英文文獻
Ronald Gabel, John Kulli, B. Stephen Lee, Deborah G. Spratt, Denham S. Ward .(1999). Operating room management,Butterworth-Heinemann.
Eijkemans, M. J., Van Houdenhoven, M., Nguyen, T., Boersma, E., Steyerberg, E. W., & Kazemier, G. (2010). Predicting the unpredictable: a new prediction model for operating room times using individual characteristics and the surgeon's estimate. The Journal of the American Society of Anesthesiologists, 112(1), 41-49
Devi, S. P., Rao, K. S., & Sangeetha, S. S. (2012). Prediction of surgery times and scheduling of operation theaters in optholmology department. Journal of medical systems, 36, 415-430.
van Veen-Berkx, E., Bitter, J., Elkhuizen, S. G., Buhre, W. F., Kalkman, C. J., Gooszen, H. G., & Kazemier, G. (2014). The influence of anesthesia-controlled time on operating room scheduling in Dutch university medical centres Linfluence du temps controle par lanesthesie sur le programme operatoire dans les centres medicaux dune universite neerlandaise. Can J Anaesth, 61, 524-532.
Hosseini, N., Sir, M. Y., Jankowski, C. J., & Pasupathy, K. S. (2015). Surgical duration estimation via data mining and predictive modeling: a case study. AMIA annual symposium proceedings, 2015, 640.
Wu, H.-L., Chang, W.-K., Hu, K.-H., Langford, R. M., Tsou, M.-Y., & Chang, K.-Y. (2015). A quantile regression approach to estimating the distribution of anesthetic procedure time during induction. Plos one, 10(8), e0134838.
Xiang, W., Yin, J., & Lim, G. (2015). A short-term operating room surgery scheduling problem integrating multiple nurses roster constraints. Artificial intelligence in medicine, 63(2), 91-106.
Edelman, E. R., Van Kuijk, S. M., Hamaekers, A. E., De Korte, M. J., Van Merode, G. G., & Buhre, W. F. (2017). Improving the prediction of total surgical procedure time using linear regression modeling. Frontiers in medicine, 4, 85.
Tuwatananurak, J. P., Zadeh, S., Xu, X., Vacanti, J. A., Fulton, W. R., Ehrenfeld, J. M., & Urman, R. D. (2019). Machine learning can improve estimation of surgical case duration: a pilot study. Journal of medical systems, 43, 1-7.
Martinez, O., Martinez, C., Parra, C. A., Rugeles, S., & Suarez, D. R. (2021). Machine learning for surgical time prediction. Computer Methods and Programs in Biomedicine, 208, 106220.
Yuniartha, D. R., Masruroh, N. A., & Herliansyah, M. K. (2021). An evaluation of a simple model for predicting surgery duration using a set of surgical procedure parameters. Informatics in Medicine Unlocked, 25, 100633.
Yeo, I., Klemt, C., Melnic, C. M., Pattavina, M. H., De Oliveira, B. M. C., & Kwon, Y.-M. (2022). Predicting surgical operative time in primary total knee arthroplasty utilizing machine learning models. Archives of Orthopaedic and Trauma Surgery, 1-9.
Miller, L. E., Goedicke, W., Crowson, M. G., Rathi, V. K., Naunheim, M. R., & Agarwala, A. V. (2023). Using machine learning to predict operating room case duration: A case study in otolaryngology. Otolaryngology–Head and Neck Surgery, 168(2), 241-247.
中文文獻
林重賢(2002)。手術時間預測模式建立。未出版之碩士論文,國立臺灣大學醫療機構管理研究所,台北市。林怡君(2003)。運用模擬技術於手術室排程管理--以某醫學中心為例。未出版之碩士論文,國立臺灣大學醫療機構管理研究所,台北市。陳德芳(2006)。建立手術時間預測模式來從事電腦化手術室排程。未出版之碩士論文,國立臺灣大學醫療機構管理研究所,台北市。童麗清(2013)。運用系統模擬技術縮短手術房病人等候時間之研究—以中部某區域教學醫院手術室為例。未出版之碩士論文,東海大學工業工程與經營資訊學系,台中市。劉翠燕, 林伯堅, & 吳文祥(2019)。運用決策樹建立骨科手術時間預測模型-以某區域教學醫院為例。源遠護理, 13(3),頁 31-40。
吳慧雯(2020)。探討影響東部區域教學醫院手術排程相關性分析。未出版之碩士論文,長庚大學商管專業學院碩士學位學程在職專班醫務管理組,桃園縣。莊子葳(2022)。手術室使用時間分析-以某區域醫院為例。未出版之碩士論文,國立陽明交通大學醫務管理研究所,新竹市。