( 您好!臺灣時間:2023/05/31 23:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Wu, Shao-Pu
論文名稱(外文):Agar Gel-based Dielectric Composite for Underwater Capacitive Pressure Sensing
指導教授(外文):Hsieh, Chien-Wen
口試委員(外文):Yu, Hsin-ChiehLin, Wei-Chih
外文關鍵詞:Capacitive pressure sensorAgarPorousUnderwaterAmine bicarbonateGlucose
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以瓊脂、甘油以及水混合為水凝膠電容式壓力感測器,並將元件放在水下環境進行量測;為了提升感測器特性且不影響材料環保性,使用食品級添加劑如萄萄糖和碳酸氫胺。葡萄糖能使水凝膠的彈性增加,而藉由碳酸氫胺在高溫下會產生氣泡製造多孔結構的介電層;藉由此加入具有葡萄糖且多孔的複合式結構能使靈敏度提升2.9倍。壓力量測範圍為1.5 Pa到50 kPa,且在經歷了11000次的壓力循環後,元件仍能維持壓力感測的特性。最後將此壓力感測器進行溫度、彎曲、水壓、以及光學等各項測試,且可進行大面積陣列製作,因為此感測器使用的材料是經由藻類提取和屬於食品級別,所以不只期許此裝置未來能對穿戴式裝置、電子皮膚以及醫療監控上有更多的貢獻,也希望能應用於環保型電子元件領域。
In this study, agar, glycerol and water are mixed as a hydrogel capacitive pressure sensor, we put the pressure sensor in the measurements are performed in an underwater environment; and food-grade additives such as glucose and amine bicarbonate are added without affecting the environment-friendly prop-erty of the material. Glucose can increase the elasticity of the hydrogel. Amine bicarbonate is employed as porogen which make the dielectric layer porous. The sensitivity can be increased by 2.9 times through this composite structure. The pressure measurement range is from 1.5 Pa to 50 kPa. After 11,000 compres-sion/release cycles, the pressure sensor still operated without failure. In addition, the pressure sensor is experimented in various tests such as temperature, bending, water pressure, and optics, and can also be fabricated in large-area arrays. Be-cause the material used in this sensor is extracted from algae and belongs to food grade, it is not only expected that can make more contributions to wearable devices, electronic skin and medical monitoring in the future, and it is also hoped that it can be applied to the field of environmentally friendly electronic components.
中文摘要 i
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
第二章 文獻回顧 6
2.1 壓力感測器 6
2.2 介電理論 15
2.3 瓊脂 18
2.4 甘油 19
2.5 葡萄糖 20
2.6 微結構 21
2.7 銀奈米線 22
2.8 電容數位轉換器 24
第三章 實驗方法 26
3.1 實驗流程 26
3.2 實驗材料 31
3.3 實驗設備 33
3.4 銀奈米線製備 35
3.5 介電層製備 36
3.6 壓力感測器製備 39
3.7 電路偵測系統製作 40
第四章 實驗結果與討論 43
4.1 量測頻率 43
4.2 瓊脂特性分析 45
4.3 成分分析 46
4.4 量測環境 47
4.5 可降解特性 47
4.6 耐溶劑特性 50
4.7 導電銅膠作為電極之影響 52
4.8 銀奈米線瓊脂壓力感測器分析 54
4.9 多孔瓊脂壓力感測器特性分析 58
4.10 葡萄糖瓊脂壓力感測器特性分析 62
4.11 複合式瓊脂壓力感測器特性分析 64
第五章 實際應用 80
5.1 手指關節彎曲 80
5.2 抓取物品 81
5.3 水中壓力測試 82
5.4 超音波震盪測試 83
5.5 物體移動測試 84
5.6 水下生物測試 85
5.7 陣列式電極之壓力分佈量測 86
5.8 DAQ電路系統 89
第六章 結論 92
第七章 未來展望 93
參考文獻 94
[1] A. Chortos, J. Liu, and Z. Bao, "Pursuing Prosthetic Electronic Skin," Nature Materials, vol. 15, no. 9, pp. 937-950, 2016.
[2] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, "A Large-Area, Flexible Pressure Sensor Matrix with Organic Field-Effect Transistors for Artificial Skin Applications," Proceedings of the National Academy of Sciences, vol. 101, no. 27, pp. 9966-9970, 2004.
[3] Q. Hua, J. Sun, H. Liu, R. Bao, R. Yu, J. Zhai, C. Pan, and Z. L. Wang, "Skin-Inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing," Nature Communications, vol. 9, no. 1, pp. 1-11, 2018.
