跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 09:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:嚴亞靖
研究生(外文):Yen, Ya-Ching
論文名稱:第一型單純皰疹病毒和伴放線桿菌對於口腔上皮細胞發炎相關路徑的影響
論文名稱(外文):Effects of herpes simplex virus type 1 and Aggregatibacter actinomycetemcomitans on the pathways related to inflammation in oral epithelial cells
指導教授:洪善鈴
指導教授(外文):Hung, Shan-Ling
口試委員:吳靜宜林怡彣
口試委員(外文):Wu, Ching-YiLin, Yi-Wen
口試日期:2023-07-24
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:119
中文關鍵詞:伴放線桿菌第一型單純皰疹病毒口腔上皮細胞細胞存活度病毒產量p38 訊息傳遞路徑
外文關鍵詞:Aggregatibacter actinomycetemcomitansherpes simplex virus type 1oral epithelial cellscell viabilityviral yieldp38 signaling pathway
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要....................................................i
Abstract...................................................iv
目錄.......................................................vi
圖目錄.....................................................ix
表目錄.....................................................xi
緒論........................................................1
牙周病 (periodontal disease) 的發生..........................1
HSV之結構組成................................................2
人類皰疹病毒 (human herpesviruses, HHV) 與牙周病發生之關聯....2
HSV感染後所引起之臨床症狀.....................................4
HSV通過細胞受體進入宿主細胞之感染機制..........................5
HSV感染週期之基因表現........................................7
人類牙周病中皰疹病毒和牙周致病菌之關聯.........................9
牙周致病菌與牙周病發生之關聯和感染機制........................11
與HSV或A. actinomycetemcomitans感染相關之訊息傳遞路徑........13
與HSV或A. actinomycetemcomitans相關之Toll樣受體 (Toll like receptors, TLR)............................................16
目前所屬實驗室已發表與HSV-1和A. actinomycetemcomitans共同感染之研究結果...................................................17
研究動機...................................................18
實驗材料與方法..............................................20
口腔上皮細胞培養與繼代培養 (Cell culture and subculture).....20
第一型單純皰疹病毒的純化和製備 (HSV-1 purification)..........22
牙周致病菌培養與感染處理.....................................28
HSV-1和A. actinomycetemcomitans共同感染的流程...............30
口腔上皮細胞存活度測定 (Cell viability assay)................32
病毒斑點試驗 (Plaque assay).................................35
蛋白質或RNA樣本製備 (Protein or RNA samples preparation)....37
蛋白質或RNA樣本濃度定量 (Protein or RNA concentration quantification)............................................43
西方墨點法 (Western blotting analysis)......................45
反轉錄定量聚合酶連鎖反應 (Reverse transcription-quantitative polymerase chain reaction, RT-qPCR)........................50
瓊脂糖凝膠電泳 (Agarose gel electrophoresis)................54
統計分析 (Statistical analysis)............................57
結果.......................................................58
HSV-1和A. actinomycetemcomitans共同感染對於OC3細胞之型態的變化及存活度的影響................................................58
HSV-1和A. actinomycetemcomitans共同感染對於OC3細胞之病毒產量的影響.........................................................59
HSV-1和A. actinomycetemcomitans共同感染OC3細胞3及20小時後對於訊息傳遞路徑JNK、p38和ERK以及ICAM-1蛋白質表現的影響.............60
HSV-1和A. actinomycetemcomitans共同感染OC3細胞20小時後對於18S rRNA與GAPDH、TLR2、TLR3、TLR4和ICAM-1 mRNA表現的影響........63
HSV-1和A. actinomycetemcomitans共同感染OC3細胞1、3、5小時後對於GAPDH和TLR2 mRNA表現的影響..................................67
HSV-1和A. actinomycetemcomitans共同感染OC3細胞20小時後對於TLR4蛋白質表現的影響............................................69
不同濃度SB203580對於HSV-1感染OC3細胞之病毒產量的影響..........69
不同濃度SB203580對於HSV-1感染OC3細胞20小時後之訊息傳遞路徑p38蛋白質表現的影響................................................70
10 μM SB203580對於HSV-1和A. actinomycetemcomitans共同感染OC3細胞之病毒產量的影響..........................................70
10 μM SB203580對於HSV-1和A. actinomycetemcomitans共同感染OC3細胞20小時後之訊息傳遞路徑p38蛋白質表現的影響...................71
討論.......................................................73
圖.........................................................81
表........................................................102
參考文獻..................................................109
1. Liu B, Faller LL, Klitgord N, Mazumdar V, Ghodsi M, Sommer DD, et al. Deep sequencing of the oral microbiome reveals signatures of periodontal disease. PLoS One 2012;7:e37919.
