跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/23 20:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡益帆
研究生(外文):Tsai, Yi-Fan
論文名稱:應用中點波動載波之三相混合隨機脈寬調變
論文名稱(外文):Application of Three-phase Hybrid Random PWM with Midpoint-Fluctuation Carrier
指導教授:陳鴻祺陳鴻祺引用關係
指導教授(外文):Chen, Hung-Chi
口試委員:李仲益蘇維德
口試委員(外文):Li, Zhong-YiSu, Wei-De
口試日期:2022-12-31
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:電機學院電機與控制學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:165
中文關鍵詞:諧波展延因數中點波動載波共模電壓三次諧波功率譜密度混合隨機脈寬調變空間向量調變諧波抑制
外文關鍵詞:harmonic spread factormidpoint fluction carrierthird harmonic of common mode voltagepower spectral densityspace vector modulationharmonic suppression
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文提出一種新式混合隨機PWM策略,將傳統多重隨機脈衝位置PWM與多載波隨機PWM作混合後應用於三相反流器之上,並結合了它們各自的頻譜分佈特性,來實現出更有效的諧波抑制與獲得更佳的諧波展延因數。在頻域分析方面,本文也將所提之隨機PWM策略,推導出功率譜密度(PSD)並作繪圖,在與經快速傅立葉轉換(FFT)計算之模擬、實作頻譜圖對照後,可驗證出所提之策略在理論與實作上是相互符合的。
另一方面,由於傳統的空間向量脈寬調變法(SVPWM)有電壓利用率高、線性調制區較大等優點,但相對的也存在共模電壓頻譜會出現三次諧波之缺點。然而隨機PWM只能抑制開關高頻附近之諧波,無法有效抑制低頻之三次諧波,因此本文也另外引用了中點波動載波的調制策略,來實現共模電壓(CMV)低頻的三次諧波分量抑制,同時也能將電壓利用率達到與SVPWM相同。最後本文以Xilinx FPGA-XC6SLX9晶片做為控制核心,來驗證本文所提之隨機PWM策略能否達到設定的目標與結果。
In this thesis, a new random PWM applied to the three-phase inverter that combines Multi-Random position PWM (MRPP-PWM) and Multi-Random carrier frequency PWM (MRCFPWM) is proposed . To achieve switching harmonic suppression more effectively and better harmonic spread factor(HSF), we must take full advantage of the spectrum properties of MRPP-PWM and MRCFPWM. In frequency domain analysis, this thesis uses the random probability function to derive the power spectral density (PSD) from the proposed method and plotting. By comparing the PSD plot with the actual spectrogram calculated by FFT, it is possible to verify that the proposed strategy is consistent in theory and practice.
On the other hand, SVPWM has the advantages of high voltage utilization and a large linear modulation range but also has the disadvantage of the third harmonic of common-mode voltage(CMV). However, random PWM can only reduce the harmonics near the high frequency of the switch, so this thesis also adopts the modulation of the midpoint fluctuation carrier(MFC) to implement the suppression of the third harmonic component of the low frequency CMV, and maintain the characteristics of high voltage utilization. All PWM strategies are implemented with the FPGA-XC6SLX9 produced by Xilinx. Finally, the feasibility of the solution is verified by the experimental results.
