|
(1) Das, P.; Chandramohan, V. P.; Mathimani, T.; Pugazhendhi, A. Recent Advances in Thermochemical Methods for the Conversion of Algal Biomass to Energy. Science of the Total Environment 2021, 766, 144608. (2) Zulqarnain; Ayoub, M.; Yusoff, M. H. M.; Nazir, M. H.; Zahid, I.; Ameen, M.; Sher, F.; Floresyona, D.; Nursanto, E. B. A Comprehensive Review on Oil Extraction and Biodiesel Production Technologies. Sustainability 2021, 13 (2), 788. (3) Fabris, M.; Abbriano, R. M.; Pernice, M.; Sutherland, D. L.; Commault, A. S.; Hall, C. C.; Labeeuw, L.; McCauley, J. I.; Kuzhiuparambil, U.; Ray, P.; et al. Emerging Technologies in Algal Biotechnology: Toward the Establishment of a Sustainable, Algae-Based Bioeconomy. Frontiers in Plant Science 2020, 11, 279. (4) Vasilieva, S.; Lobakova, E.; Solovchenko, A. Biotechnological Applications of Immobilized Microalgae. In Environmental Biotechnology Vol. 3, Gothandam, K. M., Ranjan, S., Dasgupta, N., Lichtfouse, E. Eds.; Springer International Publishing, 2021; pp 193. (5) Hu, H. Q.; Zhong, D. N.; Li, W. L.; Lin, X. H.; He, J.; Sun, Y. C.; Wu, Y.; Shi, M. Q.; Chen, X. Y.; Xu, F.; et al. Microalgae-Based Bioactive Hydrogel Loaded with Quorum Sensing Inhibitor Promotes Infected Wound Healing. Nano Today 2022, 42, 101368. (6) Han, M. A.; Zhang, C. F.; Ho, S. H. Immobilized Microalgal System: An Achievable Idea for Upgrading Current Microalgal Wastewater Treatment. Environmental Science and Ecotechnology 2023, 14, 100227. (7) Han, M. N.; Zhang, C. F.; Li, F. H.; Ho, S. H. Data-Driven Analysis on Immobilized Microalgae System: New Upgrading Trends for Microalgal Wastewater Treatment. Science of the Total Environment 2022, 852, 158514. (8) Aguilar-May, B.; Sanchez-Saavedra, M. D.; Lizardi, J.; Voltolina, D. Growth of Synechococcus Sp Immobilized in Chitosan with Different Times of Contact with Naoh. Journal of Applied Phycology 2007, 19 (2), 181. (9) Homburg, S. V.; Patel, A. V. Silica Hydrogels as Entrapment Material for Microalgae. Polymers 2022, 14 (7), 1391. (10) Martin, N.; Bernat, T.; Dinasquet, J.; Stofko, A.; Damon, A.; Deheyn, D. D.; Azam, F.; Smith, J. E.; Davey, M. P.; Smith, A. G.; et al. Synthetic Algal-Bacteria Consortia for Space-Efficient Microalgal Growth in a Simple Hydrogel System. Journal of Applied Phycology 2021, 33 (5), 2805. (11) Balasubramanian, S.; Yu, K.; Meyer, A. S.; Karana, E.; Aubin-Tam, M. E. Bioprinting of Regenerative Photosynthetic Living Materials. Advanced Functional Materials 2021, 31 (31), 2011162. (12) Gomez-Florit, M.; Pardo, A.; Domingues, R. M. A.; Graca, A. L.; Babo, P. S.; Reis, R. L.; Gomes, M. E. Natural-Based Hydrogels for Tissue Engineering Applications. Molecules 2020,25 (24), 5858. (13) Sang, Y. T.; Liu, M. H. Nanoarchitectonics through Supramolecular Gelation: Formation and Switching of Diverse Nanostructures. Molecular Systems Design & Engineering 2019, 4 (1), 11. (14) He, M. H.; Nandu, N.; Uyar, T. B.; Royzen, M.; Yigit, M. V. Small Molecule-Induced DNA Hydrogel with Encapsulation and Release Properties. Chemical Communications 2020, 56 (53), 7313. (15) del