2. Lamont RJ, Koo H, Hajishengallis G. The oral microbiota: dynamic communities and host interactions. Nat. Rev. Microbiol. 2018;16:745-59.
3. Williams RC. Periodontal disease. N. Engl. J. Med. 1990;322:373-82.
4. Nazir M, Al-Ansari A, Al-Khalifa K, Alhareky M, Gaffar B, Almas K. Global prevalence of periodontal disease and lack of its surveillance. Sci. World J. 2020;2020:2146160.
5. Eke PI, Borgnakke WS, Genco RJ. Recent epidemiologic trends in periodontitis in the USA. Periodontol. 2000 2020;82:257-67.
6. Eke PI, Dye B, Wei L, Thornton-Evans G, Genco R. Prevalence of periodontitis in adults in the United States: 2009 and 2010. J. Dent. Res. 2012;91:914-20.
7. Eke PI, Wei L, Thornton‐Evans GO, Borrell LN, Borgnakke WS, Dye B, et al. Risk indicators for periodontitis in US adults: NHANES 2009 to 2012. J. Periodontol. 2016;87:1174-85.
8. Păunică I, Giurgiu M, Dumitriu AS, Păunică S, Pantea Stoian AM, Martu MA, et al. The bidirectional relationship between periodontal disease and diabetes mellitus-a review. Diagnostics (Basel) 2023;13:681.
9. Widener RW, Whitley RJ. Herpes simplex virus. Handb Clin Neurol 2014;123:251-63.
10. Lan K, Luo MH. Herpesviruses: epidemiology, pathogenesis, and interventions. Virol. Sin. 2017;32:347-8.
11. Virus Taxonomy: The classification and nomenclature of viruses The online (10th) report of the ICTV, 2017. URL〈https://talk.ictvonline.org/ictv-reports/ictv_online_report/〉.
12. Zmasek CM, Knipe DM, Pellett PE, Scheuermann RH. Classification of human Herpesviridae proteins using Domain-architecture Aware Inference of Orthologs (DAIO). Virology 2019;529:29-42.
13. Kukhanova M, Korovina A, Kochetkov S. Human herpes simplex virus: life cycle and development of inhibitors. Biochemistry (Moscow) 2014;79:1635-52.
14. Saygun I, Sahin S, Ozdemir A, Kurtiş B, Yapar M, Kubar A, et al. Detection of human viruses in patients with chronic periodontitis and the relationship between viruses and clinical parameters. J. Periodontol. 2002;73:1437-43.
15. Slots J. Periodontal herpesviruses: prevalence, pathogenicity, systemic risk. Periodontol. 2000 2015;69:28-45.
16. Schneweis KE. Serological relations of types 1 and 2 of Herpesvirus hominis to Herpesvirus simiae. Z Immun exp ther 1962;124:337-41.
17. Looker KJ, Magaret AS, May MT, Turner KM, Vickerman P, Gottlieb SL, et al. Global and regional estimates of prevalent and incident herpes simplex virus type 1 infections in 2012. PLoS One 2015;10:e0140765.
18. Looker KJ, Magaret AS, Turner KM, Vickerman P, Gottlieb SL, Newman LM. Global estimates of prevalent and incident herpes simplex virus type 2 infections in 2012. PLoS One 2015;10:e114989.
19. Fatahzadeh M, Schwartz RA. Human herpes simplex virus infections: epidemiology, pathogenesis, symptomatology, diagnosis, and management. J. Am. Acad. Dermatol. 2007;57:737-63.
20. Arduino PG, Porter SR. Herpes Simplex Virus Type 1 infection: overview on relevant clinico-pathological features. J. Oral Pathol. Med. 2008;37:107-21.
21. Whitley RJ, Roizman B. Herpes simplex virus infections. Lancet 2001;357:1513-8.
22. Dohvoma C. Primary herpetic gingivostomatitis with multiple herpetic whitlows. Br Dent J 1994;177:251-2.
23. Kimberlin DW. Neonatal herpes simplex infection. Clin. Microbiol. Rev. 2004;17:1-13.
24. Agelidis AM, Shukla D. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol 2015;10:1145-54.
25. Herold BC, WuDUNN D, Soltys N, Spear PG. Glycoprotein C of herpes simplex virus type 1 plays a principal role in the adsorption of virus to cells and in infectivity. J. Virol. 1991;65:1090-8.
