跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 05:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張堂傑
研究生(外文):Chang, Tang-Jie
論文名稱:通知猜測:探討預先知道通知資訊如何影響使用者對待通知
論文名稱(外文):NotiSpeculate: Exploring How Knowing The Notification Information In Advance Affects Users Treat Them
指導教授:張永儒張永儒引用關係
指導教授(外文):Chang, Yung-Ju
口試委員:蘇黎張永儒陳盈羽
口試委員(外文):Su, LiChang, Yung-JuChen, Ying-Yu
口試日期:2023-01-13
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:52
中文關鍵詞:手機通知手機接收度通知猜測通知參與經驗抽樣法
外文關鍵詞:mobile notificationsmobile receptivityspeculationattentivenessESM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
先前關於可中斷性的研究主要集中在為使用者識別處理通知的適當時刻或可中斷性。但是,沒有太多研究關於如果使用者在看注通知之前就知道通知的信息,將如何管理通知。為了實現這一目標,本研究首度嘗試了根據不同的通知種類更改提示音(鈴聲或振動)。首先,我們舉辦了一個共同設計研討會,以了解使用者希望馬上知道的通知以及他們想要如何收到提醒。我們知道了使用者想馬上看的六類通知。然後我們開發了一個Android的應用程式:NotiSpeculae,它會根據使用者定義的類別用自定義提示音來替換原來的提示音。接著我們讓37名研究參與者安裝了NotiSpeculate並進行為期3週的ESM 研究發現:首先,提示音的特徵、使用者定義類別的關鍵字設置、感知干擾、猜測和通知的選擇性參與會相互影響。其次,該研究提出了使用者可能知道通知來源的時刻。最後,我們針對旨在提高通知猜測或選擇性參與的系統或應用程序提出了一些設計建議。
Prior studies on interruptibility have concentrated on identifying opportune moments or interruptibles for users to deal with notifications. However, there hasn't been much study about how notifications would be managed if users know the information of them before attending to them. In order to reach this goal, this study outlines the first research effort to change the alert (ringtone or vibration) that brings information about an arriving notification. First, a co-design workshop was conducted to identify the notifications users wanted to know right away and how they wanted to be reminded. We knew six categories of notifications that users wanted to know about immediately. Then we developed NotiSpeculae, which was developed in Android and replaces the original alert with a customized alert depending on user-defined categories. A 3-week ESM study with 37 users who used NotiSpeculate demonstrates that, first, alerts' characteristics, keyword setting of user-defined categories, perceived disturbance, speculation and selective attendance on notifications would effect each other. Second, the moments that users would probably know the source of notifications. Finally, some design recommendations for systems or apps that aim at improving notification speculation or attentiveness were made.
摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures vi
List of Tables viii
1 Introduction 1
2 Related work 4
3 Methodology 6
3.1 Co-Design Workshop 6
3.1.1 Six categories that participants would like to see immediately 9
3.1.2 Thoughts on Ringtone and Vibration 9
3.2 Vibration And Ringtone Design 9
3.2.1 Designing of vibration 9
3.2.2 Designing of ringtone 10
3.3 Participant Recruitment 11
3.4 Preset of the second experiment 12
3.4.1 Self-defined notification’s categories and their corresponding keyword
setting 12
3.4.2 ringtone setting 13
3.4.3 vibration setting 14
3.4.4 preset schedule 15
3.5 Experience Sampling Study 15
3.6 Study Procedure and Data Collection 16
3.7 Data Cleaning and Analysis 18

4 Results 22
4.1 How participants set their categories 22
4.1.1 keywords setting and their triggering rate 22
4.1.2 categories and keywords setting basis 23
4.1.3 Keyword is not easy to set 24
4.1.4 Selection basis on ringtone/vibration 24
4.2 NotiSpeculate did help speculating the source of the notification 25
4.2.1 Customized alert did help speculating notification’s source 25
4.2.2 Correctness of speculation were relate to what trigger the notification’s
category 26
4.3 NotiSpeculate improve the effectiveness of selective attendance partially 30
4.3.1 Customized alerts help participants decide to attend to notifications 30
4.3.2 Decide not to attend but seems the decision was unhelpful 31
4.4 Condition Context Aware help speculating in partial 32
4.5 NotiSpeculate did not cause additional disturbance 35

5 DISCUSSION 38
5.1 Alert’s impact on speculation and attendance 38
5.2 Keyword setting’s impact on speculation and attendance 39
5.3 Confidence on selective attendance 40
5.4 trade off between alerts and disturbance 40
6 Research Limitation 43
7 Conclusion 45
References 46
[1] M. Pielot, K. Church, and R. de Oliveira, “An in-situ study of mobile phone
notifications,” in Proceedings of the 16th International Conference on Human-Computer
Interaction with Mobile Devices Services, ser. MobileHCI ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 233–242. [Online]. Available:
https://doi.org/10.1145/2628363.2628364
[2] D. Weber, A. Voit, G. Kollotzek, and N. Henze, “Annotif: A system for annotating
mobile notifcations in user studies,” in Proceedings of the 18th International
Conference on Mobile and Ubiquitous Multimedia, ser. MUM ’19. New York,
NY, USA: Association for Computing Machinery, 2019. [Online]. Available: https:
//doi.org/10.1145/3365610.3365611
[3] A. Mehrotra, R. Hendley, and M. Musolesi, “Prefminer: Mining user’s preferences
for intelligent mobile notification management,” in Proceedings of the 2016 ACM
International Joint Conference on Pervasive and Ubiquitous Computing, ser. UbiComp
’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 1223–1234.
