|
[1] Jansen, S., Schoe, J., van Rijn, M., Abu-Hanna, A., Moll van Charante, E. P., van der Velde, N., & de Rooij, S. E. J. B. g. Factors associated with recognition and prioritization for falling, and the effect on fall incidence in community dwelling older adults. 15, 1-10 (2015). [2] Wu, T. Y., Chie, W. C., Yang, R. S., Liu, J. P., Kuo, K. L., Wong, W. K., & Liaw, C. K. J. A. A. M. S.. Factors associated with falls among community-dwelling older people in Taiwan. 42(7), 320-327 (2013). [3] Gerges, S., Haddad, C., Daoud, T., Tarabay, C., Kossaify, M., Haddad, G., & Hallit, S. J. B. p. A cross-sectional study of current and lifetime sexual hallucinations and delusions in Lebanese patients with schizophrenia: frequency, characterization, and association with childhood traumatic experiences and disease severity. 22(1), 360 (2022). [4] 莊佳雯, 曹芳馨, 楊斐茹, 王郁婷, 吳雅婷, & 長庚護理, 邱. J.。運用跨團隊共同照護網降低住院病人傷害性跌倒發生率, 28(4),頁 640-653。 (2017) [5] 林美惠, 陳淑如, 廖美南, 陳勇志, & 護理雜誌, 張. J.。住院病人跌倒事件之原因分析及醫療成本, 64(4),頁 44-52 (2017). [6] Chiu, M. H., Lee, H. D., Hwang, H. F., Wang, S. C., Lin, M. R. J. G., & international, g.. Medication use and fall‐risk assessment for falls in an acute care hospital. 15(7), 856-863 (2015). [7] 邱旅揚, 馮已榕, 陳綉琴, 鐘麗芬, & 醫療品質雜誌, 柯. J.(2020)。跌倒危險評估量表準確度研究-次級資料分析, 14(5),頁 48-55。 [8] 蔡益堅, & 台灣老年醫學暨老年學會雜誌, 孫. J.探討社區老人自宅內與自宅外的跌倒相關因子, 15(1),頁 11-26 (2020). [9] Hong, H.-J., Kim, N.-c., Jin, Y., Piao, J., & Lee, S.-M. J. C. N. R. Trigger factors and outcomes of falls among Korean hospitalized patients: analysis of electronic medical records. 24(1), 51-72 (2015). [10] Callis, N. J. A. n. r. Falls prevention: Identification of predictive fall risk factors. 29, 53-58 (2016). [11] Quigley, P. A. J. R. n. Evidence levels: applied to select fall and fall injury prevention practices. 41(1), 5-15. (2016). [12] 郭素真, 陳尹甄, 陳盈妘, 林郁淇, & 榮總護理, 許. J.降低住院病人跌倒發生率改善方案, 36(4),頁 408-416 (2019) [13] Wen, C. P., Wai, J. P. M., Tsai, M. K., Yang, Y. C., Cheng, T. Y. D., Lee, M.-C., . . . Wu, X. J. T. l.. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. 378(9798), 1244-1253. (2011) [14] Kuo, T. B., Li, J.-Y., Chen, C.-Y., Lin, Y.-C., Tsai, M.-W., Lin, S.-P., & Yang, C. C. J. J. o. m. b. Influence of accelerometer placement and/or heart rate on energy expenditure prediction during uphill exercise. 50(2), 127-133 (2018). [15] Bourke, A., Van de Ven, P., Gamble, M., O’connor, R., Murphy, K., Bogan, E., . . . Nelson, J. J. J. o. b. Evaluation of waist-mounted tri-axial accelerometer based fall-detection algorithms during scripted and continuous unscripted activities. 43(15), 3051-3057 (2010). [16] Özdemir, A. T., & Barshan, B. J. S. Detecting falls with wearable sensors using machine learning techniques. 14(6), 10691-10708 (2014). [17] Tong, L., Song, Q., Ge, Y., & Liu, M. J. I. S. J. HMM-based human fall detection and prediction method using tri-axial accelerometer. 13(5), 1849-1856 (2013). [18] Ravi, D., Wong, C., Lo, B., Yang, G.-Z. J. I. j. o. b., & informatics, h. A deep learning approach to on-node sensor data analytics for mobile or wearable devices. 21(1), 56-64 (2016). [19] Freedson, P. S., Melanson, E., Sirard, J. J. M., sports, s. i., & exercise. Calibration of the computer science and applications, inc. accelerometer. 30(5), 777-781 (1998). [20] Pate, R. R., Stevens, J., Webber, L. S., Dowda, M., Murray, D. M., Young, D. R., & Going, S. J. J. o. A. H. Age-related change in physical activity in adolescent girls. 44(3), 275-282 (2009). [21] Chen, K. Y., David R Bassett, J. J. M., Sports, S. i., & Exercise. The technology of accelerometry-based activity monitors: current and future. 