Prado, A.; Gonzalez-Rodriguez, D.; Wu, Y. L. Functional Systems Derived from Nucleobase Self-Assembly. Chemistryopen 2020, 9 (4), 409. (16) Lopez, A.; Liu, J. Self-Assembly of Nucleobase, Nucleoside and Nucleotide Coordination Polymers: From Synthesis to Applications. ChemNanoMat 2017, 3 (10), 670. (17) Cheng, S. J.; Zhang, M. Q.; Dixit, N.; Moore, R. B.; Long, T. E. Nucleobase Self-Assembly in Supramolecular Adhesives. Macromolecules 2012, 45 (2), 805. (18) Sikder, A.; Esen, C.; O’Reilly, R. K. Nucleobase-Interaction-Directed Biomimetic Supramolecular Self-Assembly. Accounts of Chemical Research 2022, 55 (12), 1609. (19) Peters, G. M.; Davis, J. T. Supramolecular Gels Made from Nucleobase, Nucleoside and Nucleotide Analogs. Chemical Society Reviews 2016, 45 (11), 3188. (20) Wang, Q. Q.; Liu, Y.; Zhang, C. J.; Zhang, C.; Zhu, P. Alginate/Gelatin Blended Hydrogel Fibers Cross-Linked by Ca2+ and Oxidized Starch: Preparation and Properties. Materials Science and Engineering C-Materials for Biological Applications 2019, 99, 1469. (21) Taira, N.; Ino, K.; Robert, J.; Shiku, H. Electrochemical Printing of Calcium Alginate/Gelatin Hydrogel. Electrochimica Acta 2018, 281, 429. (22) Leyva-Jimenez, F. J.; Oliver-Simancas, R.; Castangia, I.; Rodriguez-Garcia, A. M.; Alanon, M. E. Comprehensive Review of Natural Based Hydrogels as an Upcoming Trend for Food Packing. Food Hydrocolloids 2023, 135, 108124. (23) Wang, F.; Gao, Y.; Li, H.; Zhou, L. H.; Shi, H. J.; Feng, S. N.; Chen, J.; Mei, Z. Q. Effect of Natural-Based Biological Hydrogels Combined with Growth Factors on Skin Wound Healing. Nanotechnology Reviews 2022, 11 (1), 2493. (24) Ozel, B.; Cikrikci, S.; Aydin, O.; Oztop, M. H. Polysaccharide Blended Whey Protein Isolate- (WPI) Hydrogels: A physicochemical and Controlled Release Study. Food Hydrocolloids 2017, 71, 35. (25) Wang, X.; Gou, C. C.; Gao, C. Y.; Song, Y. Z.; Zhang, J. M.; Huang, J. H.; Hui, M. Synthesis of Casein-Gamma-Polyglutamic Acid Hydrogels by Microbial Transglutaminase-Mediated Gelation for Controlled Release of Drugs. Journal of Biomaterials Applications 2021, 36 (2), 237. (26) Guan, L.; Yan, S.; Liu, X.; Li, X. Y.; Gao, G. H. Wearable Strain Sensors Based on Casein- Driven Tough, Adhesive and Anti-Freezing Hydrogels for Monitoring Human-Motion. Journal of Materials Chemistry B 2019, 7 (34), 5230. (27) Yi, J. Z.; Li, Y. Q.; Yang, L. Q.; Zhang, L. M. Kinetics and Thermodynamics of Adsorption of Cu2+ and Methylene Blue to Casein Hydrogels. Journal of Polymer Research 2019, 26 (9), 235. (28) Qamruzzaman, M.; Ahmed, F.; Mondal, M. I. H. An Overview on Starch-Based Sustainable Hydrogels: Potential Applications and Aspects. Journal of Polymers and the Environment 2022, 30 (1), 19. (29) Chen, W. C.; Yuan, S. J.; Shen, J.; Chen, Y. S.; Xiao, Y. A Composite Hydrogel Based on Pectin/Cellulose Via Chemical Cross-Linking for Hemorrhage. Frontiers in Bioengineering and Biotechnology 2021, 8, 627351. (30) Han, S. S.; Ji, S. M.; Park, M. J.; Suneetha, M.; Uthappa, U. T. Pectin Based Hydrogels for Drug Delivery Applications: A Mini Review. Gels 2022, 8 (12), 