26. Herold BC, Visalli RJ, Susmarski N, Brandt CR, Spear PG. Glycoprotein C-independent binding of herpes simplex virus to cells requires cell surface heparan sulphate and glycoprotein B. J. Gen. Virol. 1994;75:1211-22.
27. Rodger G, Boname J, Bell S, Minson T. Assembly and organization of glycoproteins B, C, D, and H in herpes simplex virus type 1 particles lacking individual glycoproteins: no evidence for the formation of a complex of these molecules. J. Virol. 2001;75:710-6.
28. Montgomery RI, Warner MS, Lum BJ, Spear PG. Herpes simplex virus-1 entry into cells mediated by a novel member of the TNF/NGF receptor family. Cell 1996;87:427-36.
29. Warner MS, Geraghty RJ, Martinez WM, Montgomery RI, Whitbeck JC, Xu R, et al. A cell surface protein with herpesvirus entry activity (HveB) confers susceptibility to infection by mutants of herpes simplex virus type 1, herpes simplex virus type 2, and pseudorabies virus. Virology 1998;246:179-89.
30. Geraghty RJ, Krummenacher C, Cohen GH, Eisenberg RJ, Spear PG. Entry of alphaherpesviruses mediated by poliovirus receptor-related protein 1 and poliovirus receptor. Science 1998;280:1618-20.
31. Satoh-Horikawa K, Nakanishi H, Takahashi K, Miyahara M, Nishimura M, Tachibana K, et al. Nectin-3, a new member of immunoglobulin-like cell adhesion molecules that shows homophilic and heterophilic cell-cell adhesion activities. J. Biol. Chem. 2000;275:10291-9.
32. Shukla D, Liu J, Blaiklock P, Shworak NW, Bai X, Esko JD, et al. A novel role for 3-O-sulfated heparan sulfate in herpes simplex virus 1 entry. Cell 1999;99:13-22.
33. Turner A, Bruun B, Minson T, Browne H. Glycoproteins gB, gD, and gHgL of herpes simplex virus type 1 are necessary and sufficient to mediate membrane fusion in a Cos cell transfection system. J. Virol. 1998;72:873-5.
34. Dustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. Induction by IL 1 and interferon-gamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J. Immunol. 1986;137:245-54.
35. Dustin ML, Singer K, Tuck DT, Springer TA. Adhesion of T lymphoblasts to epidermal keratinocytes is regulated by interferon gamma and is mediated by intercellular adhesion molecule 1 (ICAM-1). J. Exp. Med. 1988;167:1323-40.
36. Myers CL, Wertheimer SJ, Schembri-King J, Parks T, Wallace RW. Induction of ICAM-1 by TNF-alpha, IL-1 beta, and LPS in human endothelial cells after downregulation of PKC. Am. J. Physiol. 1992;263:C767-72.
37. Holtzman MJ, Morton JD, Shornick LP, Tyner JW, O'Sullivan MP, Antao A, et al. Immunity, inflammation, and remodeling in the airway epithelial barrier: epithelial-viral-allergic paradigm. Physiol. Rev. 2002;82:19-46.
38. Kim YC, Bang D, Lee S, Lee K-H. The effect of herpesvirus infection on the expression of cell adhesion molecules on cultured human dermal microvascular endothelial cells. J. Dermatol. Sci. 2000;24:38-47.
39. Othumpangat S, Noti JD, McMillen CM, Beezhold DH. ICAM-1 regulates the survival of influenza virus in lung epithelial cells during the early stages of infection. Virology 2016;487:85-94.
40. Kato A, Adachi S, Kawano S, Takeshima K, Watanabe M, Kitazume S, et al. Identification of a herpes simplex virus 1 gene encoding neurovirulence factor by chemical proteomics. Nat. Commun. 2020;11:4894.
41. Minaya MA, Jensen TL, Goll JB, Korom M, Datla SH, Belshe RB, et al. Molecular evolution of herpes simplex virus 2 complete genomes: comparison between primary and recurrent infections. J. Virol. 2017;91:e00942-17.
42. Agelidis AM, Shukla D. Cell entry mechanisms of HSV: what we have learned in recent years. Future Virol 2015;10:1145-54.