[4] G. Schwartz, B. C.-K. Tee, J. Mei, A. L. Appleton, D. H. Kim, H. Wang, and Z. Bao, "Flexible Polymer Transistors with High Pressure Sensitivity for Application in Electronic Skin and Health Monitoring," Nature Communications, vol. 4, no. 1, pp. 1-8, 2013.
[5] W. Chen and X. Yan, "Progress in Achieving High-Performance Piezoresistive and Capacitive Flexible Pressure Sensors: A Review," Journal of Materials Science & Technology, vol. 43, pp. 175-188, 2020.
[6] S. Chen, J. Qi, S. Fan, Z. Qiao, J. C. Yeo, and C. T. Lim, "Flexible Wearable Sensors for Cardiovascular Health Monitoring," Advanced Healthcare Materials, vol. 10, no. 17, p. 2100116, 2021.
[7] F. Xu, X. Li, Y. Shi, L. Li, W. Wang, L. He, and R. Liu, "Recent Developments for Flexible Pressure Sensors: A Review," Micromachines, vol. 9, no. 11, p. 580, 2018.
[8] A. Servati, L. Zou, Z. J. Wang, F. Ko, and P. Servati, "Novel Flexible Wearable Sensor Materials and Signal Processing for Vital Sign and Human Activity Monitoring," Sensors, vol. 17, no. 7, p. 1622, 2017.
[9] "Pressure Sensors Market Share, Size, Trends, Industry Analysis Report by Type (Absolute, Differential, Gauge, Others); by End-Use; by Technology; by Region; Segment Forecast, 2021 - 2028." https://www.polarismarketresearch.com/industry-analysis/pressure-sensors-market/toc (accessed.
[10] I. Ilankoon, Y. Ghorbani, M. N. Chong, G. Herath, T. Moyo, and J. Petersen, "E-Waste in the International Context–a Review of Trade Flows, Regulations, Hazards, Waste Management Strategies and Technologies for Value Recovery," Waste Management, vol. 82, pp. 258-275, 2018.
[11] P. Wang, M. Hu, H. Wang, Z. Chen, Y. Feng, J. Wang, W. Ling, and Y. Huang, "The Evolution of Flexible Electronics: From Nature, Beyond Nature, and to Nature," Advanced Science, vol. 7, no. 20, p. 2001116, 2020.
[12] M. Irimia-Vladu, "“Green” Electronics: Biodegradable and Biocompatible Materials and Devices for Sustainable Future," Chemical Society Reviews, vol. 43, no. 2, pp. 588-610, 2014.
[13] W. A. Laftah, S. Hashim, and A. N. Ibrahim, "Polymer Hydrogels: A Review," Polymer-Plastics Technology and Engineering, vol. 50, no. 14, pp. 1475-1486, 2011.
[14] S. Mitura, A. Sionkowska, and A. Jaiswal, "Biopolymers for Hydrogels in Cosmetics," Journal of Materials Science: Materials in Medicine, vol. 31, no. 6, pp. 1-14, 2020.
[15] J. Deng, W. Liang, and J. Fang, "Liquid Crystal Droplet-Embedded Biopolymer Hydrogel Sheets for Biosensor Applications," ACS Applied Materials & Interfaces, vol. 8, no. 6, pp. 3928-3932, 2016.
[16] B. Balakrishnan and R. Banerjee, "Biopolymer-Based Hydrogels for Cartilage Tissue Engineering," Chemical Reviews, vol. 111, no. 8, pp. 4453-4474, 2011. [Online]. Available: https://pubs.acs.org/doi/10.1021/cr100123h.
[17] C. Cui, Q. Fu, L. Meng, S. Hao, R. Dai, and J. Yang, "Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance," ACS Applied Bio Materials, vol. 4, no. 1, pp. 85-121, 2020.
[18] F. Bonin-Font, G. Oliver, S. Wirth, M. Massot, P. L. Negre, and J.-P. Beltran, "Visual Sensing for Autonomous Underwater Exploration and Intervention Tasks," Ocean Engineering, vol. 93, pp. 25-44, 2015.
[19] J. Copley, "Just How Little Do We Know About the Ocean Floor," The Conversation, vol. 9, 2014.
[20] S. Fattah, A. Gani, I. Ahmedy, M. Y. I. Idris, and I. A. Targio Hashem, "A Survey on Underwater Wireless Sensor Networks: Requirements, Taxonomy, Recent Advances, and Open Research Challenges," Sensors, vol. 20, no. 18, p. 5393, 2020.
