|
[1]. Behndig A, Montan P, Stenevi U, et al. One million cataract surgeries: Swedish National Cataract Register 1992e2009. J Cataract Refract Surg 2011;37:1539–45. [2]. Gollogly HE, Hodge DO, St Sauver JL, Erie JC. Increasing incidence of cataract surgery: population-based study. J Cataract Refract Surg 2013;39:1383–9. [3]. Keay L, Gower EW, Cassard SD, et al. Postcataract surgery endophthalmitis in the United States: analysis of the complete 2003 to 2004 Medicare database of cataract surgeries, Ophthalmology 2012; 119: 914-22. [4]. Inoue T, Uno T, Usui N et al. Incidence of endophthalmitis and the perioperative practices of cataract surgery in Japan: Japanese Prospective Multicenter Study for Postoperative Endophthalmitis after Cataract Surgery, Japanese journal of ophthalmology 2018; 62: 24-30. [5]. Daien V, Pape AL, Heve D, Carriere I, Villain M. Incidence and characteristics of cataract surgery in France from 2009 to 2012: a national population study. Ophthalmology 2015;122:1633-8. [6]. Herrinton LJ, Shorstein NH, Paschal JF, et al. Comparative effectiveness of antibiotic prophylaxis in cataract surgery. Ophthalmology 2016;123:287-94. [7]. Lalwani GA, Flynn HW, Scott IU, et al. Acute-onset endophthalmitis after clear corneal cataract surgery (1996–2005): clinical features, causative organisms, and visual acuity outcomes. Ophthalmology 2008;115:473-6. [8]. Miller JJ, Scott IU, Flynn HW et al. Acute-onset endophthalmitis after cataract surgery (2000–2004): incidence, clinical settings, and visual acuity outcomes after treatment. American journal of ophthalmology 2005; 139: 983-7. [9]. Rudnisky CJ, Wan D, Weis E. Antibiotic choice for the prophylaxis of post-cataract extraction endophthalmitis. Ophthalmology 2014; 121: 835-41. [10]. Taban M, Behrens A, Newcomb RL et al. Acute endophthalmitis following cataract surgery: a systematic review of the literature. Archives of ophthalmology 2005; 123: 613-20. [11]. Gower EW, Keay LJ, Stare DE, et al. Characteristics of endophthalmitis after cataract surgery in the United States Medicare population. 2015 Ophthalmology 122: 1625-32. [12]. Friling E, Lundström M, Stenevi U, Montan P. Six-year incidence of endophthalmitis after cataract surgery: Swedish national study, Journal of Cataract & Refractive Surgery 2013; 39:15-21. [13]. Shalaby A, Simplicio CSD, Lockwood A, Newsom R. Postoperative Endophthalmitis: Incidence, Causes and Comparison Between Medical and Surgical Treatment in a United Kingdom Region in the Last 10 Years. Acta Ophthalmologica 2015; 93:S255 [14]. Ng JQ, Morlet N, Pearman JW, et al. Management and outcomes of postoperative endophthalmitis since the endophthalmitis vitrectomy study: the Endophthalmitis Population Study of Western Australia (EPSWA)’s fifth report. Ophthalmology 2005; 112: 1199-206. e2. [15]. Montan PG, Wejde G, Koranyi G, Rylander M. Prophylactic intracameral cefuroxime: efficacy in preventing endophthalmitis after cataract surgery, Journal of Cataract & Refractive Surgery 2002; 28: 977-81. [16]. Ciulla TA, Starr MB, Masket S. Bacterial endophthalmitis prophylaxis for cataract surgery: an evidence-based update. Ophthalmology 2002;109:13-24. [17]. Speaker MG, Menikoff JA. Prophylaxis of endophthalmitis with topical povidone-iodine. Ophthalmology 1991;98:1769-75. [18]. Colleaux KM, Hamilton WK. Effect of prophylactic antibiotics and incision type on the incidence of endophthalmitis after cataract surgery. Can J Ophthalmol. 