Beads. Reactive & Functional Polymers 2018, 126, 83.
(75) Guisan, J. M.; López-Gallego, F.; Bolivar, J. M.; Rocha-Martín, J.; Fernandez-Lorente, G. The Science of Enzyme Immobilization. In Immobilization of Enzymes and Cells: Methods and Protocols, Guisan, J. M., Bolivar, J. M., López-Gallego, F., Rocha-Martín, J. Eds.; Springer US, 2020; pp 1.
(76) Sheldon, R. A.; Basso, A.; Brady, D. New Frontiers in Enzyme Immobilisation: Robust Biocatalysts for a Circular Bio-Based Economy. Chemical Society Reviews 2021, 50 (10), 5850.
(77) Liu, D.-M.; Dong, C. Recent Advances in Nano-Carrier Immobilized Enzymes and Their Applications. Process Biochemistry 2020, 92, 464.
(78) Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K.-H.; Deep, A. Recent Advances in Enzyme Immobilization Techniques: Metal-Organic Frameworks as Novel Substrates. Coordination Chemistry Reviews 2016, 322, 30.
(79) Pan, J. Y.; Ou, Z. M.; Tang, L.; Shi, H. B. Enhancement of Catalytic Activity of Lipase- Immobilized Fe3o4-Chitosan Microsphere for Enantioselective Acetylation of Racemic 1- Phenylethylamine. Korean Journal of Chemical Engineering 2019, 36 (5), 729.
(80) Miao, C. L.; Yang, L. M.; Wang, Z. M.; Luo, W.; Li, H. W.; Lv, P. M.; Yuan, Z. H. Lipase Immobilization on Amino-Silane Modified Superparamagnetic Fe3o4 Nanoparticles as Biocatalyst for Biodiesel Production. Fuel 2018, 224, 774.
(81) Liu, X. B.; Mao, Y. H.; Yu, S. Y.; Zhang, H.; Hu, K. C.; Zhu, L. Y.; Ji, J. B.; Wang, J. L. An Efficient and Recyclable Pickering Magnetic Interface Biocatalyst: Application in Biodiesel Production. Green Chemistry 2021, 23 (2), 966.
(82) Jegannathan, K. R.; Eng-Seng, C.; Ravindra, P. Economic Assessment of Biodiesel Production: Comparison of Alkali and Biocatalyst Processes. Renewable & Sustainable Energy Reviews 2011, 15 (1), 745.
(83) Lage, S.; Gentili, F. G. Quantification and Characterisation of Fatty Acid Methyl Esters in Microalgae: Comparison of Pretreatment and Purification Methods. Bioresource Technology 2018, 257, 121.
(84) Gimenes de Souza, C.; Torres de Araújo, M.; Cavalcante dos Santos, R.; França de Andrade, D.; Vasconcello da Silva, B.; d′Avila, L. A. Analysis and Quantitation of Fatty Acid Methyl Esters in Biodiesel by High-Performance Liquid Chromatography. Energy & Fuels 2018, 32 (11), 11547.
(85) Chiu, H.-H.; Kuo, C.-H. Gas Chromatography-Mass Spectrometry-Based Analytical Strategies for Fatty Acid Analysis in Biological Samples. Journal of Food and Drug Analysis 2020, 28 (1), 60.
(86) Basumatary, B.; Nath, B.; Basumatary, S. Homogeneous Catalysts Used in Biodiesel Production. In Biodiesel Production, 2022; pp 83.
(87) Aghel, B.; Gouran, A.; Shahsavari, P. Optimizing the Production of Biodiesel from Waste Cooking Oil Utilizing Industrial Waste-Derived MgO/CaO Catalysts. Chemical Engineering & Technology 2022, 45 (2), 348.
(88) Sumari, S.; Murti, M.; Santoso, A.; Asrori, M. R. Sono-Transesterification of Kapok Seed Oil with Cao:Bao-(X:Y)/Active Natural Zeolite Catalyst. Journal of Renewable Materials 2022, 10 (12), 3659.
(89) Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Rodrigues, R. C.; Fernandez- Lafuente, R. Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization. RSC Advances 2014, 4 (4), 1583.
(90) Kazenwadel, F.; Wagner, H.; Rapp, B. E.; Franzreb, M. Optimization of Enzyme Immobilization on Magnetic Microparticles Using 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide (EDC) as a Crosslinking Agent. Analytical Methods 2015, 7 (24), 10291.