[21] Y. Zang, F. Zhang, C. Di, and D. Zhu, "Advances of Flexible Pressure Sensors toward Artificial Intelligence and Health Care Applications," Materials Horizons, vol. 2, no. 2, pp. 140-156, 2015.
[22] X. Wang, L. Dong, H. Zhang, R. Yu, C. Pan, and Z. L. Wang, "Recent Progress in Electronic Skin," Advanced Science, vol. 2, no. 10, p. 1500169, 2015.
[23] Y. Kim, S. Roy, G.-Y. Jung, J.-S. Oh, and G.-W. Kim, "Dual Optical Signal-Based Intraocular Pressure-Sensing Principle Using Pressure-Sensitive Mechanoluminescent Zns: Cu/Pdms Soft Composite," Scientific Reports, vol. 9, no. 1, pp. 1-10, 2019.
[24] J. Kim, N. Kim, M. Kwon, and J. Lee, "Attachable Pulse Sensors Integrated with Inorganic Optoelectronic Devices for Monitoring Heart Rates at Various Body Locations," ACS Applied Materials & Interfaces, vol. 9, no. 31, pp. 25700-25705, 2017.
[25] C. S. Smith, "Piezoresistance Effect in Germanium and Silicon," Physical Review, vol. 94, no. 1, p. 42, 1954.
[26] W. Mason and R. Thurston, "Use of Piezoresistive Materials in the Measurement of Displacement, Force, and Torque," The Journal of the Acoustical Society of America, vol. 29, no. 10, pp. 1096-1101, 1957.
[27] H. Cheng, B. Wang, K. Yang, and C. Wang, "A Low-Cost Piezoresistive Pressure Sensor with a Wide Strain Range–Featuring Polyurethane Sponge@ Poly (Vinyl Alcohol)/Sulfuric Gel Electrolyte," Journal of Materials Chemistry C, vol. 9, no. 3, pp. 1014-1024, 2021.
[28] S. Yao and Y. Zhu, "Wearable Multifunctional Sensors Using Printed Stretchable Conductors Made of Silver Nanowires," Nanoscale, vol. 6, no. 4, pp. 2345-2352, 2014.
[29] B. You, C. J. Han, Y. Kim, B.-K. Ju, and J.-W. Kim, "A Wearable Piezocapacitive Pressure Sensor with a Single Layer of Silver Nanowire-Based Elastomeric Composite Electrodes," Journal of Materials Chemistry A, vol. 4, no. 27, pp. 10435-10443, 2016.
[30] X. Zhao, Q. Hua, R. Yu, Y. Zhang, and C. Pan, "Flexible, Stretchable and Wearable Multifunctional Sensor Array as Artificial Electronic Skin for Static and Dynamic Strain Mapping," Advanced Electronic Materials, vol. 1, no. 7, p. 1500142, 2015.
[31] M. Minary-Jolandan and M.-F. Yu, "Nanomechanical Heterogeneity in the Gap and Overlap Regions of Type I Collagen Fibrils with Implications for Bone Heterogeneity," Biomacromolecules, vol. 10, no. 9, pp. 2565-2570, 2009.
[32] V. Nguyen, R. Zhu, K. Jenkins, and R. Yang, "Self-Assembly of Diphenylalanine Peptide with Controlled Polarization for Power Generation," Nature Communications, vol. 7, no. 1, pp. 1-6, 2016.
[33] A. Heredia, V. Meunier, I. K. Bdikin, J. Gracio, N. Balke, S. Jesse, A. Tselev, P. K. Agarwal, B. G. Sumpter, and S. V. Kalinin, "Nanoscale Ferroelectricity in Crystalline Γ‐Glycine," Advanced Functional Materials, vol. 22, no. 14, pp. 2996-3003, 2012.
[34] E. S. Hosseini, L. Manjakkal, D. Shakthivel, and R. Dahiya, "Glycine–Chitosan-Based Flexible Biodegradable Piezoelectric Pressure Sensor," ACS Applied Materials & Interfaces, vol. 12, no. 8, pp. 9008-9016, 2020.
[35] Z. He, W. Chen, B. Liang, C. Liu, L. Yang, D. Lu, Z. Mo, H. Zhu, Z. Tang, and X. Gui, "Capacitive Pressure Sensor with High Sensitivity and Fast Response to Dynamic Interaction Based on Graphene and Porous Nylon Networks," ACS Applied Materials & Interfaces, vol. 10, no. 15, pp. 12816-12823, 2018.