37(11), S490-S500 (2005). [22] Elgendi, M., & Menon, C. J. B. s. Assessing anxiety disorders using wearable devices: Challenges and future directions. 9(3), 50 (2019). [23] Hickey, B. A., Chalmers, T., Newton, P., Lin, C.-T., Sibbritt, D., McLachlan, C. S., . . . Lal, S. J. S. Smart devices and wearable technologies to detect and monitor mental health conditions and stress: A systematic review. 21(10), 3461 (2021). [24] Sheikh, M., Qassem, M., & Kyriacou, P. A. J. F. i. D. H. Wearable, environmental, and smartphone-based passive sensing for mental health monitoring. 3, 662811 (2021). [25] Shah, R. V., Grennan, G., Zafar-Khan, M., Alim, F., Dey, S., Ramanathan, D., & Mishra, J. J. T. p. Personalized machine learning of depressed mood using wearables. 11(1), 1-18 (2021). [26] Gaggioli, A., & Riva, G. J. M. M. V. R. From mobile mental health to mobile wellbeing: opportunities and challenges. 141-147 (2013). [27] Seppälä, J., De Vita, I., Jämsä, T., Miettunen, J., Isohanni, M., Rubinstein, K., . . . Berdun, J. J. J. m. h. Mobile phone and wearable sensor-based mHealth approaches for psychiatric disorders and symptoms: systematic review. 6(2) (2019). [28] Hatano, M., Kamei, H., Inagaki, R., Matsuzaki, H., Hanya, M., Yamada, S., . . . Neuroscience. Assessment of switching to suvorexant versus the use of add-on suvorexant in combination with benzodiazepine receptor agonists in insomnia patients: a retrospective study. 16(2), 184 (2018). [29] Tsai, M.-T., Lee, S.-M., Chen, H.-K., & Wu, B.-J. J. S. R. Association between frailty and its individual components with the risk of falls in patients with schizophrenia spectrum disorders. 197, 138-143 (2018). [30] Stubbs, B., Koyanagi, A., Schuch, F., Firth, J., Rosenbaum, S., Gaughran, F., . . . Vancampfort, D. J. S. b. Physical activity levels and psychosis: a mediation analysis of factors influencing physical activity target achievement among 204 186 people across 46 low-and middle-income countries. 43(3), 536-545 (2017). [31] Wong, M. M., Pang, P., Chan, C., Lau, M., Tse, W., Lam, L. C.-W., . . . Yan, C. T. J. E. A. a. o. p. Wilson sims fall risk assessment tool versus Morse Fall Scale in psychogeriatric inpatients: A multicentre study. 31(3), 67-70 (2021). [32] Bayat, A., Pomplun, M., & Tran, D. A. J. P. C. S. A study on human activity recognition using accelerometer data from smartphones. 34, 450-457 (2014). [33] Del Din, S., Hickey, A., Ladha, C., Stuart, S., Bourke, A. K., Esser, P., . . . Godfrey, A. J. F. Instrumented gait assessment with a single wearable: an introductory tutorial. 5(2323),2323. (2016). [34] Grindstaff, G. A., & Whitaker, S. G. Real-time image stabilization: Google Patents (2013). [35] Freeman, D., Garety, P. A., Kuipers, E., Fowler, D., & Bebbington, P. E. J. B. J. o. C. P. A cognitive model of persecutory delusions. 41(4), 331-347 (2002). [36] Pickup, G. J. J. P.. Relationship between theory of mind and executive function in schizophrenia: a systematic review. 41(4), 206-213 (2008). [37] Nierat, M.-C., Demiri, S., Dupuis-Lozeron, E., Allali, G., Morélot-Panzini, C., Similowski, T., & Adler, D. J. P. o. When breathing interferes with cognition: experimental inspiratory loading alters timed up-and-go test in normal humans. 11(3), e0151625 (2016). [38] Podsiadlo, D., & Richardson, S. J. J. o. t. A. g. S. The timed “Up & Go”: a test of basic functional mobility for frail elderly persons. 39(2), 142-148 (1991). [39] Shumway-Cook, A., Brauer, S., & Woollacott, M. J. P. t. Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. 80(9), 896-903 (2000).
|