(91) Maddock, R. M. A.; Pollard, G. J.; Moreau, N. G.; Perry, J. J.; Race, P. R. Enzyme-Catalysed Polymer Cross-Linking: Biocatalytic Tools for Chemical Biology, Materials Science and Beyond. Biopolymers 2020, 111 (9), e23390.
(92) Pan, Y.; Alam, M. A.; Wang, Z.; Huang, D.; Hu, K.; Chen, H.; Yuan, Z. One-Step Production of Biodiesel from Wet and Unbroken Microalgae Biomass Using Deep Eutectic Solvent. Bioresource Technology 2017, 238, 157.
(93) Lu, W.; Alam, M. A.; Pan, Y.; Wu, J.; Wang, Z.; Yuan, Z. A New Approach of Microalgal Biomass Pretreatment Using Deep Eutectic Solvents for Enhanced Lipid Recovery for Biodiesel Production. Bioresource Technology 2016, 218, 123.
(94) Sharma, A. K.; Sahoo, P. K.; Singhal, S.; Patel, A. Impact of Various Media and Organic Carbon Sources on Biofuel Production Potential from Chlorella Spp. 3 Biotech 2016, 6, 116.
(95) Chioccioli, M.; Hankamer, B.; Ross, I. L. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas Reinhardtii and Chlorella Vulgaris. Plos One 2014, 9 (5), e97269.
(96) Rodger, A. Uv Absorbance Spectroscopy of Biological Macromolecules. In Encyclopedia of Biophysics, Roberts, G. C. K. Ed.; Springer Berlin Heidelberg, 2013; pp 2714.
(97) Thakur, N.; Sharma, B.; Bishnoi, S.; Mishra, S. K.; Nayak, D.; Kumar, A.; Sarma, T. K. Multifunctional Inosine Monophosphate Coordinated Metal–Organic Hydrogel: Multistimuli Responsiveness, Self-Healing Properties, and Separation of Water from Organic Solvents. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8659.
(98) Albert, K.; Hsieh, P. Y.; Chen, T. H.; Hou, C. H.; Hsu, H. Y. Diatom-Assisted Biomicroreactor Targeting the Complete Removal of Perfluorinated Compounds. Journal of Hazardous Materials 2020, 384, 121491.
(99) Mukhopadhyay, T. K.; Datta, A. Design Rules for the Generation of Stable Quartet Phases of Nucleobases over Two-Dimensional Materials. The Journal of Physical Chemistry C 2018, 122 (50), 28918.
(100) Zhou, P.; Shi, R. F.; Yao, J. F.; Sheng, C. F.; Li, H. Supramolecular Self-Assembly of Nucleotide-Metal Coordination Complexes: From Simple Molecules to Nanomaterials. Coordination Chemistry Reviews 2015, 292, 107.
(101) Chen, C. Y.; Chang, H. Y. Lipid Production of Microalga Chlorella Sorokiniana CY1 Is Improved by Light Source Arrangement, Bioreactor Operation Mode and Deep-Sea Water Supplements. Biotechnology Journal 2016, 11 (3), 356.
(102) Chen, C. Y.; Chang, J. S.; Chang, H. Y.; Chen, T. Y.; Wu, J. H.; Lee, W. L. Enhancing Microalgal Oil/Lipid Production from Chlorella Sorokiniana CY1 Using Deep-Sea Water Supplemented Cultivation Medium. Biochemical Engineering Journal 2013, 77, 74.
(103) Wang, Y. J.; Wang, J. S.; Wang, T. Q.; Wang, C. X. Simultaneous Detection of Viability and Concentration of Microalgae Cells Based on Chlorophyll Fluorescence and Bright Field Dual Imaging. Micromachines 2021, 12 (8), 896.
(104) Yadav, A.; Trivedi, S.; Rai, R.; Pandey, S. Densities and Dynamic Viscosities of (Choline Chloride Plus Glycerol) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range (283.15-363.15) K. Fluid Phase Equilibria 2014, 367, 135.
(105) Yadav, A.; Pandey, S. Densities and Viscosities of (Choline Chloride Plus Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range 293.15 K to 363.15 K. Journal of Chemical and Engineering Data 2014, 59 (7), 2221.
(106) Gajardo-Parra, N. F.; Cotroneo-Figueroa, V. P.; Aravena, P.; Vesovic, V.; Canales, R. I. Viscosity of Choline Chloride-Based Deep Eutectic Solvents: Experiments and Modeling. Journal of Chemical and Engineering Data 2020, 65 (11), 5581.
