跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 01:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林沛蓉
研究生(外文):Lin, Pei-Rong
論文名稱:低壓化學氣相沉積法成長於藍寶石基板之溴化銫鉛薄膜之光子放光研究
論文名稱(外文):The Photon Emission Observation of CsPbBr3 Film on Sapphire by Low Pressure Chemical Vapor Deposition Method
指導教授:藍宇彬
指導教授(外文):Lan, Yu-Pin
口試委員:楊勝雄周昱薰
口試委員(外文):Yang, Sheng-HsiungChou, Yu-Hsun
口試日期:2023-03-10
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:影像與生醫光電研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:107
中文關鍵詞:低壓化學氣相沉積放光機制鈣鈦礦溴化銫鉛薄膜自放輻射放大激子
外文關鍵詞:LPCVDexcitonperovskiteCsPbBr3filmASEemission mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:19
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
誌謝 i
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 xiv
第一章 序論 1
1-1前言 1
1-2研究動機 6
1-3論文架構 8
第二章 材料特性與文獻回顧 9
2-1 鈣鈦礦材料介紹與放光特性 9
2-2 鈣鈦礦材料放光機制 15
2-2-1自由載子(Free Carrier) 16
2-2-2 激子(Exciton) 17
2-2-3 雙激子(Biexciton) 20
2-2-4 帶電激子(Trion) 22
2-2-5 激子-激子散射(Exciton Exciton Scattering) 25
2-2-6 電子電洞電漿(Electron-Hole Plasma, EHP) 28
2-2-7 極化子(Polariton) 30
第三章 薄膜樣品製備與量測 34
3-1實驗概述 34
3-2 CsPbBr3薄膜樣品的製作 35
3-2-1 製程設備 35
3-2-2樣品製作前處理工作 37
3-2-3 CsPbBr3薄膜製程之氣流實驗 38
3-2-4 CsPbBr3薄膜製程之壓力實驗 39
3-2-5 CsPbBr3薄膜製程之溫度實驗 40
3-3量測分析 41
3-3-1樣品表面形貌與厚度分析 41
3-3-2樣品結構分析 44
3-3-3樣品光性量測分析 45
第四章 結果分析與討論 48
4-1 薄膜表面與結構分析 48
4-1-1 氣流實驗 48
4-1-1-1薄膜形貌 49
4-1-1-2 XRD分析 51
4-1-2 壓力實驗 54
4-1-2-1 薄膜形貌 54
4-1-2-2 XRD分析 58
4-1-3 溫度實驗 59
4-1-3-1 薄膜形貌 60
4-1-3-2 XRD分析 64
4-1-4薄膜製程控制小結 67
4-2薄膜放光特性 69
4-2-1 氣流實驗 69
4-2-2 壓力實驗 74
4-2-3 溫度實驗 80
4-2-4薄膜結構與放光特性小結 86
4-2-5 放光機制探討 90
第五章 結論與未來展望 96
5-1結論 96
5-2未來展望 98
參考文獻 99
[1] R. Swartwout, M. T. Hoerantner, and V. Bulović, "Scalable deposition methods for large‐area production of perovskite thin films," Energy & Environmental Materials, vol. 2, no. 2, pp. 119-145, 2019.
[2] P. Gao, M. Grätzel, and M. K. Nazeeruddin, "Organohalide lead perovskites for photovoltaic applications," Energy & Environmental Science, vol. 7, no. 8, pp. 2448-2463, 2014.
[3] H. H. Ma, M. Imran, Z. Dang, and Z. Hu, "Growth of metal halide perovskite, from nanocrystal to micron-scale crystal: A review," Crystals, vol. 8, no. 5, p. 182, 2018.
[4] Y.-H. Kim et al., "Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size," ACS Nano, vol. 11, no. 7, pp. 6586-6593, 2017.
[5] P. Liu, X. He, J. Ren, Q. Liao, J. Yao, and H. Fu, "Organic–inorganic hybrid perovskite nanowire laser arrays," ACS Nano, vol. 11, no. 6, pp. 5766-5773, 2017.
[6] E. M. Sanehira et al., "Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells," Science Advances, vol. 3, no. 10, p. eaao4204, 2017.
[7] J. Song et al., "Monolayer and few‐layer all‐inorganic perovskites as a new family of two‐dimensional semiconductors for printable optoelectronic devices," Advanced Materials, vol. 28, no. 24, pp. 4861-4869, 2016.