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xiv
第一章 簡介 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 總諧波失真分析 6
1.4 隨機程序概論 11
1.4.1 隨機變數與隨機程序 11
1.4.2 隨機程序之平穩性探討 14
1.4.3 隨機程序之性質與統計特性 15
1.4.4 廣義平穩隨機程序 19
1.5 諧波展延因數 21
1.6 論文架構 24
第二章 脈衝寬度調變之理論與功率譜密度 25
2.1 前言 25
2.2 隨機脈寬調變之原理與類型 27
2.3 隨機亂數產生之原理與方法 36
2.3.1 線性同餘法 36
2.3.2 線性回授移位暫存器 37
2.4 空間向量調變理論 44
2.4.1 三相反流器之空間向量調變[4] 44
2.4.2 空間向量電壓合成原理 49
2.4.3 隨機空間電壓向量序列[25] 53
2.4.4 基於載波之空間向量脈寬調變[37] 56
2.5 中點波動載波調制策略[41] 62
2.5.1 中點波動載波調制策略之引用背景 62
2.5.2 中點波動載波調制策略之理論與推導 63
2.5.3 中點波動載波調制策略之控制架構 68
2.6 功率譜密度理論[39] 71
2.6.1 能量訊號與功率訊號 71
2.6.2 自相關函數與維納-辛欽定理 73
2.7 隨機脈寬調變之功率譜密度[13] 77
2.7.1 隨機PWM之廣義功率譜密度 77
2.7.2 隨機脈衝位置PWM之功率譜密度 81
2.7.3 隨機載波頻率PWM之功率譜密度 84
第三章 三相反流器之隨機脈寬調變策略與方法 87
3.1 前言 87
3.2 三相六開關之反流器架構 88
3.3 多重隨機脈衝位置PWM之調制策略 92
3.3.1 多重隨機脈衝位置PWM控制架構 92
3.3.2 多重隨機脈衝位置PWM之頻域分析 96
3.4 多隨機載波頻率PWM之調制策略 101
3.4.1 多隨機載波頻率PWM之控制架構 101
3.4.2 多隨機載波頻率PWM之頻域分析 106
3.5 混合隨機PWM之調制策略 111
3.5.1 混合隨機PWM之控制架構 111
3.5.2 混合隨機PWM之頻域分析 113
3.6 應用中點波動載波之混合隨機PWM調制策略 118
第四章 模擬結果 119
4.1 模擬電路 119
4.2 隨機PWM策略之模擬結果 122
4.3 中點波動載波策略之模擬結果 136
第五章 實作電路與結果 139
5.1 實作電路 139
5.1.1 實作電路架構與平台 139
5.1.2 數位類比轉換電路 141
5.1.3 閘極開關驅動電路 142
5.1.4 控制電路程式設計與IC架構 143
5.2 實作波形與結果 144
5.2.1 隨機PWM策略實作之結果 144
5.2.2 中點波動載波策略實作之結果 158
第六章 結論 161
參考文獻 162
[1]G. L. Skibinski, R. J. Kerkman and D. Schlegel, "EMI emissions of modern PWM AC drives," in IEEE Industry Applications Magazine, vol. 5, no. 6, pp. 47-80, Nov.-Dec. 1999
[2]呂如萍, “DC/DC電力轉換器共模雜訊之抑制技術”,碩士論文, 工程科學系, 國立成功大學, 台南, 民國97年
[3]Wang Xuesong, Zhao Zhengming and Yuan Liqiang, "Conducted EMI reduction in IGBT-based converters," 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility, 2010, pp. 230-234.
[4]S.-H. Kim, “Pulse width modulation inverters,” in Electric Motor Control, Elsevier, 2017, pp. 265–340.
[5]D. W. Hart, Power electronics, McGraw-Hill, New York, 2011.
[6]J. Huang and K. Li, “Suppression of common‐mode voltage spectral peaks by using rotation reverse carriers in sinusoidal pulse width modulation three‐phase inverters with CFM,” IET Power Electronics, vol. 13, no. 6, pp. 1246–1256, May 2020.
[7]A. K. Wallace, R. Spee and L. G. Martin, "Current harmonics and acoustic noise in AC adjustable-speed drives," in IEEE Transactions on Industry Applications, vol. 26, no. 2, pp. 267-273, March-April 1990.
[8]R. Belmans, D. Verdyck, W. Geysen and R. D. Findlay, "Electro-mechanical analysis of the audible noise of inverter-fed squirrel-cage induction motor," Conference Record of the IEEE Industry Applications Society Annual Meeting,, 1989, pp. 232-237 vol.1.
[9]S. Legowski and A. M. Trzynadlowski, "Advanced random pulse width modulation technique for voltage-controlled inverter drive systems, " IEEE Applied Power Electronics Conference, APEC '91, pp. 100-106, 1991.