[36] M. l. Pruvost, W. J. Smit, C. Monteux, P. Poulin, and A. Colin, "Polymeric Foams for Flexible and Highly Sensitive Low-Pressure Capacitive Sensors," npj Flexible Electronics, vol. 3, no. 1, pp. 1-6, 2019.
[37] P. Wei, X. Guo, X. Qiu, and D. Yu, "Flexible Capacitive Pressure Sensor with Sensitivity and Linear Measuring Range Enhanced Based on Porous Composite of Carbon Conductive Paste and Polydimethylsiloxane," Nanotechnology, vol. 30, no. 45, p. 455501, 2019.
[38] R. Li, Q. Zhou, Y. Bi, S. Cao, X. Xia, A. Yang, S. Li, and X. Xiao, "Research Progress of Flexible Capacitive Pressure Sensor for Sensitivity Enhancement Approaches," Sensors and Actuators A: Physical, vol. 321, p. 112425, 2021.
[39] J. Wu, Y. Yao, Y. Zhang, T. Shao, H. Wu, S. Liu, Z. Li, and L. Wu, "Rational Design of Flexible Capacitive Sensors with Highly Linear Response over a Broad Pressure Sensing Range," Nanoscale, vol. 12, no. 41, pp. 21198-21206, 2020.
[40] C. M. Duarte, "Global Change and the Future Ocean: A Grand Challenge for Marine Sciences," vol. 1, ed: Frontiers Media SA, 2014, p. 63.
[41] B. A. Block, I. D. Jonsen, S. J. Jorgensen, A. J. Winship, S. A. Shaffer, S. J. Bograd, E. L. Hazen, D. G. Foley, G. Breed, and A.-L. Harrison, "Tracking Apex Marine Predator Movements in a Dynamic Ocean," Nature, vol. 475, no. 7354, pp. 86-90, 2011.
[42] J. M. Nassar, S. M. Khan, S. J. Velling, A. Diaz-Gaxiola, S. F. Shaikh, N. R. Geraldi, G. A. Torres Sevilla, C. M. Duarte, and M. M. Hussain, "Compliant Lightweight Non-Invasive Standalone “Marine Skin” Tagging System," npj Flexible Electronics, vol. 2, no. 1, pp. 1-9, 2018.
[43] S. A. Synnes, R. E. Hansen, and T. O. Sæbø, "Assessment of Shallow Water Performance Using Interferometric Sonar Coherence," Proceedings of Underwater Acoustic Measurements, vol. 6, 2009.
[44] E. Kanhere, N. Wang, A. G. P. Kottapalli, V. Subramaniam, J. Miao, and M. S. Triantafyllou, "Crocodile-Inspired Dome Shaped Sensors for Underwater Object Detection," in 2017 IEEE SENSORS, 2017: IEEE, pp. 1-3.
[45] X. Liu, Q. Zhang, and G. Gao, "Solvent-Resistant and Nonswellable Hydrogel Conductor toward Mechanical Perception in Diverse Liquid Media," ACS Nano, vol. 14, no. 10, pp. 13709-13717, 2020.
[46] Z. Dai, S. Ding, M. Lei, S. Li, Y. Xu, Y. Zhou, and B. Zhou, "A Superhydrophobic and Anti-Corrosion Strain Sensor for Robust Underwater Applications," Journal of Materials Chemistry A, vol. 9, no. 27, pp. 15282-15293, 2021.
[47] J. Maxwell, "The Theory of Molecular Vortices Applied to Magnetic Phenomena," Philosophical Magazine and Journal of Science, p. 161, 1862.
[48] U. Kaatze, "Complex Permittivity of Water as a Function of Frequency and Temperature," Journal of Chemical and Engineering Data, vol. 34, no. 4, pp. 371-374, 1989.
[49] A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications. John Wiley & Sons, 2003.
[50] R. Raihan, F. Rabbi, V. Vadlamudi, and K. Reifsnider, "Composite Materials Damage Modeling Based on Dielectric Properties," Materials Sciences and Applications, vol. 6, no. 11, p. 1033, 2015.
[51] Y. Zhang, X. Fu, D. Duan, J. Xu, and X. Gao, "Preparation and Characterization of Agar, Agarose, and Agaropectin from the Red Alga Ahnfeltia Plicata," Journal of Oceanology and Limnology, vol. 37, no. 3, pp. 815-824, 2019.
