跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣佳芳
研究生(外文):Chiang, Chia-Fang
論文名稱:下肢電刺激結合腳踏車訓練對中風病人在神經生理的變化及步態功能表現的立即影響
論文名稱(外文):Immediate effects of lower limb electrical stimulation combined with cycling on neurophysiological changes and gait performance in people with stroke
指導教授:周立偉周立偉引用關係
指導教授(外文):Chou, Li-Wei
口試委員:王瑞瑤蔡美文
口試日期:2023-01-13
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:物理治療暨輔助科技學系
學門:醫藥衛生學門
學類:復健醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:77
中文關鍵詞:中風功能性恢復腦電圖(腦波)肌電圖腳踏車電刺激皮質肌肉共調性
外文關鍵詞:strokefunctional recoveryEEGEMGcyclingelectrical stimulationcorticomuscular coherence
相關次數:
  • 被引用被引用:0
  • 點閱點閱:29
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
研究背景:在全世界,中風是其中一個導致死亡或失能的疾病,中風後會有感覺及動作功能等的損傷,最常見的動作損傷包含偏癱、肢體不協調等等,導致病患控制平衡困難、能量耗損較高、整體活動能力下降,多有明顯的不對稱異常步態。對許多病患而言改善行走的動作品質是主要的目標。步態的對稱性被證實與動作損傷程度有關,部分學者認為可以作為動作品質的指標。過去文獻證實重複性的感覺輸入刺激及動作訓練能夠誘發中樞神經系統受損後的腦神經迴路重塑及功能恢復,而周邊電刺激及腳踏車訓練作為感覺輸入及動作訓練的工具,證據顯示結合兩者能夠有效改善病人的肌力、行走能力、動作協調能力等等。騎乘腳踏車時下肢的動作模式像是走路,被證實能夠誘發主要感覺及運動皮質、運動輔助區、小腦等腦區對稱性的活化;周邊電刺激可以誘發感覺運動皮質的興奮性及活性,因此合併電療及腳踏車訓練或許能夠誘發病患下肢協調性動作相對應的腦區活化並改善下肢的動作控制能力,進而呈現更對稱的步態動作模式。過去的文獻未曾以腦波觀測電刺激結合腳踏車的訓練對中風後感覺運動皮質區的腦部活性及皮質肌肉功能性連結之變化,針對功能恢復的變化也缺乏步態對稱性變化的觀測,故本研究以結合周邊電刺激及腳踏車的一次性介入觀測其步態及腦部之立即變化並探索腦部與步態表現之間的關聯性。研究目的及假設:觀察周邊電刺激結合腳踏車的一次性介入,對中風病患步態功能進步的立即效應,以及其相關之神經生理變化特徵。本研究假設結合周邊電刺激及腳踏車能立即誘發中風患者腦神經生理的變化、提升大腦感覺運動皮質與患側肌肉的功能性連結,並改善患者下肢神經肌肉控制及步態表現,而且神經生理的變化與行走能力的進步有相關性。研究方法:本篇為隨機單盲研究,徵召26位慢性中風患者,分派至腳踏車加電刺激組及腳踏車組,兩組皆接受一次性30分鐘之電刺激(或偽電刺激)結合腳踏車訓練,電刺激貼在患側腳之股四頭肌及脛前肌,強度達病患可忍受之最大感覺強度並不引起肌肉收縮,腳踏車介入分為兩階段各15分鐘,中間間隔休息5分鐘。在介入前後使用慣性測量單元測量步態參數,包含步速、步長及推進能力並進一步計算步態對稱性,於行走時同步記錄腦電圖及肌電圖。腦電圖蒐集位於Cz腦區的腦電訊號,而肌電圖蒐集雙側下肢的股四頭肌及脛前肌的訊號,腦電訊號及肌電訊號皆經由計算得到腦波譜密度及皮質肌肉共調性。統計分析:使用SPSS 24.0軟體,使用卡方及獨立t檢定檢驗組間基準資料,夏皮羅-威爾克檢驗法(Shapiro–Wilk)檢驗數據的常態性,由於數據不符合常態分佈,故使用無母數之統計分析。曼惠特尼(Mann-Whitney)檢定進行組間前後比較、魏克生符號檢定(Wilcoxon sign rank)進行組內前後比較。使用斯皮爾曼相關係數(Spearman correlation)決定腦部參數與步態參數的關係。顯著水準訂為0.05。研究結果:分析26位受試者的結果顯示腳踏車加電刺激組在一次訓練後無對稱性變化,而腳踏車組在快速速度走路下推進對稱性比率顯著更不對稱(0.78 ± 0.19→1.30 ± 0.79, p = 0.036),且自選速度走路下患側步長顯著增加(0.44公尺 ± 0.13公尺→0.55公尺 ± 0.24公尺, p = 0.021)的現象。本研究同時觀察到一次介入後腳踏車加電刺激組gamma頻帶腦波譜密度立即增加,且兩組在後側時達顯著差異(腳踏車加電刺激組0.150 ± 0.084→0.167 ± 0.083,腳踏車組0.112 ± 0.039→0.104 ± 0.038, p = 0.024),且腳踏車組在快速速度下腦波譜密度beta頻帶變化量與步長對稱性比率絕對變化量有中度正相關(r= 0.644, p= 0.026),隨著PSD beta增加,步長有越不對稱的趨勢。皮質肌肉共調性beta, gamma頻帶在組間或組內皆無顯著差異。皮質肌肉共調性gamma頻帶與步長對稱性比率絕對變化量有中度到高度相關性,二組的結果皆發現隨著gamma上升,步長有越對稱的趨勢(腳踏車加電刺激組r= -0.705, p= 0.034, 腳踏車組r= - 0.618, p= 0.043)。研究結論:一次性電刺激加腳踏車訓練對中風後的步態對稱性表現的沒有額外的效益,卻能立即誘發出更高的腦波譜密度gamma頻帶,一次性腳踏車訓練能立即誘發更長的患側步長,即便推進能力變得更不對稱。觀察腦部神經生理參數在動作介入(感覺輸入)後的步態對稱性的立即性變化,不論是腦波譜密度beta或皮質肌肉共調性gamma頻帶的變化都與步長對稱性的進步有關聯性,反映神經肌肉控制能力在短時間內的改變,證實了動作學習在中風受試者的初步成果。另外,同步的感覺電刺激與動作訓練並無明顯的正面效益,未來研究可進一步探討二者更理想的結合模式。
