|
1. Sapp, J., The prokaryote-eukaryote dichotomy: meanings and mythology. Microbiol Mol Biol Rev, 2005. 69(2): p. 292-305. 2. Pace, N.R., Time for a change. Nature, 2006. 441(7091): p. 289. 3. Gribaldo, S. and C. Brochier-Armanet, The origin and evolution of Archaea: a state of the art. Philos Trans R Soc Lond B Biol Sci, 2006. 361(1470): p. 1007-22. 4. Stetter, K.O., Extremophiles and their adaptation to hot environments. FEBS Lett, 1999. 452(1-2): p. 22-5. 5. Stetter, K.O., Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci, 2006. 361(1474): p. 1837-42; discussion 1842-3. 6. Reed, C.J., et al., Protein adaptations in archaeal extremophiles. Archaea, 2013. 2013: p. 373275. 7. Oesterhelt, D. and W. Stoeckenius, Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A, 1973. 70(10): p. 2853-7. 8. Walsby, A.E., Gas vesicles. Microbiol Rev, 1994. 58(1): p. 94-144. 9. Oesterhelt, D. and W. Stoeckenius, Functions of a new photoreceptor membrane. Proc Natl Acad Sci U S A, 1973. 70(10): p. 2853-7. 10. Ng, W.V., et al., Genome sequence of Halobacterium species NRC-1. Proc Natl Acad Sci U S A, 2000. 97(22): p. 12176-81. 11. Liu, W., et al., Crystal structure of the archaeal heat shock regulator from Pyrococcus furiosus: a molecular chimera representing eukaryal and bacterial features. J Mol Biol, 2007. 369(2): p. 474-88 12. R F Peck., et al., Homologous gene knockout in the archaeon Halobacterium salinarum with ura3 as a counterselectable marker. Mol Microbiol, 2000. 35(3): p. 667-76. 13. Balch, W.E., et al., Adapting proteostasis for disease intervention. Science, 2008. 319(5865): p. 916-9 14. Powers, E.T., et al., Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem, 2009. 78: p. 959-91. 15. Cohen, E., et al., Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell, 2009. 139(6): p. 1157-69. 16. Mu, T.W., et al., Chemical and biological approaches synergize to ameliorate protein-folding diseases. Cell, 2008. 134(5): p. 769-81. 17. Lund, P. A.; Large, A. T.; Kapatai, G. The chaperonins: perspectives from the Archaea. Biochem Soc Trans 2003, 31 (Pt 3), 681-685. 18. Macario, A. J.; Lange, M.; Ahring, B. K.; Conway de Macario, E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 1999, 63(4), 923-967. 19. Fan, C.Y., et al., Mechanisms for regulation of Hsp70 function by Hsp40. Cell Stress Chaperones, 2003. 8(4): p. 309-316 20. K Ohtsuka, M Hata., Molecular chaperone function of mammalian Hsp70 and Hsp40--a review. Int J Hyperthermia, 2000. 16(3): p. 231-45. 21. Jia, B., G.W. Cheong, and S. Zhang, Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles, 2013. 17(2): p. 193-203. 22. Moltó, M.D., L. Pascual, and R. de Frutos, Puff activity after heat shock in two species of the Drosophila obscura group. Experientia, 1987. 43(11-12): p. 1225-7. 23. Ritossa, F., A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia, 1962. 18(12): p. 571-573. 24. Cao, Y., et al., TGF-beta 1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Pflugers Arch, 1999. 438(3): p. 239-44. 25. Matz, J.M., et al., Characterization and regulation of cold-induced heat shock protein expression in mouse brown adipose tissue. Am J physiol, 1995. 269(1 Pt2): p. R38-47. 26. Laksanalamai, P., T.A. Whitehead, and F.T. Robb, Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol, 2004. 2(4): p. 315-24. 27. Kopecek P, Altmannova K, and Weigl E, Stress proteins: nomenclature, division and functions. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2001. 145: p. 39-47. 28. Macario AJ, Lange M, Ahring BK, and Conway de Macario E, Stress genes and proteins in the archaea. Microbiol Mol Biol Rev,1999. 63: p.923-967. 29. Arsene F, Tomoyasu T, and Bukau B, The heat shock response of Escherichia coli. Int J Food Microbiol, 2000. 55: p. 3-9. 30. Margulis BA and Guzhova IV, Stress proteins in eukaryotic cells. Tsitologiia, 2000. 42: p. 323-342. 31. Wang Y and deHaseth PL, Sigma 32-dependent promoter activity in vivo: sequence determinants of the groE promoter. J Bacteriol, 2003. 185: p. 5800-5806. 32. Hickey, A.J., E. Conway de Macario, and A.J. Macario, Transcription in the archaea: basal factors, regulation, and stress-gene expression. Crit Rev Biochem Mol Biol, 73 2002. 37(6): p. 537-99. 33. Vierke, G., et al., A novel archaeal transcriptional regulator of heat shock response. J Biol Chem, 2003. 278(1): p. 18-26. 34. Lu, Q., et al., Dissection of the regulatory mechanism of a heat-shock responsive promoter in Haloarchaea: a new paradigm for general transcription factor directed archaeal gene regulation. Nucleic Acids Res, 2008. 36(9): p. 3031-42.
|