834. (31) Ishwarya, S. P.; Sandhya, R.; Nisha, P. Advances and Prospects in the Food Applications of Pectin Hydrogels. Critical Reviews in Food Science and Nutrition 2022, 62 (16), 4393. (32) Chen, M.; Lin, W. M.; Hong, L.; Ji, N.; Zhao, H. The Development and Lifetime Stability Improvement of Guanosine-Based Supramolecular Hydrogels through Optimized Structure. Biomed Research International 2019, 2019, 6258248. (33) Yoneda, J. S.; de Araujo, D. R.; Sella, F.; Liguori, G. R.; Liguori, T. T. A.; Moreira, L. F. P.; Spinozzi, F.; Mariani, P.; Itri, R. Self-Assembled Guanosine-Hydrogels for Drug-Delivery Application: Structural and Mechanical Characterization, Methylene Blue Loading and Controlled Release. Materials Science and Engineering: C 2021, 121, 111834. (34) Bhattacharyya, T.; Saha, P.; Dash, J. Guanosine-Derived Supramolecular Hydrogels: Recent Developments and Future Opportunities. ACS Omega 2018, 3 (2), 2230. (35) Wang, Z.; Chen, R.; Yang, S.; Li, S.; Gao, Z. Design and Application of Stimuli-Responsive DNA Hydrogels: A Review. Materials Today Bio 2022, 16, 100430. (36) Morya, V.; Walia, S.; Mandal, B. B.; Ghoroi, C.; Bhatia, D. Functional DNA Based Hydrogels: Development, Properties and Biological Applications. ACS Biomaterials Science & Engineering 2020, 6 (11), 6021. (37) Hu, Q.; Dong, K.; Ming, J.; Yang, W.; Wang, H.; Xiao, X.; Huang, T. A Flexible Rapid Self- Assembly Scaffold-Net DNA Hydrogel Exhibiting Cell Mobility Control. Materials Today Chemistry 2022, 23, 100680. (38) Mulvee, M.; Vasiljevic, N.; Mann, S.; Patil, A. J. Stimuli-Responsive Nucleotide–Amino Acid Hybrid Supramolecular Hydrogels. Gels 2021, 7 (3), 146. (39) Thakur, N.; Sharma, B.; Bishnoi, S.; Mishra, S. K.; Nayak, D.; Kumar, A.; Sarma, T. K. Multifunctional Inosine Monophosphate Coordinated Metal-Organic Hydrogel: Multistimuli Responsiveness, Self-Healing Properties, and Separation of Water from Organic Solvents. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8659. (40) Liang, H.; Zhang, Z. J.; Yuan, Q. P.; Liu, J. W. Self-Healing Metal-Coordinated Hydrogels Using Nucleotide Ligands. Chemical Communications 2015, 51 (82), 15196. (41) Miao, Y.; Tang, Z.; Zhang, Q.; Reheman, A.; Xiao, H.; Zhang, M.; Liu, K.; Huang, L.; Chen, L.; Wu, H. Biocompatible Lignin-Containing Hydrogels with Self-Adhesion, Conductivity, Uv Shielding, and Antioxidant Activity as Wearable Sensors. ACS Applied Polymer Materials 2022,4 (2), 1448. (42) Morales, A.; Labidi, J.; Gullón, P. Influence of Lignin Modifications on Physically Crosslinked Lignin Hydrogels for Drug Delivery Applications. Sustainable Materials and Technologies 2022, 33, e00474. (43) Gao, F.; Zhang, X. L.; Zhu, C. J.; Huang, K. H.; Liu, Q. High-Efficiency Biofuel Production by Mixing Seawater and Domestic Sewage to Culture Freshwater Microalgae. Chemical Engineering Journal 2022, 443, 136361. (44) Alam, M. A.; Vandamme, D.; Chun, W.; Zhao, X. Q.; Foubert, I.; Wang, Z. M.; Muylaert, K.; Yuan, Z. H. Bioflocculation as an Innovative Harvesting Strategy for Microalgae. Reviews in Environmental Science and Bio-Technology 2016, 15 (4), 573. (45) Huang, W. C.; Kim, J. D. Simultaneous