Background: Stroke is one of the leading death or disability disease in the world. Motor impairments, including hemiparesis, incoordination and spasticity are the most common deficits after stroke. Functional recovery is mediated by neural reorganization, so repetitive motor practice and volitional effort is essential for neuroplasticity to promote functional recovery and quality of life in stroke survivors. It’s indicated that gait symmetry is related to motor impairments, and gait symmetry seems to be indicator of the motor recovery. Previous studies have demonstrated that cycling training and electrical stimulation (ES) are beneficial for promoting neuroplasticity and facilitating post-stroke motor recovery, and combing ES and motor training have potential efficacy on post stroke motor recovery such as strength, walking capacity and coordination. Therefore, ES and motor training could be serve as the tool of amount of sensory inputs to affect the process of motor recovery through neuroplasticity. To our knowledge, previous researches state that effects of combining ES+ motor training on motor function rather than on the quality of walking pattern for stroke patients. However, the assessment of neurophysiological data by EEG-EMG after motor training is still lacking so that we could not built a bridge between the training efficacy and neural activity after stroke. To be more specific, effects of combining ES and cycling on EEG coupled with EMG functional connectivity and functional improvement in stroke patients remains unknown. Research purpose and hypothesis: The first aim of this study is to investigate the immediate effects of single session ES combined cycling on neurophysiological changes and gait improvements in stroke patients. The second aim is to determine the correlation between changes in the neurophysiological data and functional outcomes, specifically to verify whether the combination of ES and cycling as an intervention can induce neurophysiological changes and improve neuromuscular control of lower extremities and gait performance in stroke patients immediately. Also, we dedicate to find out the characteristics of neurophysiological changes soon after the intervention. Methods: 26 stroke patients are recruited and assigned to either ES combined with cycling group or cycling group (sham-ES combined with cycling group). Each group receives either 30 min cycling with consistent ES or sham-ES. 5 min rest in the middle of the intervention. EEG from the LE area of sensorimotor cortex (Cz) and EMG of quadriceps and tibialis anterior muscles are recorded simultaneously during walking tests before and after the intervention. The functional outcomes obtained during walking tests as well by wearable IMU collect self-selected and fast gait speed (m/s), step length (m) of both legs, propulsion of both legs, and gait symmetry ratio determined by step length and propulsion. EEG and EMG signals are calculated and transformed into power spectral density (PSD) and synchronized to indicate the functional connectivity between the cortex and the muscles, namely corticomuscular coherence (CMC). Statistics: The statistical analysis was performed with SPSS version 24.0 software. Chi-square and