43. Smith MC, Boutell C, Davido DJ. HSV-1 ICP0: paving the way for viral replication. Future Virol 2011;6:421-9.
44. Boehmer PE, Lehman I. Herpes simplex virus type 1 ICP8: helix-destabilizing properties. J. Virol. 1993;67:711-5.
45. Celluzzi CN, Farber FE. Role of the major capsid protein in herpes simplex virus type-1 capsid assembly. Acta Virol. 1990;34:497-507.
46. Everett RD. HSV-1 biology and life cycle. Methods Mol Biol 2014;1144:1-17
47. Contreras A, Umeda M, Chen C, Bakker I, Morrison JL, Slots J. Relationship between herpesviruses and adult periodontitis and periodontopathic bacteria. J. Periodontol. 1999;70:478-84.
48. Contreras A, Slots J. Herpesviruses in human periodontal disease. J. Periodont. Res. 2000;35:3-16.
49. Ehrlich J, Cohen GH, Hochman N. Specific herpes simplex virus antigen in human gingiva. J. Periodontol. 1983;54:357-60.
50. Contreras A, Slots J. Typing of herpes simplex virus from human periodontium. Oral Microbiol. Immunol. 2001;16:63-4.
51. Saygun I, Kubar A, Ozdemir A, Yapar M, Slots J. Herpesviral-bacterial interrelationships in aggressive periodontitis. J. Periodont. Res. 2004;39:207-12.
52. Imbronito AV, Okuda OS, Maria de Freitas N, Moreira Lotufo RF, Nunes FD. Detection of herpesviruses and periodontal pathogens in subgingival plaque of patients with chronic periodontitis, generalized aggressive periodontitis, or gingivitis. J. Periodontol. 2008;79:2313-21.
53. Verma D, Garg PK, Dubey AK. Insights into the human oral microbiome. Arch. Microbiol. 2018;200:525-40.
54. Kumar PS, Griffen AL, Moeschberger ML, Leys EJ. Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. J. Clin. Microbiol. 2005;43:3944-55.
55. Slots J. The predominant cultivable organisms in juvenile periodontitis. Scand J Dent Res 1976;84:1-10.
56. Slots J, Reynolds HS, Genco RJ. Actinobacillus actinomycetemcomitans in human periodontal disease: a cross-sectional microbiological investigation. Infect. Immun. 1980;29:1013-20.
57. Claesson R, Höglund-Åberg C, Haubek D, Johansson A. Age-related prevalence and characteristics of Aggregatibacter actinomycetemcomitans in periodontitis patients living in Sweden. J. Oral. Microbiol. 2017;9:1334504.
58. Brown SA, Whiteley M. A novel exclusion mechanism for carbon resource partitioning in Aggregatibacter actinomycetemcomitans. J. Bacteriol. 2007;189:6407-14.
59. Takada K, Saito M, Tsuzukibashi O, Kawashima Y, Ishida S, Hirasawa M. Characterization of a new serotype g isolate of Aggregatibacter actinomycetemcomitans. Mol Oral Microbiol 2010;25:200-6.
60. Celenligil H, Ebersole JL. Analysis of serum antibody responses to periodontopathogens in early-onset periodontitis patients from different geographical locations. J. Clin. Periodontol. 1998;25:994-1002.
61. Berthold P, Forti D, Kieba I, Rosenbloom J, Taichman N, Lally E. Electron immunocytochemical localization of Actinobacillus actinomycetemcomitans leukotoxin. Oral Microbiol. Immunol. 1992;7:24-7.
62. Rabie G, Lally ET, Shenker BJ. Immunosuppressive properties of Actinobacillus actinomycetemcomitans leukotoxin. Infect. Immun. 1988;56:122-7.
63. Lally ET, Kieba IR, Sato A, Green CL, Rosenbloom J, Korostoff J, et al. RTX toxins recognize a β2 integrin on the surface of human target cells. J. Biol. Chem. 1997;272:30463-9.
64. Permpanich P, Kowolik MJ, Galli DM. Resistance of fluorescent‐labelled Actinobacillus actinomycetemcomitans strains to phagocytosis and killing by human neutrophils. Cell. Microbiol. 2006;8:72-84.
65. Sordi MB, Magini RdS, Panahipour L, Gruber R. Pyroptosis-mediated periodontal disease. Int. J. Mol. Sci. 2022;23:372.