Cell Disruption and Lipid Extraction in a Microalgal Biomass Using a Nonpolar Tertiary Amine. Bioresource Technology 2017, 232, 142. (46) Pohndorf, R. S.; Camara, A. S.; Larrosa, A. P. Q.; Pinheiro, C. P.; Strieder, M. M.; Pinto, L. A. A. Production of Lipids from Microalgae Spirulina Sp.: Influence of Drying, Cell Disruption and Extraction Methods. Biomass & Bioenergy 2016, 93, 25. (47) Singh, G.; Patidar, S. K. Microalgae Harvesting Techniques: A Review. Journal of Environmental Management 2018, 217, 499. (48) Xu, K. W.; Zou, X. T.; Chang, W. J.; Qu, Y. H.; Li, Y. P. Microalgae Harvesting Technique Using Ballasted Flotation: A Review. Separation and Purification Technology 2021, 276, 119439. (49) Lee, S. Y.; Khoiroh, I.; Vo, D. V. N.; Kumar, P. S.; Show, P. L. Techniques of Lipid Extraction from Microalgae for Biofuel Production: A Review. Environmental Chemistry Letters 2021, 19 (1), 231. (50) Deshmukh, S.; Kumar, R.; Bala, K. Microalgae Biodiesel: A Review on Oil Extraction, Fatty Acid Composition, Properties and Effect on Engine Performance and Emissions. Fuel Processing Technology 2019, 191, 232. (51) Sati, H.; Mitra, M.; Mishra, S.; Baredar, P. Microalgal Lipid Extraction Strategies for Biodiesel Production: A Review. Algal Research 2019, 38, 101413. (52) Alhattab, M.; Kermanshahi-Pour, A.; Brooks, M. S. L. Microalgae Disruption Techniques for Product Recovery: Influence of Cell Wall Composition. Journal of Applied Phycology 2019, 31 (1), 61. (53) Lai, Y. S.; Zhou, Y.; Eustance, E.; Straka, L.; Wang, Z.; Rittmann, B. E. Cell Disruption by Cationic Surfactants Affects Bioproduct Recovery from Synechocystis Sp. Pcc 6803. Algal Research 2018, 34, 250. (54) El Achkar, T.; Greige-Gerges, H.; Fourmentin, S. Basics and Properties of Deep Eutectic Solvents: A Review. Environmental Chemistry Letters 2021, 19 (4), 3397. (55) Florindo, C.; Branco, L. C.; Marrucho, I. M. Development of Hydrophobic Deep Eutectic Solvents for Extraction of Pesticides from Aqueous Environments. Fluid Phase Equilibria 2017, 448, 135. (56) Zuo, J. L.; Ma, P. R.; Geng, S. Q.; Kong, Y. Z.; Li, X.; Fan, Z. S.; Zhang, Y. L.; Dong, A.; Zhou, Q. Optimization of the Extraction Process of Flavonoids from Trollius Ledebouri with Natural Deep Eutectic Solvents. Journal of Separation Science 2022, 45 (3), 717. (57) Li, M. Y.; Liu, Y. Z.; Hu, F. J.; Ren, H. W.; Duan, E. H. Amino Acid-Based Natural Deep Eutectic Solvents for Extraction of Phenolic Compounds from Aqueous Environments. Processes 2021, 9 (10), 1716. (58) Cherkashina, K.; Pochivalov, A.; Simonova, V.; Shakirova, F.; Shishov, A.; Bulatov, A. A Synergistic Effect of Hydrophobic Deep Eutectic Solvents Based on Terpenoids and Carboxylic Acids for Tetracycline Microextraction. Analyst 2021, 146 (11), 3449. (59) Li, Y. B.; Hsieh, Y. H.; Pan, Z. C.; Zhang, L.; Yu, W.; Wang, B. S.; Zhang, J. H. Extraction of Alkaloids from Coptidis Rhizoma Via Betaine-Based Deep Eutectic Solvents. Chemistryselect 2020, 5 (16), 4973. (60) Das, A. K.; Sharma, M.; Mondal, D.; Prasad, K. Deep Eutectic Solvents as Efficient Solvent System for the