independent t-test were used to determine the difference of demographic data between groups at baseline. Shapiro–Wilk test was used to assess the normality. We assessed the outcomes of interest by non-parametric statistics because of the non-normality of the data among outcomes. The Mann-Whitney test was used to compare data after the intervention between groups. The Wilcoxon signed-rank test was used to compare data within groups. Spearman correlation test was used to assess pre-post percentage change between neurophysiological data and gait-related outcomes. The significant level is set at 0.05. Data is described in mean ± standard deviation. Results: 26 stroke subjects were analyzed. No significant differences were detected in gait symmetry, both sides of step lengths, and propulsion between groups. However, there was a significant difference in propulsion symmetry ratio under fast speed walking in cycling group (0.78 ± 0.19→1.30 ± 0.79, p = 0.036) and a significant increase in paretic step length under select speed walking in cycling group (0.44 ± 0.13 m → 0.55 ± 0.24 m, p = 0.021). In addition, our results suggested that combined electrical stimulation and cycling significantly increased PSD gamma band under select speed walking in ES group more than that in cycling group (ES combined with cycling group: 0.150 ± 0.084→0.167 ± 0.083, cycling: 0.112 ± 0.039→0.104 ± 0.038, p = 0.024). There were significant moderate correlations between the changes of PSD beta band and the changes of step symmetry ratio in cycling group (r = 0.644, p = 0.026). No significant differences were detected in CMC beta or gamma band between or within groups. But there were significant moderate to high correlations between the changes of CMC gamma band and the changes of step symmetry ratio (ES combined with cycling group: r = - 0.705, p = 0.034;cycling: = - 0.618, p = 0.043) in both groups. Conclusion: Single session of combined electrical stimulation and cycling has neither additional benefits on gait performance determined by gait symmetry, nor step length or propulsion of both legs. But it induced immediately higher PSD gamma band significantly. Single session of cycling could improve paretic step length despite of the worse propulsion symmetry ratio, as PSD beta band increasing and CMC gamma band decreasing, the step length symmetry get worse. Through the changes of PSD and CMC, we could define the degrees of motor recovery with the process of enhancing neuromuscular control after motor intervention. Besides, we couldn’t verify the beneficial effects of combined electrical stimulation and cycling on stroke patients, and future research should further investigate an ideal program and strategy instead.
目錄
誌謝 i
中文摘要 ii
英文摘要 v
目錄 viii
圖目錄 xi
表目錄 xii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 研究假設 3
1.4 研究重要性 3
第二章 文獻回顧 5
2.1 中風後動作恢復 5
2.1.1 中風後動作恢復與大腦可塑性 5
2.1.2 中風後步態對稱性及神經肌肉控制 5
2.1.3 腳踏車訓練對大腦可塑性及動作恢復的影響 6
2.1.4 周邊電刺激的中樞調節 7
