跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 07:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馮宗澤
研究生(外文):Feng, Tsung-Tse
論文名稱:視網膜黃斑部病變之滲出液檢測演算法與其應用程式開發
論文名稱(外文):Development of a Fluid Detecting Algorithm and its Application for Macular Degeneration
指導教授:張書銘張書銘引用關係
指導教授(外文):Chang, Shu-Ming
口試委員:林文偉葉采衢
口試委員(外文):Lin, Wen-WeiYeh, Tsai-Chu
口試日期:2023-05-12
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:50
中文關鍵詞:視網膜滲出液光學相干斷層掃描影像處理三維電腦視覺數學形態學
外文關鍵詞:Retinal fluidOptical coherence tomographyImage processing3D computer visionMathematical morphology
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
黃斑部病變是一種指視網膜之黃斑部產生脈絡膜新生血管的病變,其分為乾性黃斑部病變與濕性黃斑部病變。在濕性視網膜病變中,視網膜下方會出現脈絡膜新生血管,這些血管易於破裂並洩漏血液和液體,進而滲進視網膜產生視網膜滲出液,導致視力喪失,也可能導致失明。本文提供利用現今的影像處理技術設計出一套偵測視網膜滲出液之演算法,並將其匯整成一套應用程式提供使用者執行病變標註。該演算法是基於影像處理中的篩選影像強度值、數學形態學以及邊緣檢測對三維光學相干斷層掃描中視網膜滲出液做偵測,作為開發設計出的 ”Fluidetector” 使用者介面應用程式之底層,此應用程式同時包含對影像特徵進行後處理,並在本文中作完整的操作引導說明。
Macular degeneration is a condition in which neovascularization occurs in the macular region of the retina. It is divided into dry macular degeneration and wet macular degeneration. In wet retinal diseases, neovascularization occurs below the retina, which is prone to rupture and leakage of blood and fluid, leading to the accumulation of fluid in the retina known as retina fluid. This can result in vision loss and even blindness. This thesis presents an algorithm designed using modern image processing techniques to detect retinal fluid leakage, which is integrated into an application that allows users to annotate lesions. The algorithm is based on filtering image intensity values, mathematical morphology, and edge detection to detect retinal fluid in three-dimensional optical coherence tomography scans. It serves as the underlying technology for the "Fluidetector" user interface application, which also includes post-processing of image features. The thesis provides a comprehensive guide on how to use the application.
摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Raw Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Technologies of Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Binary Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Arithmetic Mean Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Discrete Laplace Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Edge Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Convex Hull Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Kronecker Product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Algorithm of Fluid Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Identifying the retina . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Identifying retinal fluid candidates . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Removing non-fluid elements . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Classification of Intraretinal / Subretinal fluid . . . . . . . . . . . . . . . . . . 30
4 Application Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Setting of algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Functions of feature post-processing . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Refresh the connected components of the fluid . . . . . . . . . . . . . 35
4.2.2 Erasing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Removing Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.4 Labeling Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Instructions of Button in the Application . . . . . . . . . . . . . . . . . . . . . 41
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
[1] S. Mehta, “Age-related macular degeneration,” Primary Care: Clinics in Office Practice,
vol. 42, no. 3, pp. 377–391, 2015, primary Care Ophthalmology. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0095454315000421
[2] P. G. Yuile, “Age related macular degeneration: a leading cause of blindness,” Medical
Journal of Australia, vol. 166, 1997.
[3] G. Querques, M. Srour, N. Massamba, A. Georges, N. Ben Moussa, O. Rafaeli, and
E. H. Souied, “Functional Characterization and Multimodal Imaging of Treatment-
Naïve “Quiescent”Choroidal Neovascularization,” Investigative Ophthalmology and
Visual Science, vol. 54, no. 10, pp. 6886–6892, 10 2013. [Online]. Available:
https://doi.org/10.1167/iovs.13-11665
[4] W. Drexler and J. G. Fujimoto, “State-of-the-art retinal optical coherence tomography,”
Progress in Retinal and Eye Research, vol. 27, no. 1, pp. 45–88, 2008. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S1350946207000444
[5] M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and image analysis,”
IEEE Reviews in Biomedical Engineering, vol. 3, pp. 169–208, 2010.