66. DiRienzo JM. Breaking the gingival epithelial barrier: role of the Aggregatibacter actinomycetemcomitans cytolethal distending toxin in oral infectious disease. Cells 2014;3:476-99.
67. Henderson B, Wilson M, Hyams J. Cellular microbiology: cycling into the millennium. Trends Cell Biol. 1998;8:384-7.
68. Shenker BJ, Hoffmaster RH, McKay TL, Demuth DR. Expression of the cytolethal distending toxin (Cdt) operon in Actinobacillus actinomycetemcomitans: evidence that the CdtB protein is responsible for G2 arrest of the cell cycle in human T cells. J. Immunol. 2000;165:2612-8.
69. Shalini S, Ganesh P, Anand A. Actinobacillus actinomycetemcomitans septicemia during pregnancy. Int J Gynaecol Obstet 1995;1:57-8.
70. Cuende E, Pablos Md, Gómez M, Burgaleta S, Michaus L, Vesga JC. Coexistence of pseudogout and arthritis due to Actinobacillus actinomycetemcomitans. Clin. Infect. Dis. 1996;23:657-8.
71. Nakano K, Inaba H, Nomura R, Nemoto H, Tamura K, Miyamoto E, et al. Detection and serotype distribution of Actinobacillus actinomycetemcomitans in cardiovascular specimens from Japanese patients. Oral microbiol. immunol. 2007;22:136-9.
72. Antony B, Thomas S, Chandrashekar S, Kumar MS, Kumar V. Osteomyelitis of the mandible due to Aggregatibacter (Actinobacillus) actinomycetemcomitans. Indian J Pathol Microbiol 2009;52:115.
73. Zambon JJ. Actinobacillus actinomycetemcomitans in human periodontal disease. J. Clin. Periodontol. 1985;12:1-20.
74. Fives-Taylor PM, Meyer DH, Mintz KP, Brissette C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol. 2000 1999;20:136-67.
75. Page RC, Schroeder HE. Pathogenesis of inflammatory periodontal disease. A summary of current work. Lab. Invest. 1976;34:235-49.
76. Garlet GP, Avila-Campos MJ, Milanezi CM, Ferreira BR, Silva JS. Actinobacillus actinomycetemcomitans-induced periodontal disease in mice: patterns of cytokine, chemokine, and chemokine receptor expression and leukocyte migration. Microbes Infect. 2005;7:738-47.
77. McCauley LK, Nohutcu RM. Mediators of periodontal osseous destruction and remodeling: principles and implications for diagnosis and therapy. J. Periodontol. 2002;73:1377-91.
78. Fine DH, Markowitz K, Furgang D, Fairlie K, Ferrandiz J, Nasri C, et al. Aggregatibacter actinomycetemcomitans and its relationship to initiation of localized aggressive periodontitis: longitudinal cohort study of initially healthy adolescents. J. Clin. Microbiol. 2007;45:3859-69.
79. Chuluunbaatar U, Roller R, Mohr I. Suppression of extracellular signal-regulated kinase activity in herpes simplex virus 1-infected cells by the Us3 protein kinase. J. Virol. 2012;86:7771-6.
80. Walsh D, Perez C, Notary J, Mohr I. Regulation of the translation initiation factor eIF4F by multiple mechanisms in human cytomegalovirus-infected cells. J. Virol. 2005;79:8057-64.
81. Izumi KM. Epstein-Barr virus signal transduction and B-lymphocyte growth transformation. Prog Mol Subcell Biol 2004;36:269-88.
82. Walsh D, Mohr I. Phosphorylation of eIF4E by Mnk-1 enhances HSV-1 translation and replication in quiescent cells. Genes Dev. 2004;18:660-72.
83. Yu JH, Lin BY, Deng W, Broker TR, Chow LT. Mitogen-activated protein kinases activate the nuclear localization sequence of human papillomavirus type 11 E1 DNA helicase to promote efficient nuclear import. J. Virol. 2007;81:5066-78.
84. Walsh D, Arias C, Perez C, Halladin D, Escandon M, Ueda T, et al. Eukaryotic translation initiation factor 4F architectural alterations accompany translation initiation factor redistribution in poxvirus-infected cells. Mol. Cell. Biol. 2008;28:2648-58.
85. Pleschka S. RNA viruses and the mitogenic Raf/MEK/ERK signal transduction cascade. Biol. Chem. 2008;389:1273-82.
86. Rajaiya J, Xiao J, Rajala RV, Chodosh J. Human adenovirus type 19 infection of corneal cells induces p38 MAPK-dependent interleukin-8 expression. Virol J 2008;5:17.