2.1.5 周邊電刺激合併主動訓練的效果 7
2.2 腦電圖及大腦皮質共調性 8
2.2.1 腦電圖的生理意義及動作學習 8
2.2.2 皮質肌肉共調性的生理定義及臨床重要性 9
2.3 總結 10
第三章 研究方法 12
3.1 研究設計與研究架構 12
3.1.1 研究設計 12
3.2 研究材料與研究方法 12
3.2.1 研究對象及流程 12
3.2.2 研究對象 13
3.2.3 研究流程 14
3.2.4 研究工具 15
3.2.5 量測指標 16
3.3 資料處理與分析方法 16
3.3.1 資料處理 16
3.3.2 統計分析 18
第四章 研究結果 19
4.1 基本資料組間比較結果 19
4.2 神經生理參數組間、變化量及組內比較結果 19
4.2.1 步態參數組間、變化量及組內比較結果 19
4.2.2 皮質肌肉共調性組間、變化量及組內比較結果 19
4.2.3 腦波譜密度組間、變化量及組內比較結果 20
4.3 神經生理參數變化量及步態對稱性變化量的相關性 20
4.3.1 腦波譜密度與步態對稱性 20
4.3.2 皮質肌肉共調性與步態對稱性 20
第五章 討論 22
5.1 中風後步態對稱性及中樞神經系統的控制 22
5.1.1 步態對稱性與動作介入 22
5.1.2 皮質肌肉共調性與步長對稱性的相關性 24
5.2 腦波譜密度變化與動作介入的關聯 25
5.2.1 腦波譜密度與動作的關聯 26
5.2.2 腦波譜密度的生理特徵作為動作恢復的指標 26
5.3 周邊電刺激、皮質肌肉共調性與動作恢復的關聯 27
5.3.1 電刺激與皮質肌肉共調性對動作恢復的效益 28
5.3.2 電刺激使用時機 29
5.4 研究限制 29
第六章 結論 31
參考文獻 32
附錄一 國防醫學院三軍總醫院人體試驗委員會核准函 67
附錄二 受試者同意書 68
附錄三、腦波儀器 75
附錄四、肌電圖儀器 76
附錄五、單顆慣性測量單元、電刺激、腳踏車 77

圖目錄
圖 1研究流程圖 40
圖 2介入流程示意圖 41
圖 3自選速度下步長對稱性及推進對稱性前後變化 42
圖 4快速速度下步長對稱性及推進對稱性前後變化 43
圖 5自選速度下患側步長及好側步長前後變化 44
圖 6快速速度下患側步長及好側步長前後變化 45
圖 7自選速度下皮質肌肉共調性Cz-QC beta, gamma頻帶前後變化 46
圖 8自選速度下皮質肌肉共調性Cz-TA beta, gamma頻帶前後變化 47
圖 9自選速度下腦波譜密度 alpha, beta, gamma頻帶前後變化 48
圖 10快速速度下腦波譜密度 alpha, beta, gamma頻帶前後變化 49
圖 11 步長對稱性變化量與神經生理參數變化量的顯著相關性 50
圖 12自選速度下兩組之進步組與退步組的前測步速 51
圖 13自選速度下兩組以步速區分嚴重度(0.5m/s)之步長對稱性及推進對稱性 52

表目錄
表 1受試者基本資料之組間比較 53
表 2神經生理參數 原始資料及變化量(後測-前測)之組間比較 54
表 3神經生理參數之組內比較 55
表 4步態參數 原始資料及變化量(後測-前測)之組間比較 56
表 5步態參數之組內比較 58
表 6腳踏車加電刺激組 神經生理參數的變化量與步態表現的變化量之相關性 60
表 7腳踏車組 神經生理參數的變化量與步態表現的變化量之相關性 63
1. Rothwell PM, Algra A, Amarenco P. Medical treatment in acute and long-term secondary prevention after transient ischaemic attack and ischaemic stroke. Lancet. 2011;377(9778):1681-1692.
2. Casadio M, Tamagnone I, Summa S, Sanguineti V. Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level. Front Comput Neurosci. 2013;7:97.
3. Barbosa D, Santos CP, Martins M. The application of cycling and cycling combined with feedback in the rehabilitation of stroke patients: a review. J Stroke Cerebrovasc Dis. 2015;24(2):253-273.
4. Schaechter JD. Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog Neurobiol. 2004;73(1):61-72.
5. Hendricks HT, Van Limbeek J, Geurts AC, Zwarts MJ. Motor recovery after stroke: a systematic review of the literature. Arch Phys Med Rehabil. 2002;83(11):1629-1637.
6. Gresham G, Duncan P, Stason W, et al. Clinical practice guideline number 16: Post-stroke rehabilitation. Rockville, MD: US Public Health Service, Agency for Health Care Policy and Research, Publication. 1995(95-0662).
7. Mazzocchio R, Meunier S, Ferrante S, Molteni F. Cycling, a tool for locomotor recovery after motor lesions. NeuroRehabilitation. 2008;23:67-80.
8. Fujiwara T, Liu M, Chino N. Effect of pedaling exercise on the hemiplegic lower limb. Am J Phys Med Rehabil. 2003;82(5):357-363.
9. Tang A, Sibley KM, Thomas SG, et al. Effects of an aerobic exercise program on aerobic capacity, spatiotemporal gait parameters, and functional capacity in subacute stroke. Neurorehabil Neural Repair. 2009;23(4):398-406.