[Online]. Available: https://doi.org/10.1145/2971648.2971747
[4] A. Mehrotra, V. Pejovic, J. Vermeulen, R. Hendley, and M. Musolesi, “My phone and
me: Understanding people’s receptivity to mobile notifications,” in Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, ser. CHI ’16. New
York, NY, USA: Association for Computing Machinery, 2016, p. 1021–1032. [Online].
Available: https://doi.org/10.1145/2858036.2858566
[5] A. Sahami Shirazi, N. Henze, T. Dingler, M. Pielot, D. Weber, and A. Schmidt,
“Large-scale assessment of mobile notifications,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 3055–3064. [Online]. Available:
https://doi.org/10.1145/2556288.2557189
[6] M. Pielot and L. Rello, “The do not disturb challenge -a day without notifications,” 04
2015.
[7] M. Pielot and L. Rello, “Productive, anxious, lonely - 24 hours without push notifications,”
12 2016.
[8] A. S. Shirazi and N. Henze, “Assessment of notifications on smartwatches,” in
Proceedings of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services Adjunct, ser. MobileHCI ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 1111–1116. [Online]. Available:
https://doi.org/10.1145/2786567.2794338
[9] H.-P. Lee, K.-Y. Chen, C.-H. Lin, C.-Y. Chen, Y.-L. Chung, C.-R. Sun, and Y.-J. Chang,
“Does who matter? studying the impact of relationship characteristics on receptivity to
mobile im messages,” 03 2019.
[10] Y.-J. Chang, Y.-J. Chung, and Y.-H. Shih, “I think it’s her: Investigating smartphone users’
speculation about phone notifications and its influence on attendance,” 10 2019, pp. 1–13.
[11] J. E. Fischer, N. Yee, V. Bellotti, N. Good, S. Benford, and C. Greenhalgh,
“Effects of content and time of delivery on receptivity to mobile interruptions,” in
Proceedings of the 12th International Conference on Human Computer Interaction
with Mobile Devices and Services, ser. MobileHCI ’10. New York, NY, USA:
Association for Computing Machinery, 2010, p. 103–112. [Online]. Available:
https://doi.org/10.1145/1851600.1851620
[12] F. Yuan, X. Gao, and J. Lindqvist, “How busy are you? predicting the interruptibility
intensity of mobile users,” in Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, ser. CHI ’17. New York, NY, USA: Association for Computing
Machinery, 2017, p. 5346–5360. [Online]. Available: https://doi.org/10.1145/3025453.
3025946
[13] S. Roberts and R. Dunbar, “Communication in social networks: Effects of kinship, network
size, and emotional closeness,” Personal Relationships, vol. 18, pp. 439 – 452, 11 2010.
[14] J. Saramäki, E. Leicht, E. López, S. Roberts, F. Reed-Tsochas, and R. Dunbar, “Persistence
of social signatures in human communication,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 111, 01 2014.
[15] A. Mehrotra, F. Tsapeli, R. Hendley, and M. Musolesi, “Mytraces: Investigating
correlation and causation between users’emotional states and mobile phone interaction,”
Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., vol. 1, no. 3, sep 2017.
[Online]. Available: https://doi.org/10.1145/3130948
[16] S. Aminikhanghahi, R. Fallahzadeh, M. Sawyer, D. Cook, and L. Holder, “Thyme: Im-
proving smartphone prompt timing through activity awareness,” 12 2017.