2000;35:373-8. [19]. Smith A, Pennefather PM, Kaye SB, Hart CA. Fluoroquinolones: place in ocular therapy. Drugs 2001; 61:747–761. [20]. Barry P. ESCRS Endophthalmitis Study Group. ESCRS study of prophylaxis of postoperative endophthalmitis after cataract surgery: Preliminary report of principal results from a European multicenter study, J Cataract Refract Surg 2006; 32:407-10. [21]. Daien V, Papinaud L, Gillies MC, et al. Effectiveness and safety of an intracameral injection of cefuroxime for the prevention of endophthalmitis after cataract surgery with or without perioperative capsular rupture, JAMA ophthalmology 2016; 134: 810-6. [22]. Gower, EW Lindsley K, Nanji AA, Leyngold I, McDonnell PJ. Perioperative antibiotics for prevention of acute endophthalmitis after cataract surgery, Cochrane Database Syst Rev 2013; 7. [23]. Fintelmann RE, Naseri A. Prophylaxis of postoperative endophthalmitis following cataract surgery. Drugs 2010; 70;1395-409. [24]. An JA, Kasner O, Samek, DA, Lévesque V. Evaluation of eyedrop administration by inexperienced patients after cataract surgery, Journal of Cataract & Refractive Surgery 2014; 40: 1857-61. [25]. Hermann MM, Üstündag C, Diestelhorst M. Electronic compliance monitoring of topical treatment after ophthalmic surgery, International ophthalmology 2010; 30:385-90. [26]. Blondeau JM. A review of clinical trials with fluoroquinolones with an emphasis on new agents. Expert Opin Investig Drugs 2000; 9: 383–413. [27]. Blondeau JM. Fluoroquinolones: mechanism of action, classification, and development of resistance. Surv Ophthalmol 2004; 49(Suppl 2): S73–S78. [28]. Bezwada P, Clark LA, Schneider S. Intrinsic cytotoxic effects of fluoroquinolones on human corneal keratocytes and endothelial cells. Curr Med Res Opin. 2008;24:419–24. [29]. Watanabe R et al. Fluoroquinolone antibacterial eye drops: effects on normal human corneal epithelium, stroma, and endothelium. Clinical Ophthalmology 2010; 4: 1181–7. [30]. Kupferman A, Leibowitz HM. Topically applied steroids in corneal disease. V. Dexamethasone alcohol. Arch Ophthalmol 1974;92:329–330 [31]. Leibowitz HM, Kupferman A. Kinetics of topically administered prednisolone acetate. Arch Ophthalmo 1976 ; 94: 1387–1389 [32]. Nair AB, Shah J, Al-Dhubiab BE, Jacob S, Patel SS, Venugopala KN, Morsy MA, Gupta S, Attimarad M, Sreeharsha N, Shinu P. Clarithromycin solid lipid nanoparticles for topical ocular therapy: optimization, evaluation and in vivo studies. Pharmaceutics 2021;13:523 [33]. Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, Hadji H, Mitra R, Pal D, Mitra AK. Comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res 2016;6:735–754 [34]. Patel A, Cholkar K, Agrahari V, et al. Ocular drug delivery systems: an overview. World J Pharmacol 2013; 2(2): 47–64. [35]. Kaur IP, Garg A, Singla AK, et al. Vesicular systems in ocular drug delivery: an overview. Int J Pharm 2004; 269: 1–14. [36]. Li N, Zhuang C, Wang M, et al. Liposome coated with low molecular weight chitosan and its potential use in ocular drug delivery. Int J Pharm 2009; 379: 131–138. [37]. Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J, Baboota S. Nano- Based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul 2019;13:246–254 [38]. Ako-Adounvo AM, Nagarwal RC, Oliveira L, Boddu SH, Wang XS, Dey S, Karla PK. Recent patents on ophthalmic nanoformulations and therapeutic implications. Recent Pat Drug Deliv Formul 2014;8:193–201 [39]. Gan L, Wang J, Jiang M, Bartlett H, Ouyang D, Eperjesi F, Liu J, Gan Y. Recent advances in topical ophthalmic drug delivery with lipid-based nano- carriers. Drug Discov Today 2013;18:290–297 [40]. Cheng YH, Yang SH, Su WY et al. Thermosensitive chitosan–gelatin–glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: An in vitro study. Tissue Eng A 2009; 16:695–703. [41]. Ganta S, Devalapally H, Shahiwala A, Amiji M. A review of stimuli-responsive nanocarriers for drug and gene delivery. J. Control. Release 2008; 12:187–204. [42]. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv. Drug Deliv. Rev. 2008; 60: 1638–49. [43]. Wichterle O, Lim D. Hydrophilic gels for biological use. 1960; Nature 185:117–8. [44]. Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 2001; 53: 321–39. [45]. Cheng YH, Hung KH, Tsai TH et al. Sustained delivery of latanoprost by thermosensitive chitosan-gelatin-based hydrogel for controlling ocular hypertension.Acta Biometer. 2014; 10: 3460-6. [46]. Cheng YH, Ko YC, Chang YF, Huang SH, and Liu CJ. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp Eye Res. 2019; 179:179-87. [47]. Muzzarelli RAA. Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci. 1997; 53: 131–40. [48]. Salamat-MillerN, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv. Drug Deliv. Rev. 2005; 57 : 1666–91. [49]. Khan F, Tare RS, Oreffo RO, Bradley M. Versatile biocompatible polymer hydrogels: scaffolds for cell growth. Angew. Chem. Int. Ed. Engl. 2009; 48:978–82. [50]. Ahmadi R, Bruijn JD. Biocompatibility and gelation of chitosan-glycerol phosphate hydrogels. Journal of biomedical materials research. Part A 2008 86:824-32. [51]. Tan JH, Ng E, Acharya UR. Evaluation of topographical variation in ocular surface temperature by functional infrared thermography. Infrared Phys Technol 2011;54:469–77. [52]. McKenzie M, Betts D, Suh A, et al. Hydrogel-based drug delivery systems for poorly water-soluble drugs. Molecules 2015 ; 20: 20397–408. [53]. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 2010;62: 83–99. [54]. Cheng YH, Chang YF, Ko YC, Liu CJL. Sustained release of levofloxacin from thermosensitive chitosan-based hydrogel for the treatment of postoperative endophthalmitis, J. Biomed. Mater. Res. B Appl. Biomater. 2019; 108:1; 8–13. [55]. Tomlinson A, Khanal S, Ramaesh K, Diaper C, McFadyen A. Tear film osmolarity: determination of a referent for dry eye diagnosis, Invest. Ophthalmol. Vis. Sci. 42006; 7:10: 4309–4315. [56]. Pinnock A, Shivshetty N, Roy, S et al., Ex-vivo rabbit and human corneas as models for bacterial and fungal keratitis, Graefes Arch. Clin. Exp. Ophthalmol. 2017: 255; 2; 333–342. [57]. Ameeduzzafar, S.S. Imam, S.N.A. Bukhari, J. Ahmad, A. Ali, Formulation and optimization of levofloxacin loaded chitosan nanoparticle for ocular delivery: in- vitro characterization, ocular tolerance and antibacterial activity, Int. Biol. Macromol. 2018; 108: 650–659. [58]. Chandra J, Pearlman E, Ghannoum M. Animal models to investigate fungal biofilm formation, Methods Mol. Biol. 2014; 1147: 141–157. [59]. Zaidi T, Yoong P, Pier GB. Staphylococcus aureus corneal infections: effect of the Panton-valentine leukocidin (PVL) and antibody to PVL on virulence and pathology, Invest. Ophthalmol. Vis. Sci. 2013; 54 (7): 4430–4438. [60]. Alarcon I, Evans DJ, Fleiszig SM. The role of twitching motility in Pseudomonas aeruginosa exit from and translocation of corneal epithelial cells, Invest. Ophthalmol. Vis. Sci. 2009; 50 (5): 2237–2244. [61]. Zhou Q, Chen H, Qu M, Wang Q, Yang L, Xie L. Development of a novel ex-vivo model of corneal fungal adherence, Graefes Arch. Clin. Exp. Ophthalmol. 2011; 249 (5): 693–700. [62]. Hua X, Yuan X, Pietro AD, Wilhelmus KR. The molecular pathogenicity of Fusarium keratitis: a fungal transcriptional regulator promotes hyphal penetration of the cornea, Cornea 2010; 29 (12): 1440–1444. [63]. Castro-Combs J, Noguera G, Cano M, et al. Corneal wound healing is modulated by topical application of amniotic fluid in an ex-vivo organ culture model, Exp. Eye Res. 2008; 87 (1): 56–63. [64]. Yamada M, Mochizuki H, Kawai M, Mashima Y. Aqueous humor levels of topically applied levofloxacin in human eyes. Curr. Eye Res. 2002; 24 (5): 403–406. [65]. Yamada M, Mochizuki H, Yamada K, Kawai M, Mashima Y. Aqueous humor levels of topically applied levofloxacin, norfloxacin, and lomefloxacin in the same human eyes, J. Cataract Refract. Surg. 2003; 29 (9): 1771–1775. [66]. Bucci Jr. FA, Nguimfack IT, Fluet AT. Pharmacokinetics and aqueous humor penetration of levofloxacin 1.5% and moxifloxacin 0.5% in patients undergoing cataract surgery. Clin. Ophthalmol. 2016; 10: 783–789.
|