10. Fujiwara T, Liu M, Tanuma A, Hase K, Tsuji T. Pedaling exercise for neuromuscular re-education: a review. Crit Rev Phys Rehabil Med. 2005;17(3).
11. Busk H, Stausholm MB, Lykke L, Wienecke T. Electrical Stimulation in Lower Limb During Exercise to Improve Gait Speed and Functional Motor Ability 6 Months Poststroke. A Review with Meta-Analysis. J Stroke Cerebrovasc Dis. 2020;29(3):104565.
12. Chipchase LS, Schabrun SM, Hodges PW. Peripheral electrical stimulation to induce cortical plasticity: a systematic review of stimulus parameters. Clin Neurophysiol. 2011;122(3):456-463.
13. Schabrun SM, Ridding MC, Galea MP, Hodges PW, Chipchase LS. Primary sensory and motor cortex excitability are co-modulated in response to peripheral electrical nerve stimulation. PLoS One. 2012;7(12):e51298.
14. Kaelin-Lang A. Enhancing rehabilitation of motor deficits with peripheral nerve stimulation. NeuroRehabilitation. 2008;23(1):89-93.
15. Laufer Y, Elboim-Gabyzon M. Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair. 2011;25(9):799-809.
16. Veldman MP, Maffiuletti NA, Hallett M, Zijdewind I, Hortobagyi T. Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev. 2014;47:22-35.
17. Shariat A, Nakhostin Ansari N, Honarpishe R, et al. Effect of cycling and functional electrical stimulation with linear and interval patterns of timing on gait parameters in patients after stroke: a randomized clinical trial. Disabil Rehabil. 2019:1-7.
18. Park J, Seo D, Choi W, Lee S. The effects of exercise with TENS on spasticity, balance, and gait in patients with chronic stroke: a randomized controlled trial. Med Sci Monit. 2014;20:1890-1896.
19. Goldberg G. Neurophysiologic models of recovery in stroke. Phys Med Rehabil Clin N Am. 1991;2(3):599-614.
20. Auriat AM, Neva JL, Peters S, Ferris JK, Boyd LA. A review of transcranial magnetic stimulation and multimodal neuroimaging to characterize post-stroke neuroplasticity. Front Neurol. 2015;6:226.
21. Thielman GT, Dean CM, Gentile A. Rehabilitation of reaching after stroke: task-related training versus progressive resistive exercise. Arch Phys Med Rehabil. 2004;85(10):1613-1618.
22. Bohannon RW. Muscle strength and muscle training after stroke. J Rehabil Med. 2007;39(1):14-20.
23. Thaut MH, McIntosh GC, Rice RR. Rhythmic facilitation of gait training in hemiparetic stroke rehabilitation. J Neurol Sci. 1997;151(2):207-212.
24. Katiuscia S, Franco C, Davide M, Sergio D, Giuliano G. Reorganization and enhanced functional connectivity of motor areas in repetitive ankle movements after training in locomotor attention. Brain Res. 2009;1297:124-134.
25. Patterson KK, Parafianowicz I, Danells CJ, et al. Gait asymmetry in community-ambulating stroke survivors. Arch Phys Med Rehabil. 2008;89(2):304-310.
26. Cleland BT, Schindler-Ivens S. Brain activation during passive and volitional pedaling after stroke. Motor Control. 2019;23(1):52-80.
27. Mikolajczyk T, Ciobanu I, Badea DI, et al. Advanced technology for gait rehabilitation: An overview. Adv Mech Eng. 2018;10(7):1687814018783627.
28. Wonsetler EC, Bowden MG. A systematic review of mechanisms of gait speed change post-stroke. Part 1: spatiotemporal parameters and asymmetry ratios. Top Stroke Rehabil. 2017;24(6):435-446.
29. Promjunyakul NO, Schmit BD, Schindler-Ivens SM. A novel fMRI paradigm suggests that pedaling-related brain activation is altered after stroke. Front Hum Neurosci. 2015;9:324.
30. Christensen LO, Johannsen P, Sinkjaer T, Petersen N, Pyndt HS, Nielsen JB. Cerebral activation during bicycle movements in man. Exp Brain Res. 2000;135(1):66-72.
31. Lin PY, Lin SI, Chen JJ. Functional near infrared spectroscopy study of age-related difference in cortical activation patterns during cycling with speed feedback. IEEE Trans Neural Syst Rehabil Eng. 2012;20(1):78-84.