87. Schaeffer HJ, Weber MJ. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 1999;19:2435-44.
88. Zachos G, Clements B, Conner J. Herpes simplex virus type 1 infection stimulates p38/c-Jun N-terminal mitogen-activated protein kinase pathways and activates transcription factor AP-1. J. Biol. Chem. 1999;274:5097-103.
89. McLean TI, Bachenheimer SL. Activation of cJUN N-terminal kinase by herpes simplex virus type 1 enhances viral replication. J. Virol. 1999;73:8415-26.
90. Karaca G, Hargett D, McLean TI, Aguilar J, Ghazal P, Wagner EK, et al. Inhibition of the stress-activated kinase, p38, does not affect the virus transcriptional program of herpes simplex virus type 1. Virology 2004;329:142-56.
91. Colao I, Pennisi R, Venuti A, Nygårdas M, Heikkilä O, Hukkanen V, et al. The ERK-1 function is required for HSV-1-mediated G1/S progression in HEP-2 cells and contributes to virus growth. Sci. Rep. 2017;7:9176.
92. Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositide-regulated kinases: kinase activation by phosphoinositide-dependent phosphorylation. Annu. Rev. Biochem. 1999;68:965-1014.
93. Yin W, Signore AP, Iwai M, Cao G, Gao Y, Johnnides MJ, et al. Preconditioning suppresses inflammation in neonatal hypoxic ischemia via Akt activation. Stroke 2007;38:1017-24.
94. Cooray S. The pivotal role of phosphatidylinositol 3-kinase–Akt signal transduction in virus survival. J. Gen. Virol. 2004;85:1065-76.
95. Hsu MJ, Wu CY, Chiang HH, Lai YL, Hung SL. PI3K/Akt signaling mediated apoptosis blockage and viral gene expression in oral epithelial cells during herpes simplex virus infection. Virus Res. 2010;153:36-43.
96. Dunmyer J, Herbert B, Li Q, Zinna R, Martin K, Yu H, et al. Sustained mitogen-activated protein kinase activation with Aggregatibacter actinomycetemcomitans causes inflammatory bone loss. Mol Oral Microbiol 2012;27:397-407.
97. Kirkwood K, Martin T, Andreadis ST, Kim YJ. Chemically modified tetracyclines selectively inhibit IL-6 expression in osteoblasts by decreasing mRNA stability. Biochem. Pharmacol. 2003;66:1809-19.
98. Dean JL, Brook M, Clark AR, Saklatvala J. p38 mitogen-activated protein kinase regulates cyclooxygenase-2 mRNA stability and transcription in lipopolysaccharide-treated human monocytes. J. Biol. Chem. 1999;274:264-9.
99. Kato S, Sugimura N, Nakashima K, Nishihara T, Kowashi Y. Actinobacillus actinomycetemcomitans induces apoptosis in human monocytic THP-1 cells. J. Med. Microbiol. 2005;54:293-8.
100. Assinger A, Laky M, Schabbauer G, Hirschl AM, Buchberger E, Binder BR, et al. Efficient phagocytosis of periodontopathogens by neutrophils requires plasma factors, platelets and TLR2. J. Thromb. Haemost. 2011;9:799-809.
101. Schroder K, Tschopp J. The inflammasomes. Cell 2010;140:821-32.
102. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011;30:16-34.
103. Nie L, Cai S-Y, Shao J-Z, Chen J. Toll-like receptors, associated biological roles, and signaling networks in non-mammals. Front. Immunol. 2018;9:1523.
104. Cai M, Li M, Wang K, Wang S, Lu Q, Yan J, et al. The herpes simplex virus 1-encoded envelope glycoprotein B activates NF-κB through the Toll-like receptor 2 and MyD88/TRAF6-dependent signaling pathway. PLoS One 2013;8:e54586.
105. Zhang SY, Herman M, Ciancanelli MJ, Pérez de Diego R, Sancho-Shimizu V, Abel L, et al. TLR3 immunity to infection in mice and humans. Curr. Opin. Immunol. 2013;25:19-33.
106. Latz E, Schoenemeyer A, Visintin A, Fitzgerald KA, Monks BG, Knetter CF, et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 2004;5:190-8.
