|
1. Rothwell PM, Algra A, Amarenco P. Medical treatment in acute and long-term secondary prevention after transient ischaemic attack and ischaemic stroke. Lancet. 2011;377(9778):1681-1692. 2. Casadio M, Tamagnone I, Summa S, Sanguineti V. Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level. Front Comput Neurosci. 2013;7:97. 3. Barbosa D, Santos CP, Martins M. The application of cycling and cycling combined with feedback in the rehabilitation of stroke patients: a review. J Stroke Cerebrovasc Dis. 2015;24(2):253-273. 4. Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol. 2004;73(1):61-72. 5. Hendricks HT, Van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629-1637. 6. Gresham G, Duncan P, Stason W, et al. Clinical practice guideline number 16: Post-stroke rehabilitation. Rockville, MD: US Public Health Service, Agency for Health Care Policy and Research, Publication. 1995(95-0662). 7. Mazzocchio R, Meunier S, Ferrante S, Molteni F. Cycling, a tool for locomotor recovery after motor lesions. NeuroRehabilitation. 2008;23:67-80. 8. Fujiwara T, Liu M, Chino N. Effect of pedaling exercise on the hemiplegic lower limb. Am J Phys Med Rehabil. 2003;82(5):357-363. 9. Tang A, Sibley KM, Thomas SG, et al. Effects of an aerobic exercise program on aerobic capacity, spatiotemporal gait parameters, and functional capacity in subacute stroke. Neurorehabil Neural Repair. 2009;23(4):398-406. 10. Fujiwara T, Liu M, Tanuma A, Hase K, Tsuji T. Pedaling exercise for neuromuscular re-education: a review. Crit Rev Phys Rehabil Med. 2005;17(3). 11. Busk H, Stausholm MB, Lykke L, Wienecke T. Electrical Stimulation in Lower Limb During Exercise to Improve Gait Speed and Functional Motor Ability 6 Months Poststroke. A Review with Meta-Analysis. J Stroke Cerebrovasc Dis. 2020;29(3):104565. 12. Chipchase LS, Schabrun SM, Hodges PW. Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol. 2011;122(3):456-463. 13. Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LS. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS One. 2012;7(12):e51298. 14. Kaelin-Lang A. Enhancing rehabilitation of motor deficits with peripheral nerve stimulation. NeuroRehabilitation. 2008;23(1):89-93. 15. Laufer Y, Elboim-Gabyzon M. Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair. 2011;25(9):799-809. 16. Veldman MP, Maffiuletti NA, Hallett M, Zijdewind I, Hortobagyi T. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev. 2014;47:22-35. 17. Shariat A, Nakhostin Ansari N, Honarpishe R, et al. Effect of cycling and functional electrical stimulation with linear and interval patterns of timing on gait parameters in patients after stroke: a randomized clinical trial. Disabil Rehabil. 2019:1-7. 18. Park J, Seo D, Choi W, Lee S. The effects of exercise with TENS on spasticity, balance, and gait in patients with chronic stroke: a randomized controlled trial. Med Sci Monit. 2014;20:1890-1896. 19. Goldberg G. Neurophysiologic models of recovery in stroke. Phys Med Rehabil Clin N Am. 1991;2(3):599-614. 20. Auriat AM, Neva JL, Peters S, Ferris JK, Boyd LA. A review of transcranial magnetic stimulation and multimodal neuroimaging to characterize post-stroke neuroplasticity. Front Neurol. 2015;6:226. 21. Thielman GT, Dean CM, Gentile A. Rehabilitation of reaching after stroke: task-related training versus progressive resistive exercise. Arch Phys Med Rehabil. 2004;85(10):1613-1618. 22. Bohannon RW. Muscle strength and muscle training after stroke. J Rehabil Med. 2007;39(1):14-20. 23. Thaut MH, McIntosh GC, Rice RR. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J Neurol Sci. 1997;151(2):207-212. 24. Katiuscia S, Franco C, Davide M, Sergio D, Giuliano G. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention. Brain Res. 2009;1297:124-134. 