32. Vinehout K, Schmit BD, Schindler-Ivens S. Lower limb task-based functional connectivity Is altered in stroke. Brain Connect. 2019;9(4):365-377.
33. Enzinger C, Dawes H, Johansen-Berg H, et al. Brain activity changes associated with treadmill training after stroke. Stroke. 2009;40(7):2460-2467.
34. Alexander LD, Black SE, Patterson KK, Gao F, Danells CJ, McIlroy WE. Association between gait asymmetry and brain lesion location in stroke patients. Stroke. 2009;40(2):537-544.
35. Cullen KE. Sensory signals during active versus passive movement. Curr Opin Neurobiol. 2004;14(6):698-706.
36. Kim C-S, Bae S-S. The comparison of effect of treadmill and ergometer training on gait and balance in stroke. J Korean Phys Soc. 2010;5(3):435-443.
37. Kuo AD, Zajac FE. A biomechanical analysis of muscle strength as a limiting factor in standing posture. J Biomech. 1993;26:137-150.
38. Brown DA, Kautz S. Increased workload enhances force output during pedaling exercise in persons with poststroke hemiplegia. Stroke. 1998;29(3):598-606.
39. O'Brien A, Bertolucci F, Torrealba‐Acosta G, Huerta R, Fregni F, Thibaut A. Non‐invasive brain stimulation for fine motor improvement after stroke: a meta‐analysis. Eur J Neurol. 2018;25(8):1017-1026.
40. Gwin JT, Ferris DP. Beta-and gamma-range human lower limb corticomuscular coherence. Front Hum Neurosci. 2012;6:258.
41. Lai M-I, Pan L-L, Tsai M-W, Shih Y-F, Wei S-H, Chou L-W. Investigating the effects of peripheral electrical stimulation on corticomuscular functional connectivity stroke survivors. Top Stroke Rehabil. 2016;23(3):154-162.
42. Chou L-W, Sung W-H, Luo H-J, Tsai M-W, Pan L-L, Li Y-C. The Effects of Peripheral Electrical Stimulation on the Plastic Change in the Central Nervous System: Literature Review for Stimulation Parameters. 物理治療. 2018;43(1):10-23.
43. Peri E, Guanziroli E, Ferrante S, Pedrocchi A, Molteni F. Functional electrical stimulation and its use during cycling for the rehabilitation of individuals with stroke. In: Advanced Technologies for the Rehabilitation of Gait and Balance Disorders. Springer; 2018:293-306.
44. Xu R, Wang Y, Wang K, Zhang S, He C, Ming D. Increased corticomuscular coherence and brain activation immediately after short-term neuromuscular electrical stimulation. Front Neurosc. 2018;9:886.
45. Pan L-LH, Yang W-W, Kao C-L, et al. Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke. Sci Rep. 2018;8(1):1-10.
46. Bao S-C, Leung W-C, Cheung VC, Zhou P, Tong K-Y. Pathway-specific modulatory effects of neuromuscular electrical stimulation during pedaling in chronic stroke survivors. J Neuroeng Rehabil. 2019;16(1):143.
47. Ross B, Dobri S, Jamali S, Bartel L. Entrainment of somatosensory beta and gamma oscillations accompany improvement in tactile acuity after periodic and aperiodic repetitive sensory stimulation. Int J Psychophysiol. 2022;177:11-26.
48. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91(2):260-292.
49. Seeber M, Scherer R, Wagner J, Solis-Escalante T, Müller-Putz GR. EEG beta suppression and low gamma modulation are different elements of human upright walking. Front Hum Neurosci. 2014;8:485.
50. McCrimmon CM, Wang PT, Heydari P, et al. Electrocorticographic encoding of human gait in the leg primary motor cortex. Cereb Cortex. 2018;28(8):2752-2762.
51. Christiansen L, Larsen MN, Madsen MJ, Grey MJ, Nielsen JB, Lundbye-Jensen J. Long-term motor skill training with individually adjusted progressive difficulty enhances learning and promotes corticospinal plasticity. Scientific reports. 2020;10(1):1-15.
52. Liu J, Sheng Y, Liu H. Corticomuscular coherence and its applications: a review. Front Hum Neurosci. 2019;13(100).
53. Yang Q, Fang Y, Sun C-K, et al. Weakening of functional corticomuscular coupling during muscle fatigue. Brain Res. 2009;1250:101-112.