[52] R. López-Simeon, J. Campos-Terán, H. Beltrán, and M. Hernández-Guerrero, "Free-Lignin Cellulose Obtained from Agar Industry Residues Using a Continuous and Minimal Solvent Reaction/Extraction Methodology," RSC Advances, vol. 2, no. 32, pp. 12286-12297, 2012.
[53] K. Nishinari and Y. Fang, "Sucrose Release from Polysaccharide Gels," Food & Function, vol. 7, no. 5, pp. 2130-2146, 2016.
[54] B. Tanna and A. Mishra, "Nutraceutical Potential of Seaweed Polysaccharides: Structure, Bioactivity, Safety, and Toxicity," Comprehensive Reviews in Food Science and Food Safety, vol. 18, no. 3, pp. 817-831, 2019.
[55] R. Medina-Esquivel, Y. Freile-Pelegrin, P. Quintana-Owen, J. Yáñez-Limón, and J. Alvarado-Gil, "Measurement of the Sol–Gel Transition Temperature in Agar," International Journal of Thermophysics, vol. 29, no. 6, pp. 2036-2045, 2008.
[56] K. Ganesan, T. Budtova, L. Ratke, P. Gurikov, V. Baudron, I. Preibisch, P. Niemeyer, I. Smirnova, and B. Milow, "Review on the Production of Polysaccharide Aerogel Particles," Materials, vol. 11, no. 11, p. 2144, 2018.
[57] J. Fluhr, R. Darlenski, and C. Surber, "Glycerol and the Skin: Holistic Approach to Its Origin and Functions," British Journal of Dermatology, vol. 159, no. 1, pp. 23-34, 2008.
[58] L. C. Becker, W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. C. Liebler, J. G. Marks Jr, R. C. Shank, T. J. Slaga, and P. W. Snyder, "Safety Assessment of Glycerin as Used in Cosmetics," International Journal of Toxicology, vol. 38, no. 3_suppl, pp. 6S-22S, 2019.
[59] L. Han, K. Liu, M. Wang, K. Wang, L. Fang, H. Chen, J. Zhou, and X. Lu, "Mussel‐Inspired Adhesive and Conductive Hydrogel with Long‐Lasting Moisture and Extreme Temperature Tolerance," Advanced Functional Materials, vol. 28, no. 3, p. 1704195, 2018.
[60] A. Galant, R. Kaufman, and J. Wilson, "Glucose: Detection and Analysis," Food Chemistry, vol. 188, pp. 149-160, 2015.
[61] M. Dorri Giv, M. Majdaeen, M. Yadollahi, S. Abbaspour, M. Sadrnia, M. Haghighi Borujeni, G. Ataei, and R. Abedi-Firouzjah, "Characterization of Improved Passag Polymer Gel Dosimeter Using Magnetic Resonance Imaging," Applied Magnetic Resonance, vol. 53, no. 2, pp. 441-455, 2022.
[62] M. Baumgartner, F. Hartmann, M. Drack, D. Preninger, D. Wirthl, R. Gerstmayr, L. Lehner, G. Mao, R. Pruckner, and S. Demchyshyn, "Resilient yet Entirely Degradable Gelatin-Based Biogels for Soft Robots and Electronics," Nature Materials, vol. 19, no. 10, pp. 1102-1109, 2020.
[63] C. K. Fung, M. Q. Zhang, Z. Dong, and W. J. Li, "Fabrication of Cnt-Based Mems Piezoresistive Pressure Sensors Using Dep Nanoassembly," in 5th IEEE Conference on Nanotechnology, 2005., 2005: IEEE, pp. 199-202.
[64] D.-W. Lee and Y.-S. Choi, "A Novel Pressure Sensor with a Pdms Diaphragm," Microelectronic Engineering, vol. 85, no. 5-6, pp. 1054-1058, 2008.
[65] W. Hu, X. Niu, R. Zhao, and Q. Pei, "Elastomeric Transparent Capacitive Sensors Based on an Interpenetrating Composite of Silver Nanowires and Polyurethane," Applied Physics Letters, vol. 102, no. 8, p. 38, 2013.
[66] D. Kwon, T.-I. Lee, J. Shim, S. Ryu, M. S. Kim, S. Kim, T.-S. Kim, and I. Park, "Highly Sensitive, Flexible, and Wearable Pressure Sensor Based on a Giant Piezocapacitive Effect of Three-Dimensional Microporous Elastomeric Dielectric Layer," ACS applied materials & interfaces, vol. 8, no. 26, pp. 16922-16931, 2016.