[6] H. Bogunović, F. Venhuizen, S. Klimscha, S. Apostolopoulos, A. Bab-Hadiashar,
U. Bagci, M. F. Beg, L. Bekalo, Q. Chen, C. Ciller, K. Gopinath, A. K. Gostar, K. Jeon,
Z. Ji, S. H. Kang, D. D. Koozekanani, D. Lu, D. Morley, K. K. Parhi, H. S. Park, A. Rashno,
M. Sarunic, S. Shaikh, J. Sivaswamy, R. Tennakoon, S. Yadav, S. De Zanet, S. M. Waldstein,
B. S. Gerendas, C. Klaver, C. I. Sánchez, and U. Schmidt-Erfurth, “Retouch: The
retinal oct fluid detection and segmentation benchmark and challenge,” IEEE Transactions
on Medical Imaging, vol. 38, no. 8, pp. 1858–1874, 2019.
[7] G. W. Ding, M. Young, S. Bourgault, S. Lee, D. A. Albiani, A. W. Kirker, F. Forooghian,
M. V. Sarunic, A. B. Merkur, and M. F. Beg, “Automatic detection of subretinal fluid and sub-retinal pigment epithelium fluid in optical coherence tomography images,” 2013 35th
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
(EMBC), pp. 7388–7391, 2013.
[8] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Fourth Edition. Pearson,
2017.
[9] A. Ledda, “Mathematische morfologie in de beeldverwerking mathematical morphology
in image processing,” 2007.
[10] G. Birkhoff, Lattice Theory, ser. American Mathematical Society Colloquium Publications.
Providence, RI: American Mathematical Society, 1940, vol. 25.
[11] U. Eckhardt and E. Hundt, “Topological approach to mathematical morphology,” in Advances
in Computer Vision, F. Solina, W. G. Kropatsch, R. Klette, and R. Bajcsy, Eds.
Vienna: Springer Vienna, 1997, pp. 11–20.
[12] P. Soille, Erosion and Dilation. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 49–88. [Online]. Available: https://doi.org/10.1007/978-3-662-03939-7_3
[13] P. Soille, Opening and Closing. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999,
pp. 89–127. [Online]. Available: https://doi.org/10.1007/978-3-662-03939-7_4
[14] S. Kaisar, M. Muhammad, and M. M. Rahman, “Salt and pepper noise detection and removal
by tolerance based selective arithmetic mean filtering technique for image restoration,”
2008.
[15] D. Leventhal, “Image processing,” 2011, accessed: 2019-12-01.
[16] R. Deriche, “An isotropic 3 x 3 image gradient operator,” Proceedings of the 1st International
Conference on Computer Vision, pp. 161–167, 1987.
[17] R. L. Graham, “An efficient algorithm for determining the convex hull of a finite planar
set,” Information Processing Letters, vol. 1, no. 4, pp. 132–133, 1972.
[18] H. V. Henderson, F. Pukelsheim, and S. R. Searle, “On the history of the kronecker
product,” Linear and Multilinear Algebra, vol. 14, no. 2, pp. 113–120, 1983. [Online].
Available: https://doi.org/10.1080/03081088308817548
[19] K. Schäcke, “On the kronecker product,” arXiv preprint arXiv:1308.0263, Aug 2013.
[Online]. Available: https://arxiv.org/abs/1308.0263
[20] Y. Hardy, “On kronecker quotients,” Electronic Journal of Linear Algebra, vol. 27, p. 10,
2014.
電子全文 電子全文(網際網路公開日期:20250513)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