54. Zheng Y, Peng Y, Xu G, Li L, Wang J. Using corticomuscular coherence to reflect function recovery of paretic upper limb after stroke: a case study. Front Neurol. 2018;8:728.
55. Porcaro C, Cottone C, Cancelli A, Salustri C, Tecchio F. Functional semi-blind source separation identifies primary motor area without active motor execution. Int J Neural Syst. 2018;28(03):1750047.
56. Chakarov V, Naranjo JR, Schulte-Mönting Jr, Omlor W, Huethe F, Kristeva R. Beta-range EEG-EMG coherence with isometric compensation for increasing modulated low-level forces. J Neurophysiol. 2009;102(2):1115-1120.
57. Rossiter HE, Eaves C, Davis E, et al. Changes in the location of cortico-muscular coherence following stroke. Neuroimage Clin. 2013;2:50-55.
58. Pavlides C, Miyashita E, Asanuma H. Projection from the sensory to the motor cortex is important in learning motor skills in the monkey. J Neurophysiol. 1993;70(2):733-741.
59. Konrad P. The abc of emg. A practical introduction to kinesiological electromyography. 2005;1(2005):30-35.
60. Zago M, Sforza C, Pacifici I, et al. Gait evaluation using inertial measurement units in subjects with Parkinson’s disease. J Electromyogr Kinesiol. 2018;42:44-48.
61. Vítečková S, Horáková H, Poláková K, Krupička R, Růžička E, Brožová H. Agreement between the GAITRite® System and the Wearable Sensor BTS G-Walk® for measurement of gait parameters in healthy adults and Parkinson’s disease patients. PeerJ. 2020;8:e8835.
62. Fang Y, Daly JJ, Sun J, et al. Functional corticomuscular connection during reaching is weakened following stroke. Clin Neurophysiol. 2009;120(5):994-1002.
63. Grosse P, Guerrini R, Parmeggiani L, Bonanni P, Pogosyan A, Brown P. Abnormal corticomuscular and intermuscular coupling in high‐frequency rhythmic myoclonus. Brain. 2003;126(2):326-342.
64. Mima T, Hallett M. Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism. Clin Neurophysiol. 1999;110(11):1892-1899.
65. Conway B, Halliday D, Farmer S, et al. Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol. 1995;489(3):917-924.
66. Patterson KK, Gage WH, Brooks D, Black SE, McIlroy WE. Evaluation of gait symmetry after stroke: a comparison of current methods and recommendations for standardization. Gait Posture. 2010;31(2):241-246.
67. Kautz SA, Bowden MG, Clark DJ, Neptune RR. Comparison of motor control deficits during treadmill and overground walking poststroke. Neurorehabil Neural Repair. 2011;25(8):756-765.
68. Hsiao H-Y, Gray VL, Borrelli J, Rogers MW. Biomechanical control of paretic lower limb during imposed weight transfer in individuals post-stroke. J Neuroeng Rehabilitation. 2020;17(1):1-11.
69. Bowden MG, Balasubramanian CK, Neptune RR, Kautz SA. Anterior-posterior ground reaction forces as a measure of paretic leg contribution in hemiparetic walking. J Stroke. 2006;37(3):872-876.
70. Seki K, Sato M, Handa Y. Increase of muscle activities in hemiplegic lower extremity during driving a cycling wheelchair. Tohoku J Exp Med. 2009;219(2):129-138.
71. Lewek MD, Randall EP. Reliability of spatiotemporal asymmetry during overground walking for individuals following chronic stroke. J Neurol Phys Ther. 2011;35(3):116-121.
72. Petersen TH, Willerslev-Olsen M, Conway BA, Nielsen JB. The motor cortex drives the muscles during walking in human subjects. J Physiol. 2012;590(10):2443-2452.
73. Roeder L, Boonstra TW, Smith SS, Kerr GK. Dynamics of corticospinal motor control during overground and treadmill walking in humans. Journal of neurophysiology. 2018;120(3):1017-1031.
74. Patino L, Omlor W, Chakarov V, Hepp-Reymond M-C, Kristeva R. Absence of gamma-range corticomuscular coherence during dynamic force in a deafferented patient. Journal of neurophysiology. 2008;99(4):1906-1916.