[67] S. C. Mannsfeld, B. C. Tee, R. M. Stoltenberg, C. V. H. Chen, S. Barman, B. V. Muir, A. N. Sokolov, C. Reese, and Z. Bao, "Highly Sensitive Flexible Pressure Sensors with Microstructured Rubber Dielectric Layers," Nature materials, vol. 9, no. 10, pp. 859-864, 2010.
[68] S. Masihi, M. Panahi, D. Maddipatla, A. J. Hanson, A. K. Bose, S. Hajian, V. Palaniappan, B. B. Narakathu, B. J. Bazuin, and M. Z. Atashbar, "Highly Sensitive Porous Pdms-Based Capacitive Pressure Sensors Fabricated on Fabric Platform for Wearable Applications," ACS Sensors, vol. 6, no. 3, pp. 938-949, 2021.
[69] L. Qi, B. I. Lee, S. Chen, W. D. Samuels, and G. J. Exarhos, "High‐Dielectric‐Constant Silver–Epoxy Composites as Embedded Dielectrics," Advanced Materials, vol. 17, no. 14, pp. 1777-1781, 2005.
[70] J. Wang, J. Jiu, M. Nogi, T. Sugahara, S. Nagao, H. Koga, P. He, and K. Suganuma, "A Highly Sensitive and Flexible Pressure Sensor with Electrodes and Elastomeric Interlayer Containing Silver Nanowires," Nanoscale, vol. 7, no. 7, pp. 2926-2932, 2015.
[71] G. A. Gelves, B. Lin, U. Sundararaj, and J. A. Haber, "Low Electrical Percolation Threshold of Silver and Copper Nanowires in Polystyrene Composites," Advanced Functional Materials, vol. 16, no. 18, pp. 2423-2430, 2006.
[72] D. Grannan, J. Garland, and D. Tanner, "Critical Behavior of the Dielectric Constant of a Random Composite near the Percolation Threshold," Physical Review Letters, vol. 46, no. 5, p. 375, 1981.
[73] H. Kim, G. Kim, T. Kim, S. Lee, D. Kang, M. S. Hwang, Y. Chae, S. Kang, H. Lee, and H. G. Park, "Transparent, Flexible, Conformal Capacitive Pressure Sensors with Nanoparticles," Small, vol. 14, no. 8, p. 1703432, 2018.
[74] E. Thouti, A. Nagaraju, A. Chandran, P. Prakash, P. Shivanarayanamurthy, B. Lal, P. Kumar, P. Kothari, and D. Panwar, "Tunable Flexible Capacitive Pressure Sensors Using Arrangement of Polydimethylsiloxane Micro-Pyramids for Bio-Signal Monitoring," Sensors and Actuators A: Physical, vol. 314, p. 112251, 2020.
[75] K. Zhan, R. Su, S. Bai, Z. Yu, N. Cheng, C. Wang, S. Xu, W. Liu, S. Guo, and X.-Z. Zhao, "One-Pot Stirring-Free Synthesis of Silver Nanowires with Tunable Lengths and Diameters Via a Fe 3+ & Cl− Co-Mediated Polyol Method and Their Application as Transparent Conductive Films," Nanoscale, vol. 8, no. 42, pp. 18121-18133, 2016.
[76] D. Wolber, H. Abelson, E. Spertus, and L. Looney, App Inventor. " O'Reilly Media, Inc.", 2011.
[77] R. G. Geyer, "Dielectric Characterization and Reference Materials," 1990.
[78] S. Roy and J.-W. Rhim, "Agar-Based Antioxidant Composite Films Incorporated with Melanin Nanoparticles," Food Hydrocolloids, vol. 94, pp. 391-398, 2019.
[79] M. Watase, K. Nishinari, P. A. Williams, and G. O. Phillips, "Agarose Gels: Effect of Sucrose, Glucose, Urea, and Guanidine Hydrochloride on the Rheological and Thermal Properties," Journal of Agricultural and Food Chemistry, vol. 38, no. 5, pp. 1181-1187, 1990.
[80] C. Yuan, Y. Zhou, Y. Zhu, J. Liang, S. Wang, S. Peng, Y. Li, S. Cheng, M. Yang, and J. Hu, "Polymer/Molecular Semiconductor All-Organic Composites for High-Temperature Dielectric Energy Storage," Nature Communications, vol. 11, no. 1, pp. 1-8, 2020.
電子全文 電子全文(網際網路公開日期:20280103)
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
第一頁 上一頁 下一頁 最後一頁 top