Extraction of Kappa-Carrageenan from Kappaphycus Alvarezii. Carbohydrate Polymers 2016, 136, 930. (61) Pan, Y.; Alam, M. A.; Wang, Z. M.; Huang, D. L.; Hu, K. Q.; Chen, H. X.; Yuan, Z. H. One-Step Production of Biodiesel from Wet and Unbroken Microalgae Biomass Using Deep Eutectic Solvent. Bioresource Technology 2017, 238, 157. (62) Danilovic, B. R.; Djordjevic, N. G.; Karabegovic, I. T.; Troter, D. Z.; Savic, D. S.; Veljkovic, V. B. Enhancing Lipid Extraction from Green Microalgae Chlorella Sp. Using a Deep Eutectic Solvent Pretreatment. Chemical Industry & Chemical Engineering Quarterly 2021, 27 (4), 313. (63) Tommasi, E.; Cravotto, G.; Galletti, P.; Grillo, G.; Mazzotti, M.; Sacchetti, G.; Samori, C.; Tabasso, S.; Tacchini, M.; Tagliavini, E. Enhanced and Selective Lipid Extraction from the Microalga P. Tricornutum by Dimethyl Carbonate and Supercritical CO2 Using Deep Eutectic Solvents and Microwaves as Pretreatment. ACS Sustainable Chemistry & Engineering 2017, 5 (9), 8316. (64) Li, L. N.; Liu, Y. M.; Wang, Z. T.; Yang, L.; Liu, H. W. Development and Applications of Deep Eutectic Solvent Derived Functional Materials in Chromatographic Separation. Journal of Separation Science 2021, 44 (6), 1098. (65) Tang, B.; Zhang, H.; Row, K. H. Application of Deep Eutectic Solvents in the Extraction and Separation of Target Compounds from Various Samples. Journal of Separation Science 2015, 38 (6), 1053. (66) Mandari, V.; Devarai, S. K. Biodiesel Production Using Homogeneous, Heterogeneous, and Enzyme Catalysts Via Transesterification and Esterification Reactions: A Critical Review. Bioenergy Research 2022, 15 (2), 935. (67) Ahmad, A. F.; Zulkurnain, N.; Rosid, S. J. M.; Azid, A.; Endut, A.; Toemen, S.; Ismail, S.; Abdullah, W. N. W.; Aziz, S. M.; Yusoff, N. M.; et al. Catalytic Transesterification of Coconut Oil in Biodiesel Production: A Review. Catalysis Surveys from Asia 2022, 26 (3), 129. (68) Christopher, L. P.; Kumar, H.; Zambare, V. P. Enzymatic Biodiesel: Challenges and Opportunities. Applied Energy 2014, 119, 497. (69) Quayson, E.; Amoah, J.; Hama, S.; Kondo, A.; Ogino, C. Immobilized Lipases for Biodiesel Production: Current and Future Greening Opportunities. Renewable & Sustainable Energy Reviews 2020, 134, 110355. (70) Remonatto, D.; Miotti, R. H.; Monti, R.; Bassan, J. C.; de Paula, A. V. Applications of Immobilized Lipases in Enzymatic Reactors: A Review. Process Biochemistry 2022, 114, 1. (71) Wu, S. C.; Wu, S. M.; Su, F. M. Novel Process for Immobilizing an Enzyme on a Bacterial Cellulose Membrane through Repeated Absorption. Journal of Chemical Technology and Biotechnology 2017, 92 (1), 109. (72) Santos, M. P.; Brito, M. J.; Junior, E. C.; Bonomo, R. C.; Veloso, C. M. Pepsin Immobilization on Biochar by Adsorption and Covalent Binding, and Its Application for Hydrolysis of Bovine Casein. Journal of Chemical Technology & Biotechnology 2019, 94 (6), 1982. (73) Sneha, H. P.; Beulah, K. C.; Murthy, P. S. Chapter 37 - Enzyme Immobilization Methods and Applications in the Food Industry. In Enzymes in Food Biotechnology, Kuddus, M. Ed.; Academic Press, 