75. Li S, Francisco GE, Zhou P. Post-stroke hemiplegic gait: new perspective and insights. Front Physiol. 2018;9:1021.
76. Weersink JB, Maurits NM, de Jong BM. Amble Gait EEG Points at Complementary Cortical Networks Underlying Stereotypic Multi-Limb Co-ordination. Front Hum Neurosci. 2021:447.
77. Wagner J, Solis-Escalante T, Grieshofer P, Neuper C, Müller-Putz G, Scherer R. Level of participation in robotic-assisted treadmill walking modulates midline sensorimotor EEG rhythms in able-bodied subjects. Neuroimage. 2012;63(3):1203-1211.
78. Jain S, Gourab K, Schindler-Ivens S, Schmit BD. EEG during pedaling: evidence for cortical control of locomotor tasks. Clin Neurophysiol. 2013;124(2):379-390.
79. Heng H-M, Lu M-K, Chou L-W, et al. Changes in balance, gait and electroencephalography oscillations after robot-assisted gait training: An exploratory study in people with chronic stroke. J Brain Sci. 2020;10(11):821.
80. Bulea TC, Kim J, Damiano DL, Stanley CJ, Park H-S. Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Front Hum Neurosci. 2015;9:247.
81. Nordin AD, Hairston WD, Ferris DP. Faster gait speeds reduce alpha and beta EEG spectral power from human sensorimotor cortex. IEEE Trans Biomed Eng. 2019;67(3):842-853.
82. Hari R, Salmelin R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci. 1997;20(1):44-49.
83. Foxe JJ, Snyder AC. The role of alpha-band brain oscillations as a sensory suppression mechanism during selective attention. Front Psychol. 2011;2:154.
84. Su S, Chai G, Sheng X, Meng J, Zhu X. Contra-lateral desynchronized alpha oscillations linearly correlate with discrimination performance of tactile acuity. J Neural Eng. 2020;17(4):046041.
85. Espenhahn S, Rossiter HE, van Wijk BC, et al. Sensorimotor cortex beta oscillations reflect motor skill learning ability after stroke. J Brain Sci. 2020;2(2):fcaa161.
86. Bauer M, Oostenveld R, Peeters M, Fries P. Tactile spatial attention enhances gamma-band activity in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J Neurosci. 2006;26(2):490-501.
87. Dyer J-O, Maupas E, de Andrade Melo S, Bourbonnais D, Forget R. Abnormal coactivation of knee and ankle extensors is related to changes in heteronymous spinal pathways after stroke. J Neuroeng Rehabilitation. 2011;8(1):1-14.
88. Righetti L, Ijspeert AJ. Pattern generators with sensory feedback for the control of quadruped locomotion. Paper presented at: 2008 IEEE International Conference on Robotics and Automation2008.
89. Wheaton LA, Mizelle J, Forrester LW, Bai O, Shibasaki H, Macko RF. How does the brain respond to unimodal and bimodal sensory demand in movement of the lower extremity? Experimental brain research. 2007;180(2):345-354.
90. Bao S-C, Leung KW, Tong K-Y. Cortico-muscular interaction to monitor the effects of neuromuscular electrical stimulation pedaling training in chronic stroke. Comput Biol Med. 2021;137:104801.
91. Koseki T, Kudo D, Katagiri N, et al. Electrical stimulation of the common peroneal nerve and its effects on the relationship between corticomuscular coherence and motor control in healthy adults. BMC Neurol. 2021;22(1):1-9.
92. Artoni F, Fanciullacci C, Bertolucci F, et al. Unidirectional brain to muscle connectivity reveals motor cortex control of leg muscles during stereotyped walking. Neuroimage. 2017;159:403-416.
93. Ting WK-C, Huot-Lavoie M, Ethier C. Paired associative stimulation fails to induce plasticity in freely behaving intact rats. Eneuro. 2020;7(2).
94. Balasubramanian CK, Bowden MG, Neptune RR, Kautz SAJAopm, rehabilitation. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch Phys Med Rehabil. 2007;88(1):43-49.
95. Becher JG, Harlaar J, Lankhorst GJ, Vogelaar TW. Measurement of impaired muscle function of the gastrocnemius, soleus, and tibialis anterior muscles in spastic hemiplegia: a preliminary study. J Rehabil Res Dev. 1998;35:314-326.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