[8] K. Yang, F. Li, C. P. Veeramalai, and T. Guo, "A facile synthesis of CH3NH3PbBr3 perovskite quantum dots and their application in flexible nonvolatile memory," Applied Physics Letters, vol. 110, no. 8, p. 083102, 2017.
[9] K. Hong, Q. Van Le, S. Y. Kim, and H. W. Jang, "Low-dimensional halide perovskites: review and issues," Journal of Materials Chemistry C, vol. 6, no. 9, pp. 2189-2209, 2018.
[10] Q. Zhang et al., "Advances in small perovskite‐based lasers," Small Methods, vol. 1, no. 9, p. 1700163, 2017.
[11] X. Hong, T. Ishihara, and A. Nurmikko, "Photoconductivity and electroluminescence in lead iodide based natural quantum well structures," Solid State Communications, vol. 84, no. 6, pp. 657-661, 1992.
[12] K. Ji, M. Anaya, A. Abfalterer, and S. D. Stranks, "Halide Perovskite Light‐Emitting Diode Technologies," Advanced Optical Materials, vol. 9, no. 18, p. 2002128, 2021.
[13] Z.-K. Tan et al., "Bright light-emitting diodes based on organometal halide perovskite," Nature Nanotechnology, vol. 9, no. 9, pp. 687-692, 2014.
[14] K. Lin et al., "Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent," Nature, vol. 562, no. 7726, pp. 245-248, 2018.
[15] K. Zhang, N. Zhu, M. Zhang, L. Wang, and J. Xing, "Opportunities and challenges in perovskite LED commercialization," Journal of Materials Chemistry C, vol. 9, no. 11, pp. 3795-3799, 2021.
[16] T. Kondo, T. Azuma, T. Yuasa, and R. Ito, "Biexciton lasing in the layered perovskite-type material (C6H13NH3)2PbI4," Solid State Communications, vol. 105, no. 4, pp. 253-255, 1998.
[17] G. Xing et al., "Low-temperature solution-processed wavelength-tunable perovskites for lasing," Nature Materials, vol. 13, no. 5, pp. 476-480, 2014.
[18] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, and Q. Xiong, "Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers," Nano Letters, vol. 14, no. 10, pp. 5995-6001, 2014.
[19] H. Zhou et al., "Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section," ACS Nano, vol. 11, no. 2, pp. 1189-1195, 2017.
[20] Q. Liao, K. Hu, H. Zhang, X. Wang, J. Yao, and H. Fu, "Perovskite microdisk microlasers self‐assembled from solution," Advanced Materials, vol. 27, no. 22, pp. 3405-3410, 2015.
[21] H. Zhang, Q. Liao, X. Wang, J. Yao, and H. Fu, "Water‐resistant perovskite polygonal microdisks laser in flexible photonics devices," Advanced Optical Materials, vol. 4, no. 11, pp. 1718-1725, 2016.
[22] B. Tang et al., "Single-mode lasers based on cesium lead halide perovskite submicron spheres," ACS Nano, vol. 11, no. 11, pp. 10681-10688, 2017.
[23] H. Dong, C. Zhang, X. Liu, J. Yao, and Y. S. Zhao, "Materials chemistry and engineering in metal halide perovskite lasers," Chemical Society Reviews, vol. 49, no. 3, pp. 951-982, 2020.
[24] P.-A. Mante, C. C. Stoumpos, M. G. Kanatzidis, and A. Yartsev, "Electron–acoustic phonon coupling in single crystal CH3NH3PbI3 perovskites revealed by coherent acoustic phonons," Nature Communications, vol. 8, no. 1, pp. 1-7, 2017.
[25] M. A. Green, A. Ho-Baillie, and H. J. Snaith, "The emergence of perovskite solar cells," Nature Photonics, vol. 8, no. 7, pp. 506-514, 2014.
[26] G. Xing et al., "Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3," Science, vol. 342, no. 6156, pp. 344-347, 2013.
[27] S. D. Stranks et al., "Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber," Science, vol. 342, no. 6156, pp. 341-344, 2013.
[28] W. J. Yin, T. Shi, and Y. Yan, "Unique properties of halide perovskites as possible origins of the superior solar cell performance," Advanced Materials, vol. 26, no. 27, pp. 4653-4658, 2014.