[10]A. M. Trzynadlowsk, S. Legowski and R. L. Kirlin , "Random pulse-width modulation technique for voltage-controlled power inverters", International Journal of Electronics, 68:6, 1027-1037,Jun 1990.
[11]A. M. Trzynadlowski, F. Blaabjerg, J. K. Pedersen, R. L. Kirlin and S. Legowski, "Random pulse width modulation techniques for converter-fed drive systems-a review,",IEEE Transactions on Industry Applications, vol. 30, no. 5, pp. 1166-1175, Sept.-Oct. 1994.
[12]R. Jadeja, A. Ved, and S. Chauhan, “An Investigation on the Performance of Random PWM Controlled Converters”, Eng. Technol. Appl. Sci. Res., vol. 5, no. 6, pp. 876–884, Dec. 2015.
[13]Bech, Michael Møller. “Analysis of Random Pulse-Width Modulation Techniques for Power Electronic Converters.” (2000).
[14]G. Marsala and A. Ragusa, "Spread spectrum in random PWM DC-DC converters by PSO&GA optimized randomness levels," 2017 IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), 2017, pp. 1-6.
[15]M. M. Bech, F. Blaabjerg and J. K. Pedersen, "Random modulation techniques with fixed switching frequency for three-phase power converters," 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321), 1999, pp. 544-551 vol.1.
[16]L. Mathe, F. Lungeanu, P. O. Rasmussen and J. K. Pedersen, "Asymmetric Carrier Random PWM," 2010 IEEE International Symposium on Industrial Electronics, 2010, pp. 1218-1223.
[17]S. E. Schulz and D. L. Kowalewski, "Implementation of Variable-Delay Random PWM for Automotive Applications," in IEEE Transactions on Vehicular Technology, vol. 56, no. 3, pp. 1427-1433, May 2007.
[18]Seung-Yeol Oh, Young-Gook Jung and Young-Choeel Lim, "A two-phase dual-zero vector RCD-PWM (DZRCD) technique," 30th Annual Conference of IEEE Industrial Electronics Society, 2004. IECON 2004, 2004, pp. 30-34 Vol. 1.
[19]Tsorng-Juu Liang, Jiann-Fuh Chen and Juei-Lung Shyu, "Novel multi-random PWM technique for inverter design," Proceedings of the IEEE 1999 International Conference on Power Electronics and Drive Systems. PEDS'99 (Cat. No.99TH8475), 1999, pp. 942-946 vol.2.
[20]S. T.S., J. J. S., and A. K. C., “Intensive random carrier pulse width modulation for induction motor drives based on hopping between discrete carrier frequencies,” IET Power Electronics, vol. 9, no. 3, pp. 417–426, Mar. 2016.
[21]B. J. Kang and C. M. Liaw, “Random hysteresis PWM inverter with robust spectrum shaping,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 619–629, Apr. 2001.
[22]C. M. Liaw, Y. M. Lin, C. H. Wu, and K. I. Hwu, “Analysis, design, and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron, vol. 15, no. 5, pp. 843–854, Sep. 2000.
[23]H. Khan, Y. Touzani, and K. E. Khamlichi Drissi, “Random space vector modulation for electric drives: A digital approach,” in Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010, Ohrid, Macedonia, Sep. 2010.
[24]P. Madasamy et al., “Hybrid Multicarrier Random Space Vector PWM for the Mitigation of Acoustic Noise,” Electronics, vol. 10, no. 12, p. 1483, Jun. 2021.
[25]Y. S. Lai, “New random technique of inverter control for common mode voltage reduction of inverter-fed induction motor drives,” IEEE Trans. On energy Conversion, vol. 14, no. 4, pp. 1139–1146, Dec. 1999.
[26]T. Wang, J.Xiong, C. H. Wu, and J. Zhang, “Random PWM method based on pre-determined carrier frequencies,” Journal of Beijing University of Aeronautics and Astronautics, vol. 39, no. 3, Mar. 2013.