[17] R. Boyatzis, “Transforming qualitative information: Thematic analysis and code develop-
ment,” 01 1998.
[18] Y.-J. Chang, Y.-J. Chung, Y.-H. Shih, H.-C. Chang, and T.-H. Lin, “What do smartphone
users do when they sense phone notifications?” in Proceedings of the 2017 ACM
International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2017 ACM International Symposium on Wearable Computers, ser. UbiComp ’
17. New York, NY, USA: Association for Computing Machinery, 2017, p. 904–909.
[Online]. Available: https://doi.org/10.1145/3123024.3124557
[19] T. Dingler and M. Pielot, “I’ll be there for you: Quantifying attentiveness towards mobile
messaging,” in Proceedings of the 17th International Conference on Human-Computer
Interaction with Mobile Devices and Services, ser. MobileHCI ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 1–5. [Online]. Available:
https://doi.org/10.1145/2785830.2785840
[20] F. Fessel, K. Epstude, and N. Roese, “Hindsight bias redefined: It’s about time,” Organi-
zational Behavior and Human Decision Processes, vol. 110, no. 1, pp. 56–64, 9 2009.
[21] S. A. Hawkins and R. Hastie, “Hindsight: Biased judgments of past events after the out-
comes are known.” 1990.
[22] A. Mehrotra, M. Musolesi, R. Hendley, and V. Pejovic, “Designing content-driven
intelligent notification mechanisms for mobile applications,” in Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing, ser.
UbiComp ’15. New York, NY, USA: Association for Computing Machinery, 2015, p.
813–824. [Online]. Available: https://doi.org/10.1145/2750858.2807544
[23] V. Pejovic and M. Musolesi, “Interruptme: Designing intelligent prompting mechanisms
for pervasive applications,” in Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, ser. UbiComp ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 897–908. [Online]. Available:
https://doi.org/10.1145/2632048.2632062
[24] H. Sarker, M. Sharmin, A. A. Ali, M. M. Rahman, R. Bari, S. M. Hossain, and
S. Kumar, “Assessing the availability of users to engage in just-in-time intervention
in the natural environment,” in Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing, ser. UbiComp ’14. New York,
NY, USA: Association for Computing Machinery, 2014, p. 909–920. [Online]. Available:
https://doi.org/10.1145/2632048.2636082
[25] L. D. Turner, S. M. Allen, and R. M. Whitaker, “Push or delay? decomposing smartphone
notification response behaviour,” in Proceedings of the 6th International Workshop on
Human Behavior Understanding - Volume 9277. Berlin, Heidelberg: Springer-Verlag,
2015, p. 69–83. [Online]. Available: https://doi.org/10.1007/978-3-319-24195-1_6
[26] B. Poppinga, W. Heuten, and S. Boll, “Sensor-based identification of opportune moments
for triggering notifications,” IEEE Pervasive Computing, vol. 13, no. 1, p. 22–29, Jan.
2014. [Online]. Available: https://doi.org/10.1109/MPRV.2014.15
[27] S. Rosenthal, A. K. Dey, and M. Veloso, “Using decision-theoretic experience sampling
to build personalized mobile phone interruption models,” in International Conference on
Pervasive Computing. Springer, 2011, pp. 170–187.
[28] C. Park, J. Lim, J. Kim, S.-J. Lee, and D. Lee, “Don’t bother me. i’m socializing!
a breakpoint-based smartphone notification system,” in Proceedings of the 2017 ACM
Conference on Computer Supported Cooperative Work and Social Computing, ser. CSCW
’17. New York, NY, USA: Association for Computing Machinery, 2017, p. 541–554.
[Online]. Available: https://doi.org/10.1145/2998181.2998189
[29] A. Komninos, E. Frengkou, and J. Garofalakis, Predicting User Responsiveness to Smart-
phone Notifications for Edge Computing: 14th European Conference, AmI 2018, Larnaca,
Cyprus, November 12-14, 2018, Proceedings, 01 2018, pp. 3–19.
[30] K. Klaus, “Content analysis: An introduction to its methodology,” 1980.
[31] R. Ling and B. Yttri, Hyper-Coordination via Mobile Phones in Norway. USA: Cam-
bridge University Press, 2002, p. 139–169.
[32] F. Schulze and G. Groh, “Studying how character of conversation affects personal
receptivity to mobile notifications,” in CHI ’14 Extended Abstracts on Human Factors in
Computing Systems, ser. CHI EA ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 1729–1734. [Online]. Available: https://doi.org/10.1145/2559206.