[29] M. Jošt, L. Kegelmann, L. Korte, and S. Albrecht, "Monolithic perovskite tandem solar cells: a review of the present status and advanced characterization methods toward 30% efficiency," Advanced Energy Materials, vol. 10, no. 26, p. 1904102, 2020.
[30] J.-P. Correa-Baena et al., "Promises and challenges of perovskite solar cells," Science, vol. 358, no. 6364, pp. 739-744, 2017.
[31] 洪順閔, "化學氣相沉積法磊晶成長無機鈣鈦礦CsPbBr3薄膜之研究," 國立陽明交通大學光電系統所碩士論文, 2020.
[32] 黃俊升, "化學氣相沉積之無機鈣鈦礦薄膜品質及膜厚控制之研究," 國立陽明交通大學光電系統所碩士論文, 2021.
[33] G. Niu, X. Guo, and L. Wang, "Review of recent progress in chemical stability of perovskite solar cells," Journal of Materials Chemistry A, vol. 3, no. 17, pp. 8970-8980, 2015.
[34] B. R. Sutherland and E. H. Sargent, "Perovskite photonic sources," Nature Photonics, vol. 10, no. 5, pp. 295-302, 2016.
[35] C. Zhou et al., "Low‐dimensional organic tin bromide perovskites and their photoinduced structural transformation," Angewandte Chemie International Edition, vol. 56, no. 31, pp. 9018-9022, 2017.
[36] G. H. Ahmed et al., "Pyridine-induced dimensionality change in hybrid perovskite nanocrystals," Chemistry of Materials, vol. 29, no. 10, pp. 4393-4400, 2017.
[37] G. Wang et al., "Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics," Science Advances, vol. 1, no. 9, p. e1500613, 2015.
[38] A. Pan et al., "Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors," ACS Nano, vol. 10, no. 8, pp. 7943-7954, 2016.
[39] J. Butkus et al., "The evolution of quantum confinement in CsPbBr3 perovskite nanocrystals," Chemistry of Materials, vol. 29, no. 8, pp. 3644-3652, 2017.
[40] S. Parveen, K. K. Paul, R. Das, and P. Giri, "Large exciton binding energy, high photoluminescence quantum yield and improved photostability of organo-metal halide hybrid perovskite quantum dots grown on a mesoporous titanium dioxide template," Journal of Colloid and Interface Science, vol. 539, pp. 619-633, 2019.
[41] J.-H. Cha et al., "Photoresponse of CsPbBr3 and Cs4PbBr6 perovskite single crystals," The Journal of Physical Chemistry Letters, vol. 8, no. 3, pp. 565-570, 2017.
[42] I. Dursun et al., "CsPb2Br5 single crystals: synthesis and characterization," ChemSusChem, vol. 10, no. 19, pp. 3746-3749, 2017.
[43] L. Wang, H. Liu, Y. Zhang, and O. F. Mohammed, "Photoluminescence origin of zero-dimensional Cs4PbBr6 perovskite," ACS Energy Letters, vol. 5, no. 1, pp. 87-99, 2019.
[44] Q. Lin et al., "Phase‐Control of Single‐Crystalline Inorganic Halide Perovskites via Molecular Coordination Engineering," Advanced Functional Materials, vol. 32, no. 16, p. 2109442, 2022.
[45] D. Chen, Z. Wan, X. Chen, Y. Yuan, and J. Zhong, "Large-scale room-temperature synthesis and optical properties of perovskite-related Cs4PbBr6 fluorophores," Journal of Materials Chemistry C, vol. 4, no. 45, pp. 10646-10653, 2016.
[46] M. Shin et al., "Understanding the origin of ultrasharp sub-bandgap luminescence from zero-dimensional inorganic perovskite Cs4PbBr6," ACS Applied Energy Materials, vol. 3, no. 1, pp. 192-199, 2019.
[47] S. Kondo, K. Amaya, and T. Saito, "Localized optical absorption in Cs4PbBr6," Journal of Physics: Condensed Matter, vol. 14, no. 8, p. 2093, 2002.
[48] M. Nikl et al., "Photoluminescence of Cs4PbBr6 crystals and thin films," Chemical Physics Letters, vol. 306, no. 5-6, pp. 280-284, 1999.
[49] Y. Rakita et al., "Low-temperature solution-grown CsPbBr3 single crystals and their characterization," Crystal Growth & Design, vol. 16, no. 10, pp. 5717-5725, 2016.