(107) Vakhlu, J.; Kour, A. Yeast Lipases: Enzyme Purification, Biochemical Properties and Gene Cloning. Electronic Journal of Biotechnology 2006, 9 (1), 69.
(108) Montoya, C.; Cochard, B.; Flori, A.; Cros, D.; Lopes, R.; Cuellar, T.; Espeout, S.; Syaputra,I.; Villeneuve, P.; Pina, M.; et al. Genetic Architecture of Palm Oil Fatty Acid Composition in Cultivated Oil Palm (Elaeis Guineensis Jacq.) Compared to Its Wild Relative E. Oleifera (HBK) Cortes. Plos One 2014, 9 (5), e95412.
(109) Susaimanickam, A.; Pugazhendhi, A.; Mathimani, T. Lipid Enhancement through Nutrient Starvation in Chlorella Sp. And Its Fatty Acid Profiling for Appropriate Bioenergy Feedstock. Biocatalysis and Agricultural Biotechnology 2019, 20, 101179.
(110) Alfaro-Sayes, D. A.; Amoah, J.; Rachmadona, N.; Hama, S.; Hasunuma, T.; Kondo, A.; Ogino, C. Enhanced Growth and Lipid Productivity by Living Chlorella Sorokiniana Immobilized in Ca-Alginate Beads. Journal of Physics-Energy 2023, 5 (1), 014019.
(111) Sepian, N. R. A.; Yasin, N. H. M.; Ramesh, N. Immobilization Method to Separate Microalgae Biomass for Fatty Acid Methyl Ester Production. Chemical Engineering & Technology 2022, 45 (8), 1474.
(112) Tang, D. H.; Han, W.; Li, P. L.; Miao, X. L.; Zhong, J. J. CO2 Biofixation and Fatty Acid Composition of Scenedesmus Obliquus and Chlorella Pyrenoidosa in Response to Different CO2 Levels. Bioresource Technology 2011, 102 (3), 3071.
(113) Wang, X. W.; Liang, J. R.; Luo, C. S.; Chen, C. P.; Gao, Y. H. Biomass, Total Lipid Production, and Fatty Acid Composition of the Marine Diatom Chaetoceros Muelleri in Response to Different CO2 Levels. Bioresource Technology 2014, 161, 124.
(114) Mohammadi, F. S.; Arabian, D.; Khalilzadeh, R. Investigation of Effective Parameters on Biomass and Lipid Productivity of Chlorella Vulgaris. Periodicum Biologorum 2016, 118 (2), 123.
(115) Lin, C.-Y.; Wu, X.-E. Determination of Cetane Number from Fatty Acid Compositions and Structures of Biodiesel. Processes 2022, 10 (8), 1502.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 板狀功能化巨型四面體分子的堆積原理
2. 運用不添加滅活劑的自由基乳液聚合在水中製備活性聚苯乙烯乳膠粒子
3. 探討光響應性偶氮苯離子液體在多孔性陽極氧化鋁模板中的導電行爲
4. 螢光壽命顯微鏡應用於區分正常和癌性乳腺細胞中鈣離子信號和粒線體功能在納秒脈衝電場應用下之變化
5. 金屬有機框架衍生摻鈰氧化鈷用於膜電極組件之高效能非貴金屬酸性產氧反應
6. 奈米碳纖維複合鎳單原子催化劑應用於達工業化標準之二氧化碳還原至一氧化碳電催化反應
7. (1) 磁性奈米粒子結合螢光高分子點雙模式顯色對乳癌檢測分析試紙 (2) 靛氰綠溶於羥乙基澱粉應用於近紅外光臨床乳癌淋巴攝影
8. 以咔唑熔合噻吩和咔唑熔合噻吩并噻吩之稠環分子為主體之非富勒烯受體於有機太陽能電池之元件優化
9. 應用鋰-聯苯複合物溶液優化化學預鋰化提升鋰離子電容器性能之研究
10. 利用自動化微流晶片平台偵測和分離循環腫瘤細胞
11. 應用於無線通訊系統之諧波調諧功率放大器設計
12. 利用四元複合物氮化銦鋁鎵於空乏型氮化鎵金屬-絕緣體-半導體高電子遷移率電晶體之功率特性改善與雙層場校電板最佳化
13. 用於藥物輸送和生物成像應用的多隔室聚合物載體
14. 研究不同歐姆蝕刻圖案對氮化鋁鎵/氮化鎵高電子遷移率電晶體高頻性能的影響
15. 基於鉿氧化物之金氧半導體電容中不同鐵電層組成及製程條件之探討