[27]K.-S. Kim, Y.-G. Jung, and Y.-C. Lim, “A New Hybrid Random PWM Scheme,” IEEE Trans. Power Electron, vol. 24, no. 1, pp. 192–200, Jan. 2009.
[28]N. Boudjerda, A. Boudouda, M. Melit, B. Nekhoul, K. El Khamlichi Drissi and K. Kerroum, "Optimized dual randomized PWM technique for reducing conducted EMI in DC-AC converters," 10th International Symposium on Electromagnetic Compatibility, 2011, pp. 701-706.
[29]N. Boudjerda, “Reduction of Conducted Perturbations in DC-DC Voltage Converters by a Dual Randomized PWM Scheme,” JCOMSS, vol. 5, no. 1, p. 33, Mar. 2009.
[30]M. Paramasivan, M. M. Paulraj, and S. Balasubramanian, “Assorted carrier‐variable frequency‐random PWM scheme for voltage source inverter,” IET Power Electronics, vol. 10, no. 14, pp. 1993–2001, Nov. 2017.
[31]K. Sewak, P. Rajput, and A. K. Panda, “FPGA implementation of 16 bit BBS and LFSR PN sequence generator: A comparative study,” 2012 IEEE Students’ Conference on Electrical, Electronics and Computer Science, Mar. 2012, pp. 1–3.
[32]N. Akhila, C. U. Kumari, K. Swathi, T. Padma and N. M. Rao, "Performance Analysis of Pseudo Random Bit Generator Using Modified Dual-Coupled Linear Congruential Generator," 2021 International Conference on Intelligent Technologies (CONIT), 2021, pp. 1-5.
[33]Efficient Shift Registers, LFSR Counters, and Long Pseudo-Random
Sequence Generators, Application Note, Xilinx Inc.
[34]M. Goresky and A. M. Klapper, "Fibonacci and Galois representations of feedback-with-carry shift registers," in IEEE Transactions on Information Theory, vol. 48, no. 11, pp. 2826-2836, Nov. 2002.
[35]葉俊弘, “應用DSP實現隨機波寬調變控制於GTO變流器之研究”,碩士論文, 電機工程學系, 國立成功大學, 台南, 民國89年
[36]A. M. Hava, R. J. Kerkman and T. A. Lipo, "Simple analytical and graphical methods for carrier-based PWM-VSI drives," in IEEE Transactions on Power Electronics, vol. 14, no. 1, pp. 49-61, Jan. 1999.
[37]V. Blasko, "Analysis of a hybrid PWM based on modified space-vector and triangle-comparison methods," in IEEE Transactions on Industry Applications, vol. 33, no. 3, pp. 756-764, May-June 1997.
[38]K. K. Tse, H. S. . -H. Chung, S. Y. R. Hui and H. C. So, "A comparative investigation on the use of random modulation schemes for DC/DC converters," in IEEE Transactions on Industrial Electronics, vol. 47, no. 2, pp. 253-263, April 2000.
[39]陳伯寧, 通訊系統導論(通訊原理一), 課程講義, 電機工程學系, 國立陽明交通大學, 新竹, 民國110年
[40]葉軍廷, “應用於多相反流器之最小共模電壓脈寬調變演算法”,碩士論文, 電控工程研究所, 國立交通大學, 新竹, 民國107年
[41]K. Tian, J. Wang, B. Wu, Z. Cheng and N. R. Zargari, "A Virtual Space Vector Modulation Technique for the Reduction of Common-Mode Voltages in Both Magnitude and Third-Order Component," in IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 839-848, Jan. 2016, doi: 10.1109/TPEL.2015.2408812.
[42]J. Huang, Q. Liu, X. Wang and K. Li, "A Carrier-Based Modulation Scheme to Reduce the Third Harmonic Component of Common-Mode Voltage in a Three-Phase Inverter Under High DC Voltage Utilization," in IEEE Transactions on Industrial Electronics, vol. 65, no. 3, pp. 1931-1940, March 2018.
電子全文 電子全文(網際網路公開日期:20250129)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top