[50] Y. Zhang et al., "Zero-dimensional Cs4PbBr6 perovskite nanocrystals," The Journal of Physical Chemistry Letters, vol. 8, no. 5, pp. 961-965, 2017.
[51] M. De Bastiani et al., "Inside perovskites: quantum luminescence from bulk Cs4PbBr6 single crystals," Chemistry of Materials, vol. 29, no. 17, pp. 7108-7113, 2017.
[52] C. Zheng, C. Bi, F. Huang, D. Binks, and J. Tian, "Stable and strong emission CsPbBr3 quantum dots by surface engineering for high-performance optoelectronic films," ACS Applied Materials & Interfaces, vol. 11, no. 28, pp. 25410-25416, 2019.
[53] S. Hirotsu, J. Harada, M. Iizumi, and K. Gesi, "Structural phase transitions in CsPbBr3," Journal of the Physical Society of Japan, vol. 37, no. 5, pp. 1393-1398, 1974.
[54] M. Zhang et al., "Growth and characterization of all-inorganic lead halide perovskite semiconductor CsPbBr3 single crystals," CrystEngComm, vol. 19, no. 45, pp. 6797-6803, 2017.
[55] C. K. Møller, "Crystal structure and photoconductivity of caesium plumbohalides," Nature, vol. 182, no. 4647, pp. 1436-1436, 1958.
[56] Z.-L. Yu, Y.-Q. Zhao, Q. Wan, B. Liu, J.-L. Yang, and M.-Q. Cai, "Theoretical study on the effect of the optical properties and electronic structure for the Bi-doped CsPbBr3," Journal of Physics: Condensed Matter, vol. 32, no. 20, p. 205504, 2020.
[57] Y. Fu et al., "Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I)," ACS Nano, vol. 10, no. 8, pp. 7963-7972, 2016.
[58] A. P. Schlaus et al., "How lasing happens in CsPbBr3 perovskite nanowires," Nature Communications, vol. 10, no. 1, pp. 1-8, 2019.
[59] Z. Liu et al., "Temperature-dependent photoluminescence and lasing properties of CsPbBr3 nanowires," Applied Physics Letters, vol. 114, no. 10, p. 101902, 2019.
[60] S. Yuan, D. Chen, X. Li, J. Zhong, and X. Xu, "In situ crystallization synthesis of CsPbBr3 perovskite quantum dot-embedded glasses with improved stability for solid-state lighting and random upconverted lasing," ACS Applied Materials & Interfaces, vol. 10, no. 22, pp. 18918-18926, 2018.
[61] D. Khmelevskaia et al., "Excitonic versus Free-Carrier Contributions to the Nonlinearly Excited Photoluminescence in CsPbBr3 Perovskites," ACS Photonics, vol. 9, no. 1, pp. 179-189, 2021.
[62] H. H. Yong Kang Eugene Tay, Xiangling Tian, Mingjie Li, Tze Chien SumHalide Halide perovskite lasers (SpringerBriefs in Applied Sciences and Technology). Springer Singapore, 2022.
[63] S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, and H. J. Snaith, "Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states," Physical Review Applied, vol. 2, no. 3, p. 034007, 2014.
[64] F. Deschler et al., "High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors," The Journal of Physical Chemistry Letters, vol. 5, no. 8, pp. 1421-1426, 2014.
[65] J. S. Manser and P. V. Kamat, "Band filling with free charge carriers in organometal halide perovskites," Nature Photonics, vol. 8, no. 9, pp. 737-743, 2014.
[66] S. W. Eaton et al., "Lasing in robust cesium lead halide perovskite nanowires," Proceedings of the National Academy of Sciences, vol. 113, no. 8, pp. 1993-1998, 2016.
[67] X. Wang et al., "Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing," Nano Research, vol. 10, no. 10, pp. 3385-3395, 2017.
[68] P. Geiregat et al., "Using bulk-like nanocrystals to probe intrinsic optical gain characteristics of inorganic lead halide perovskites," ACS Nano, vol. 12, no. 10, pp. 10178-10188, 2018.
[69] Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, and Q. Xiong, "High‐quality whispering‐gallery‐mode lasing from cesium lead halide perovskite nanoplatelets," Advanced Functional Materials, vol. 26, no. 34, pp. 6238-6245, 2016.