107. Mori Y, Yoshimura A, Ukai T, Lien E, Espevik T, Hara Y. Immunohistochemical localization of Toll‐like receptors 2 and 4 in gingival tissue from patients with periodontitis. Oral microbiol. immunol. 2003;18:54-8.
108. Kikkert R, Laine M, Aarden L, Van Winkelhoff A. Activation of toll‐like receptors 2 and 4 by gram‐negative periodontal bacteria. Oral microbiol. immunol. 2007;22:145-51.
109. Wu CY, Yu ZY, Hsu YC, Hung SL. Enhancing production of herpes simplex virus type 1 in oral epithelial cells by co-infection with Aggregatibacter actinomycetemcomitans. J. Formos. Med. Assoc. 2022;121:1841-9.
110. Lin SC, Liu CJ, Chiu CP, Chang SM, Lu SY, Chen YJ. Establishment of OC3 oral carcinoma cell line and identification of NF-kappa B activation responses to areca nut extract. J. Oral Pathol. Med. 2004;33:79-86.
111. Hsiao JR, Leu SF, Huang BM. Apoptotic mechanism of paclitaxel-induced cell death in human head and neck tumor cell lines. J. Oral Pathol. Med. 2009;38:188-97.
112. Yasumura Y. Studies on SV40 in tissue culture: preliminary step for cancer reserach in vitro (in Japanese). Nihon rinsho 1963;21:1201.
113. Osada N, Kohara A, Yamaji T, Hirayama N, Kasai F, Sekizuka T, et al. The genome landscape of the african green monkey kidney-derived vero cell line. DNA Res. 2014;21:673-83.
114. Desmyter J, Melnick JL, Rawls WE. Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J. Virol. 1968;2:955-61.
115. Handler CG, Eisenberg RJ, Cohen GH. Oligomeric structure of glycoproteins in herpes simplex virus type 1. J. Virol. 1996;70:6067-70.
116. Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnology Annu. Rev. 2005;11:127-52.
117. Gronowicz E, Coutinho A, Melchers F. A plaque assay for all cells secreting Ig of a given type or class. Eur. J. Immunol. 1976;6:588-90.
118. Huang T, Long M, Huo B. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay. Open Biomed. Eng. J. 2010;4:271-8.
119. Burnette WN. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal. Biochem. 1981;112:195-203.
120. Hu Y, Meng X, Zhang F, Xiang Y, Wang J. The in vitro antiviral activity of lactoferrin against common human coronaviruses and SARS-CoV-2 is mediated by targeting the heparan sulfate co-receptor. Emerg Microbes Infect. 2021;10:317-30.
121. Slots J. Oral viral infections of adults. Periodontol. 2000 2009;49:60-86.
122. Koyama AH, Fukumori T, Fujita M, Irie H, Adachi A. Physiological significance of apoptosis in animal virus infection. Microbes Infect. 2000;2:1111-7.
123. Elwell CA, Dreyfus LA. DNase I homologous residues in CdtB are critical for cytolethal distending toxin‐mediated cell cycle arrest. Mol. Microbiol. 2000;37:952-63.
124. Alaoui-El-Azher M, Mans JJ, Baker HV, Chen C, Progulske-Fox A, Lamont RJ, et al. Role of the ATM-checkpoint kinase 2 pathway in CDT-mediated apoptosis of gingival epithelial cells. PLoS One 2010;5:e11714.
125. Pathak S, Wentzel-Larsen T, Asjö B. Effects of in vitro HIV-1 infection on mycobacterial growth in peripheral blood monocyte-derived macrophages. Infect. Immun. 2010;78:4022-32.
126. Dembowski JA, Dremel SE, DeLuca NA. Replication-coupled recruitment of viral and cellular factors to herpes simplex virus type 1 replication forks for the maintenance and expression of viral genomes. PLoS Pathog. 2017;13:e1006166.
127. Owens D, Keyse S. Differential regulation of MAP kinase signalling by dual-specificity protein phosphatases. Oncogene 2007;26:3203-13.
128. Franklin CC, Kraft AS. Conditional expression of the mitogen-activated protein kinase (MAPK) phosphatase MKP-1 preferentially inhibits p38 MAPK and stress-activated protein kinase in U937 cells. J. Biol. Chem. 1997;272:16917-23.
129. Bode JG, Ehlting C, Häussinger D. The macrophage response towards LPS and its control through the p38MAPK–STAT3 axis. Cell. signal. 2012;24:1185-94.