2019; pp 645. (74) Tokuyama, H.; Naito, A.; Kato, G. Transesterification of Triolein with Ethanol Using Lipase- Entrapped Nipa-Co-Pegmea Gel Beads. Reactive & Functional Polymers 2018, 126, 83. (75) Guisan, J. M.; López-Gallego, F.; Bolivar, J. M.; Rocha-Martín, J.; Fernandez-Lorente, G. The Science of Enzyme Immobilization. In Immobilization of Enzymes and Cells: Methods and Protocols, Guisan, J. M., Bolivar, J. M., López-Gallego, F., Rocha-Martín, J. Eds.; Springer US, 2020; pp 1. (76) Sheldon, R. A.; Basso, A.; Brady, D. New Frontiers in Enzyme Immobilisation: Robust Biocatalysts for a Circular Bio-Based Economy. Chemical Society Reviews 2021, 50 (10), 5850. (77) Liu, D.-M.; Dong, C. Recent Advances in Nano-Carrier Immobilized Enzymes and Their Applications. Process Biochemistry 2020, 92, 464. (78) Mehta, J.; Bhardwaj, N.; Bhardwaj, S. K.; Kim, K.-H.; Deep, A. Recent Advances in Enzyme Immobilization Techniques: Metal-Organic Frameworks as Novel Substrates. Coordination Chemistry Reviews 2016, 322, 30. (79) Pan, J. Y.; Ou, Z. M.; Tang, L.; Shi, H. B. Enhancement of Catalytic Activity of Lipase- Immobilized Fe3o4-Chitosan Microsphere for Enantioselective Acetylation of Racemic 1- Phenylethylamine. Korean Journal of Chemical Engineering 2019, 36 (5), 729. (80) Miao, C. L.; Yang, L. M.; Wang, Z. M.; Luo, W.; Li, H. W.; Lv, P. M.; Yuan, Z. H. Lipase Immobilization on Amino-Silane Modified Superparamagnetic Fe3o4 Nanoparticles as Biocatalyst for Biodiesel Production. Fuel 2018, 224, 774. (81) Liu, X. B.; Mao, Y. H.; Yu, S. Y.; Zhang, H.; Hu, K. C.; Zhu, L. Y.; Ji, J. B.; Wang, J. L. An Efficient and Recyclable Pickering Magnetic Interface Biocatalyst: Application in Biodiesel Production. Green Chemistry 2021, 23 (2), 966. (82) Jegannathan, K. R.; Eng-Seng, C.; Ravindra, P. Economic Assessment of Biodiesel Production: Comparison of Alkali and Biocatalyst Processes. Renewable & Sustainable Energy Reviews 2011, 15 (1), 745. (83) Lage, S.; Gentili, F. G. Quantification and Characterisation of Fatty Acid Methyl Esters in Microalgae: Comparison of Pretreatment and Purification Methods. Bioresource Technology 2018, 257, 121. (84) Gimenes de Souza, C.; Torres de Araújo, M.; Cavalcante dos Santos, R.; França de Andrade, D.; Vasconcello da Silva, B.; d′Avila, L. A. Analysis and Quantitation of Fatty Acid Methyl Esters in Biodiesel by High-Performance Liquid Chromatography. Energy & Fuels 2018, 32 (11), 11547. (85) Chiu, H.-H.; Kuo, C.-H. Gas Chromatography-Mass Spectrometry-Based Analytical Strategies for Fatty Acid Analysis in Biological Samples. Journal of Food and Drug Analysis 2020, 28 (1), 60. (86) Basumatary, B.; Nath, B.; Basumatary, S. Homogeneous Catalysts Used in Biodiesel Production. In Biodiesel Production, 2022; pp 83. (87) Aghel, B.; Gouran, A.; Shahsavari, P. Optimizing the Production of Biodiesel from Waste Cooking Oil Utilizing Industrial Waste-Derived MgO/CaO Catalysts. Chemical Engineering & Technology 2022, 45 (2), 348. (88) Sumari, S.; Murti, M.; Santoso, A.; Asrori, M. R. Sono-Transesterification of Kapok Seed Oil with Cao:Bao-(X:Y)/Active Natural Zeolite