25. Patterson KK, Parafianowicz I, Danells CJ, et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89(2):304-310. 26. Cleland BT, Schindler-Ivens S. Brain activation during passive and volitional pedaling after stroke. Motor Control. 2019;23(1):52-80. 27. Mikolajczyk T, Ciobanu I, Badea DI, et al. Advanced technology for gait rehabilitation: An overview. Adv Mech Eng. 2018;10(7):1687814018783627. 28. Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 1: spatiotemporal parameters and asymmetry ratios. Top Stroke Rehabil. 2017;24(6):435-446. 29. Promjunyakul NO, Schmit BD, Schindler-Ivens SM. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke. Front Hum Neurosci. 2015;9:324. 30. Christensen LO, Johannsen P, Sinkjaer T, Petersen N, Pyndt HS, Nielsen JB. Cerebral activation during bicycle movements in man. Exp Brain Res. 2000;135(1):66-72. 31. Lin PY, Lin SI, Chen JJ. Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback. IEEE Trans Neural Syst Rehabil Eng. 2012;20(1):78-84. 32. Vinehout K, Schmit BD, Schindler-Ivens S. Lower limb task-based functional connectivity Is altered in stroke. Brain Connect. 2019;9(4):365-377. 33. Enzinger C, Dawes H, Johansen-Berg H, et al. Brain activity changes associated with treadmill training after stroke. Stroke. 2009;40(7):2460-2467. 34. Alexander LD, Black SE, Patterson KK, Gao F, Danells CJ, McIlroy WE. Association between gait asymmetry and brain lesion location in stroke patients. Stroke. 2009;40(2):537-544. 35. Cullen KE. Sensory signals during active versus passive movement. Curr Opin Neurobiol. 2004;14(6):698-706. 36. Kim C-S, Bae S-S. The comparison of effect of treadmill and ergometer training on gait and balance in stroke. J Korean Phys Soc. 2010;5(3):435-443. 37. Kuo AD, Zajac FE. A biomechanical analysis of muscle strength as a limiting factor in standing posture. J Biomech. 1993;26:137-150. 38. Brown DA, Kautz S. Increased workload enhances force output during pedaling exercise in persons with poststroke hemiplegia. Stroke. 1998;29(3):598-606. 39. O'Brien A, Bertolucci F, Torrealba‐Acosta G, Huerta R, Fregni F, Thibaut A. Non‐invasive brain stimulation for fine motor improvement after stroke: a meta‐analysis. Eur J Neurol. 2018;25(8):1017-1026. 40. Gwin JT, Ferris DP. Beta-and gamma-range human lower limb corticomuscular coherence. Front Hum Neurosci. 2012;6:258. 41. Lai M-I, Pan L-L, Tsai M-W, Shih Y-F, Wei S-H, Chou L-W. Investigating the effects of peripheral electrical stimulation on corticomuscular functional connectivity stroke survivors. Top Stroke Rehabil. 2016;23(3):154-162. 42. Chou L-W, Sung W-H, Luo H-J, Tsai M-W, Pan L-L, Li Y-C. The Effects of Peripheral Electrical Stimulation on the Plastic Change in the Central Nervous System: Literature Review for Stimulation Parameters. 物理治療. 2018;43(1):10-23. 43. Peri E, Guanziroli E, Ferrante S, Pedrocchi A, Molteni F. Functional electrical stimulation and its use during cycling for the rehabilitation of individuals with stroke. In: Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Springer; 2018:293-306. 44. Xu R, Wang Y, Wang K, Zhang S, He C, Ming D. Increased corticomuscular coherence and brain activation immediately after short-term neuromuscular electrical stimulation. Front Neurosc. 2018;9:886. 45. Pan L-LH, Yang W-W, Kao C-L, et al. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke. Sci Rep. 2018;8(1):1-10. 46. Bao S-C, Leung W-C, Cheung VC, Zhou P, Tong K-Y. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil. 2019;16(1):143. 47. Ross B, Dobri S, Jamali S, Bartel L. Entrainment of somatosensory beta and gamma oscillations accompany improvement in tactile acuity after periodic and aperiodic repetitive sensory stimulation. Int J Psychophysiol. 2022;177:11-26. 48. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91(2):260-292. 49. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. 2014;8:485. 50. McCrimmon CM, Wang PT, Heydari P, et al. Electrocorticographic encoding of human gait in the leg primary motor cortex. Cereb Cortex. 2018;28(8):2752-2762. 51. Christiansen L, Larsen MN, Madsen MJ, Grey MJ, Nielsen JB, Lundbye-Jensen J. Long-term motor skill training with individually adjusted progressive difficulty enhances learning and promotes corticospinal plasticity. Scientific reports. 2020;10(1):1-15. 52. Liu J, Sheng Y, Liu H. Corticomuscular coherence and its applications: a review. Front Hum Neurosci. 2019;13(100). 53. Yang Q, Fang Y, Sun C-K, et al. Weakening of functional corticomuscular coupling during muscle fatigue. Brain Res. 2009;1250:101-112. 54. Zheng Y, Peng Y, Xu G, Li L, Wang J. Using corticomuscular coherence to reflect function recovery of paretic upper limb after stroke: a case study. Front Neurol. 2018;8:728. 55. Porcaro C, Cottone C, Cancelli A, Salustri C, Tecchio F. Functional semi-blind source separation identifies primary motor area without active motor execution. Int J Neural Syst. 2018;28(03):1750047. 56. Chakarov V, Naranjo JR, Schulte-Mönting Jr, Omlor W, Huethe F, Kristeva R. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces. J Neurophysiol. 2009;102(2):1115-1120. 57. Rossiter HE, Eaves C, Davis E, et al. Changes in the location of cortico-muscular coherence following stroke. Neuroimage Clin. 2013;2:50-55. 58. Pavlides C, Miyashita E, Asanuma H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol. 1993;70(2):733-741. 59. Konrad P. The abc of emg. A practical introduction to kinesiological electromyography. 2005;1(2005):30-35. 60. Zago M, Sforza C, Pacifici I, et al. Gait evaluation using inertial measurement units in subjects with Parkinson’s disease. J Electromyogr Kinesiol. 2018;42:44-48. 61. Vítečková S, Horáková H, Poláková K, Krupička R, Růžička E, Brožová H. Agreement between the GAITRite® System and the Wearable Sensor BTS G-Walk® for measurement of gait parameters in healthy adults and Parkinson’s disease patients. PeerJ. 2020;8:e8835. 62. Fang Y, Daly JJ, Sun J, et al. Functional corticomuscular connection during reaching is weakened following stroke. Clin Neurophysiol. 2009;120(5):994-1002. 63. Grosse P, Guerrini R, Parmeggiani L, Bonanni P, Pogosyan A, Brown P. Abnormal corticomuscular and intermuscular coupling in high‐frequency rhythmic myoclonus. Brain. 2003;126(2):326-342. 64. Mima T, Hallett M. Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism. Clin Neurophysiol. 1999;110(11):1892-1899. 65. Conway B, Halliday D, Farmer S, et al. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol. 1995;489(3):917-924. 66. Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE. Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture. 2010;31(2):241-246. 67. Kautz SA, Bowden MG, Clark DJ, Neptune RR. Comparison of motor control deficits during treadmill and overground walking poststroke. Neurorehabil Neural Repair. 2011;25(8):756-765. 68. Hsiao H-Y, Gray VL, Borrelli J, Rogers MW. Biomechanical control of paretic lower limb during imposed weight transfer in individuals post-stroke. J Neuroeng Rehabilitation. 2020;17(1):1-11. 69. Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. J Stroke. 2006;37(3):872-876. 70. Seki K, Sato M, Handa Y. Increase of muscle activities in hemiplegic lower extremity during driving a cycling wheelchair. Tohoku J Exp Med. 2009;219(2):129-138. 71. Lewek MD, Randall EP. Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke. J Neurol Phys Ther. 2011;35(3):116-121. 72. Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB. The motor cortex drives the muscles during walking in human subjects. J Physiol. 