2581320
[33] F. Schulze and G. Groh, “Conversational context helps improve mobile notification
management,” in Proceedings of the 18th International Conference on Human-Computer
Interaction with Mobile Devices and Services, ser. MobileHCI ’16. New York, NY,
USA: Association for Computing Machinery, 2016, p. 518–528. [Online]. Available:
https://doi.org/10.1145/2935334.2935347
[34] N. Goyal and S. R. Fussell, “Intelligent interruption management using electro dermal
activity based physiological sensor for collaborative sensemaking,” Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., vol. 1, no. 3, sep 2017. [Online]. Available:
https://doi.org/10.1145/3130917
[35] C. Forlivesi, U. G. Acer, M. van den Broeck, and F. Kawsar, “Mindful interruptions: A
lightweight system for managing interruptibility on wearables,” in Proceedings of the 4th
ACM Workshop on Wearable Systems and Applications, ser. WearSys ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 27–32. [Online]. Available:
https://doi.org/10.1145/3211960.3211974
[36] M. Liao and S. Sundar, “Sound of silence: Does muting notifications reduce phone use?”
Computers in Human Behavior, vol. 134, Sep. 2022, publisher Copyright: © 2022 Elsevier
Ltd.
[37] B. Saket, C. Prasojo, Y. Huang, and S. Zhao, “Designing an effective vibration-based
notification interface for mobile phones,” in Proceedings of the 2013 Conference on
Computer Supported Cooperative Work, ser. CSCW ’13. New York, NY, USA:
Association for Computing Machinery, 2013, p. 149–1504. [Online]. Available:
https://doi.org/10.1145/2441776.2441946
[38] S. A. Brewster, P. C. Wright, and A. D. N. Edwards, “An evaluation of earcons for use
in auditory human-computer interfaces,” in Proceedings of the INTERACT ’93 and CHI
’93 Conference on Human Factors in Computing Systems, ser. CHI ’93. New York, NY,
USA: Association for Computing Machinery, 1993, p. 222–227. [Online]. Available:
https://doi.org/10.1145/169059.169179
[39] K. Kallinen, “Emotional responses to single-voice melodies: Implications for mobile ring-
tones.” 01 2003.
[40] S. Song and S. Yamada, “Expressing emotions through color, sound, and vibration
with an appearance-constrained social robot,” in Proceedings of the 2017 ACM/IEEE
International Conference on Human-Robot Interaction, ser. HRI ’17. New York,
NY, USA: Association for Computing Machinery, 2017, p. 2–11. [Online]. Available:
https://doi.org/10.1145/2909824.3020239
[41] J. Berg and J. Wingstedt, “Relations between selected musical parameters and expressed
emotions: Extending the potential of computer entertainment,” in Proceedings of the
2005 ACM SIGCHI International Conference on Advances in Computer Entertainment
Technology, ser. ACE ’05. New York, NY, USA: Association for Computing Machinery,
2005, p. 164–171. [Online]. Available: https://doi.org/10.1145/1178477.1178499
[42] Y.-J. Chang and J. Tang, “Investigating mobile users’ ringer mode usage and attentiveness
and responsiveness to communication,” 08 2015, pp. 6–15.
[43] J. A. Gallud and R. Tesoriero, “Smartphone notifications: A study on the sound to
soundless tendency,” in Proceedings of the 17th International Conference on Human-
Computer Interaction with Mobile Devices and Services Adjunct, ser. MobileHCI ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p. 819–824.
[Online]. Available: https://doi.org/10.1145/2786567.2793706
[44] A. Mashhadi, A. Mathur, and F. Kawsar, “The myth of subtle notifications,” in
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing: Adjunct Publication, ser. UbiComp ’14 Adjunct. New York,
NY, USA: Association for Computing Machinery, 2014, p. 111–114. [Online]. Available:
https://doi.org/10.1145/2638728.2638759
[45] Y.-H. Shih, T.-J. Chang, J.-H. J. Chen, H.-P. Lee, and Y.-J. Chang, “A preliminary
study of an intelligent system facilitating selective notification attendance on smartphones
via alert assistance,” in Adjunct Proceedings of the 2020 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2020 ACM
International Symposium on Wearable Computers, ser. UbiComp-ISWC ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 468–473. [Online]. Available:
https://doi.org/10.1145/3410530.3414432
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top