130. Cáceres A, Perdiguero B, Gómez CE, Cepeda MV, Caelles C, Sorzano CO, et al. Involvement of the cellular phosphatase DUSP1 in vaccinia virus infection. PLoS Pathog. 2013;9:e1003719
131. Robitaille AC, Caron E, Zucchini N, Mukawera E, Adam D, Mariani MK, et al. DUSP1 regulates apoptosis and cell migration, but not the JIP1-protected cytokine response, during Respiratory Syncytial Virus and Sendai Virus infection. Sci. Rep. 2017;7:17388.
132. Theodosiou A, Smith A, Gillieron C, Arkinstall S, Ashworth A. MKP5, a new member of the MAP kinase phosphatase family, which selectively dephosphorylates stress-activated kinases. Oncogene 1999;18:6981-8.
133. Zhang Y, Blattman JN, Kennedy NJ, Duong J, Nguyen T, Wang Y, et al. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 2004;430:793-7.
134. Qian F, Deng J, Cheng N, Welch EJ, Zhang Y, Malik AB, et al. A non‐redundant role for MKP5 in limiting ROS production and preventing LPS‐induced vascular injury. EMBO J. 2009;28:2896-907.
135. Jeffrey KL, Brummer T, Rolph MS, Liu SM, Callejas NA, Grumont RJ, et al. Positive regulation of immune cell function and inflammatory responses by phosphatase PAC-1. Nat. Immunol. 2006;7:274-83.
136. Shen YH, Godlewski J, Zhu J, Sathyanarayana P, Leaner V, Birrer MJ, et al. Cross-talk between JNK/SAPK and ERK/MAPK pathways: sustained activation of JNK blocks ERK activation by mitogenic factors. J. Biol. Chem. 2003;278:26715-21.
137. Zhang H, Shi X, Hampong M, Blanis L, Pelech S. Stress-induced inhibition of ERK1 and ERK2 by direct interaction with p38 MAP kinase. J. Biol. Chem. 2001;276:6905-8.
138. Lu G, Kang YJ, Han J, Herschman HR, Stefani E, Wang Y. TAB-1 modulates intracellular localization of p38 MAP kinase and downstream signaling. J. Biol. Chem. 2006;281:6087-95.
139. Cheng Y, Sun F, Wang L, Gao M, Xie Y, Sun Y, et al. Virus-induced p38 MAPK activation facilitates viral infection. Theranostics 2020;10:12223-40.
140. Imai H, Fujita T, Kajiya M, Ouhara K, Miyagawa T, Matsuda S, et al. Amphotericin B down-regulates Aggregatibacter actinomycetemcomitans-induced production of IL-8 and IL-6 in human gingival epithelial cells. Cell. Immunol. 2014;290:201-8.
141. Kim WJ, Choi JW, Jang WJ, Kang YS, Lee CW, Synytsya A, et al. Low-molecular weight mannogalactofucans prevent herpes simplex virus type 1 infection via activation of Toll-like receptor 2. Int. J. Biol. Macromol. 2017;103:286-93.
142. Peri P, Mattila RK, Kantola H, Broberg E, Karttunen HS, Waris M, et al. Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells. Virol J 2008;5:140.
143. Serio KJ, Johns SC, Luo L, Hodulik CR, Bigby TD. Lipopolysaccharide down-regulates the leukotriene C4 synthase gene in the monocyte-like cell line, THP-1. J. Immunol. 2003;170:2121-8.
144. Cheng CY, Chen YH, Thuy Tien Vo T, Chui Hong Y, Wang CS, Canh Vo Q, et al. CORM-2 prevents human gingival fibroblasts from lipoteichoic acid-induced VCAM-1 and ICAM-1 expression by inhibiting TLR2/MyD88/TRAF6/PI3K/Akt/ROS/NF-κB signaling pathway. Biochem. Pharmacol. 2022;201:115099.
145. van Dijk IA, Laura Ferrando M, van der Wijk AE, Hoebe RA, Nazmi K, de Jonge WJ, et al. Human salivary peptide histatin‐1 stimulates epithelial and endothelial cell adhesion and barrier function. FASEB J. 2017;31:3922-33.
146. Dong Z, Yang L, Lai D. KLF 5 strengthens drug resistance of ovarian cancer stem‐like cells by regulating survivin expression. Cell Prolif. 2013;46:425-35.
電子全文 電子全文(網際網路公開日期:20260819)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