Catalyst. Journal of Renewable Materials 2022, 10 (12), 3659. (89) Barbosa, O.; Ortiz, C.; Berenguer-Murcia, A.; Torres, R.; Rodrigues, R. C.; Fernandez- Lafuente, R. Glutaraldehyde in Bio-Catalysts Design: A Useful Crosslinker and a Versatile Tool in Enzyme Immobilization. RSC Advances 2014, 4 (4), 1583. (90) Kazenwadel, F.; Wagner, H.; Rapp, B. E.; Franzreb, M. Optimization of Enzyme Immobilization on Magnetic Microparticles Using 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide (EDC) as a Crosslinking Agent. Analytical Methods 2015, 7 (24), 10291. (91) Maddock, R. M. A.; Pollard, G. J.; Moreau, N. G.; Perry, J. J.; Race, P. R. Enzyme-Catalysed Polymer Cross-Linking: Biocatalytic Tools for Chemical Biology, Materials Science and Beyond. Biopolymers 2020, 111 (9), e23390. (92) Pan, Y.; Alam, M. A.; Wang, Z.; Huang, D.; Hu, K.; Chen, H.; Yuan, Z. One-Step Production of Biodiesel from Wet and Unbroken Microalgae Biomass Using Deep Eutectic Solvent. Bioresource Technology 2017, 238, 157. (93) Lu, W.; Alam, M. A.; Pan, Y.; Wu, J.; Wang, Z.; Yuan, Z. A New Approach of Microalgal Biomass Pretreatment Using Deep Eutectic Solvents for Enhanced Lipid Recovery for Biodiesel Production. Bioresource Technology 2016, 218, 123. (94) Sharma, A. K.; Sahoo, P. K.; Singhal, S.; Patel, A. Impact of Various Media and Organic Carbon Sources on Biofuel Production Potential from Chlorella Spp. 3 Biotech 2016, 6, 116. (95) Chioccioli, M.; Hankamer, B.; Ross, I. L. Flow Cytometry Pulse Width Data Enables Rapid and Sensitive Estimation of Biomass Dry Weight in the Microalgae Chlamydomonas Reinhardtii and Chlorella Vulgaris. Plos One 2014, 9 (5), e97269. (96) Rodger, A. Uv Absorbance Spectroscopy of Biological Macromolecules. In Encyclopedia of Biophysics, Roberts, G. C. K. Ed.; Springer Berlin Heidelberg, 2013; pp 2714. (97) Thakur, N.; Sharma, B.; Bishnoi, S.; Mishra, S. K.; Nayak, D.; Kumar, A.; Sarma, T. K. Multifunctional Inosine Monophosphate Coordinated Metal–Organic Hydrogel: Multistimuli Responsiveness, Self-Healing Properties, and Separation of Water from Organic Solvents. ACS Sustainable Chemistry & Engineering 2018, 6 (7), 8659. (98) Albert, K.; Hsieh, P. Y.; Chen, T. H.; Hou, C. H.; Hsu, H. Y. Diatom-Assisted Biomicroreactor Targeting the Complete Removal of Perfluorinated Compounds. Journal of Hazardous Materials 2020, 384, 121491. (99) Mukhopadhyay, T. K.; Datta, A. Design Rules for the Generation of Stable Quartet Phases of Nucleobases over Two-Dimensional Materials. The Journal of Physical Chemistry C 2018, 122 (50), 28918. (100) Zhou, P.; Shi, R. F.; Yao, J. F.; Sheng, C. F.; Li, H. Supramolecular Self-Assembly of Nucleotide-Metal Coordination Complexes: From Simple Molecules to Nanomaterials. Coordination Chemistry Reviews 2015, 292, 107. (101) Chen, C. Y.; Chang, H. Y. Lipid Production of Microalga Chlorella Sorokiniana CY1 Is Improved by Light Source Arrangement, Bioreactor Operation Mode and Deep-Sea Water Supplements. Biotechnology Journal 2016, 11 (3), 356. (102) Chen, C. Y.; Chang, J. S.; Chang, H. Y.; Chen, T. Y.; Wu, J. H.; Lee, W. L. Enhancing