2012;590(10):2443-2452. 73. Roeder L, Boonstra TW, Smith SS, Kerr GK. Dynamics of corticospinal motor control during overground and treadmill walking in humans. Journal of neurophysiology. 2018;120(3):1017-1031. 74. Patino L, Omlor W, Chakarov V, Hepp-Reymond M-C, Kristeva R. Absence of gamma-range corticomuscular coherence during dynamic force in a deafferented patient. Journal of neurophysiology. 2008;99(4):1906-1916. 75. Li S, Francisco GE, Zhou P. Post-stroke hemiplegic gait: new perspective and insights. Front Physiol. 2018;9:1021. 76. Weersink JB, Maurits NM, de Jong BM. Amble Gait EEG Points at Complementary Cortical Networks Underlying Stereotypic Multi-Limb Co-ordination. Front Hum Neurosci. 2021:447. 77. Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. Neuroimage. 2012;63(3):1203-1211. 78. Jain S, Gourab K, Schindler-Ivens S, Schmit BD. EEG during pedaling: evidence for cortical control of locomotor tasks. Clin Neurophysiol. 2013;124(2):379-390. 79. Heng H-M, Lu M-K, Chou L-W, et al. Changes in balance, gait and electroencephalography oscillations after robot-assisted gait training: An exploratory study in people with chronic stroke. J Brain Sci. 2020;10(11):821. 80. Bulea TC, Kim J, Damiano DL, Stanley CJ, Park H-S. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Front Hum Neurosci. 2015;9:247. 81. Nordin AD, Hairston WD, Ferris DP. Faster gait speeds reduce alpha and beta EEG spectral power from human sensorimotor cortex. IEEE Trans Biomed Eng. 2019;67(3):842-853. 82. Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 1997;20(1):44-49. 83. Foxe JJ, Snyder AC. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol. 2011;2:154. 84. Su S, Chai G, Sheng X, Meng J, Zhu X. Contra-lateral desynchronized alpha oscillations linearly correlate with discrimination performance of tactile acuity. J Neural Eng. 2020;17(4):046041. 85. Espenhahn S, Rossiter HE, van Wijk BC, et al. Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke. J Brain Sci. 2020;2(2):fcaa161. 86. Bauer M, Oostenveld R, Peeters M, Fries P. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci. 2006;26(2):490-501. 87. Dyer J-O, Maupas E, de Andrade Melo S, Bourbonnais D, Forget R. Abnormal coactivation of knee and ankle extensors is related to changes in heteronymous spinal pathways after stroke. J Neuroeng Rehabilitation. 2011;8(1):1-14. 88. Righetti L, Ijspeert AJ. Pattern generators with sensory feedback for the control of quadruped locomotion. Paper presented at: 2008 IEEE International Conference on Robotics and Automation2008. 89. Wheaton LA, Mizelle J, Forrester LW, Bai O, Shibasaki H, Macko RF. How does the brain respond to unimodal and bimodal sensory demand in movement of the lower extremity? Experimental brain research. 2007;180(2):345-354. 90. Bao S-C, Leung KW, Tong K-Y. Cortico-muscular interaction to monitor the effects of neuromuscular electrical stimulation pedaling training in chronic stroke. Comput Biol Med. 2021;137:104801. 91. Koseki T, Kudo D, Katagiri N, et al. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults. BMC Neurol. 2021;22(1):1-9. 92. Artoni F, Fanciullacci C, Bertolucci F, et al. Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking. Neuroimage. 2017;159:403-416. 93. Ting WK-C, Huot-Lavoie M, Ethier C. Paired associative stimulation fails to induce plasticity in freely behaving intact rats. Eneuro. 2020;7(2). 94. Balasubramanian CK, Bowden MG, Neptune RR, Kautz SAJAopm, rehabilitation. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil. 2007;88(1):43-49. 95. Becher JG, Harlaar J, Lankhorst GJ, Vogelaar TW. Measurement of impaired muscle function of the gastrocnemius, soleus, and tibialis anterior muscles in spastic hemiplegia: a preliminary study. J Rehabil Res Dev. 1998;35:314-326.
|