Microalgal Oil/Lipid Production from Chlorella Sorokiniana CY1 Using Deep-Sea Water Supplemented Cultivation Medium. Biochemical Engineering Journal 2013, 77, 74. (103) Wang, Y. J.; Wang, J. S.; Wang, T. Q.; Wang, C. X. Simultaneous Detection of Viability and Concentration of Microalgae Cells Based on Chlorophyll Fluorescence and Bright Field Dual Imaging. Micromachines 2021, 12 (8), 896. (104) Yadav, A.; Trivedi, S.; Rai, R.; Pandey, S. Densities and Dynamic Viscosities of (Choline Chloride Plus Glycerol) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range (283.15-363.15) K. Fluid Phase Equilibria 2014, 367, 135. (105) Yadav, A.; Pandey, S. Densities and Viscosities of (Choline Chloride Plus Urea) Deep Eutectic Solvent and Its Aqueous Mixtures in the Temperature Range 293.15 K to 363.15 K. Journal of Chemical and Engineering Data 2014, 59 (7), 2221. (106) Gajardo-Parra, N. F.; Cotroneo-Figueroa, V. P.; Aravena, P.; Vesovic, V.; Canales, R. I. Viscosity of Choline Chloride-Based Deep Eutectic Solvents: Experiments and Modeling. Journal of Chemical and Engineering Data 2020, 65 (11), 5581. (107) Vakhlu, J.; Kour, A. Yeast Lipases: Enzyme Purification, Biochemical Properties and Gene Cloning. Electronic Journal of Biotechnology 2006, 9 (1), 69. (108) Montoya, C.; Cochard, B.; Flori, A.; Cros, D.; Lopes, R.; Cuellar, T.; Espeout, S.; Syaputra,I.; Villeneuve, P.; Pina, M.; et al. Genetic Architecture of Palm Oil Fatty Acid Composition in Cultivated Oil Palm (Elaeis Guineensis Jacq.) Compared to Its Wild Relative E. Oleifera (HBK) Cortes. Plos One 2014, 9 (5), e95412. (109) Susaimanickam, A.; Pugazhendhi, A.; Mathimani, T. Lipid Enhancement through Nutrient Starvation in Chlorella Sp. And Its Fatty Acid Profiling for Appropriate Bioenergy Feedstock. Biocatalysis and Agricultural Biotechnology 2019, 20, 101179. (110) Alfaro-Sayes, D. A.; Amoah, J.; Rachmadona, N.; Hama, S.; Hasunuma, T.; Kondo, A.; Ogino, C. Enhanced Growth and Lipid Productivity by Living Chlorella Sorokiniana Immobilized in Ca-Alginate Beads. Journal of Physics-Energy 2023, 5 (1), 014019. (111) Sepian, N. R. A.; Yasin, N. H. M.; Ramesh, N. Immobilization Method to Separate Microalgae Biomass for Fatty Acid Methyl Ester Production. Chemical Engineering & Technology 2022, 45 (8), 1474. (112) Tang, D. H.; Han, W.; Li, P. L.; Miao, X. L.; Zhong, J. J. CO2 Biofixation and Fatty Acid Composition of Scenedesmus Obliquus and Chlorella Pyrenoidosa in Response to Different CO2 Levels. Bioresource Technology 2011, 102 (3), 3071. (113) Wang, X. W.; Liang, J. R.; Luo, C. S.; Chen, C. P.; Gao, Y. H. Biomass, Total Lipid Production, and Fatty Acid Composition of the Marine Diatom Chaetoceros Muelleri in Response to Different CO2 Levels. Bioresource Technology 2014, 161, 124. (114) Mohammadi, F. S.; Arabian, D.; Khalilzadeh, R. Investigation of Effective Parameters on Biomass and Lipid Productivity of Chlorella Vulgaris. Periodicum Biologorum 2016, 118 (2), 123. (115) Lin, C.-Y.; Wu, X.-E. Determination of Cetane Number from Fatty Acid Compositions and Structures of Biodiesel. Processes 2022, 10 (8), 1502.
|