[70] A. Shinde, R. Gahlaut, and S. Mahamuni, "Low-temperature photoluminescence studies of CsPbBr3 quantum dots," The Journal of Physical Chemistry C, vol. 121, no. 27, pp. 14872-14878, 2017.
[71] R. Elliott, "Intensity of optical absorption by excitons," Physical Review, vol. 108, no. 6, p. 1384, 1957.
[72] Y. Yuan, M. Chen, S. Yang, X. Shen, Y. Liu, and D. Cao, "Exciton recombination mechanisms in solution grown single crystalline CsPbBr3 perovskite," Journal of Luminescence, vol. 226, p. 117471, 2020.
[73] F. Ruf et al., "Temperature-dependent electromodulation spectroscopy of excitons in perovskite solar cells," in 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), 2018: IEEE, pp. 1550-1554.
[74] T. Schmidt, K. Lischka, and W. Zulehner, "Excitation-power dependence of the near-band-edge photoluminescence of semiconductors," Physical Review B, vol. 45, no. 16, p. 8989, 1992.
[75] H. He et al., "Exciton localization in solution-processed organolead trihalide perovskites," Nature Communications, vol. 7, no. 1, p. 10896, 2016.
[76] L. Sun, R. Wang, W. Wang, S. Wang, X. Yang, and J. Dai, "Excitonic optical properties of cesium trifluoroacetate induced CsPbBr3 thin film with anti-solvent treatment," Optical Materials, vol. 106, p. 110005, 2020.
[77] J. Chen, C. Zhang, X. Liu, L. Peng, J. Lin, and X. Chen, "Carrier dynamic process in all-inorganic halide perovskites explored by photoluminescence spectra," Photonics Research, vol. 9, no. 2, pp. 151-170, 2021.
[78] H. Shibata et al., "Excitation-power dependence of free exciton photoluminescence of semiconductors," Japanese Journal of Applied Physics, vol. 44, no. 8R, p. 6113, 2005.
[79] K. Seeger, Semiconductor physics. Springer Science & Business Media, 2013.
[80] Y. Kanemitsu, "Trion dynamics in lead halide perovskite nanocrystals," The Journal of Chemical Physics, vol. 151, no. 17, p. 170902, 2019.
[81] H. Kunugita et al., "Exciton–exciton scattering in perovskite CH3NH3PbBr3 single crystal," Japanese Journal of Applied Physics, vol. 55, no. 6, p. 060304, 2016.
[82] C. F. Klingshirn, Semiconductor optics. Springer Science & Business Media, 2012.
[83] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, and H. Sun, "All‐inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics," Advanced Materials, vol. 27, no. 44, pp. 7101-7108, 2015.
[84] Y. Wang, M. Zhi, Y.-Q. Chang, J.-P. Zhang, and Y. Chan, "Stable, ultralow threshold amplified spontaneous emission from CsPbBr3 nanoparticles exhibiting trion gain," Nano Letters, vol. 18, no. 8, pp. 4976-4984, 2018.
[85] F. Hu et al., "Slow Auger recombination of charged excitons in nonblinking perovskite nanocrystals without spectral diffusion," Nano Letters, vol. 16, no. 10, pp. 6425-6430, 2016.
[86] N. Yarita et al., "Impact of postsynthetic surface modification on photoluminescence intermittency in formamidinium lead bromide perovskite nanocrystals," The Journal of Physical Chemistry Letters, vol. 8, no. 24, pp. 6041-6047, 2017.
[87] A. Bracker et al., "Optical pumping of the electronic and nuclear spin of single charge-tunable quantum dots," Physical Review Letters, vol. 94, no. 4, p. 047402, 2005.
[88] G. Wang et al., "Valley dynamics probed through charged and neutral exciton emission in monolayer WSe2," Physical Review B, vol. 90, no. 7, p. 075413, 2014.
[89] J. A. Castaneda et al., "Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement," ACS Nano, vol. 10, no. 9, pp. 8603-8609, 2016.
[90] L.-W. Wang, M. Califano, A. Zunger, and A. Franceschetti, "Pseudopotential theory of Auger processes in CdSe quantum dots," Physical Review Letters, vol. 91, no. 5, p. 056404, 2003.
[91] K. Wu, Y.-S. Park, J. Lim, and V. I. Klimov, "Towards zero-threshold optical gain using charged semiconductor quantum dots," Nature Nanotechnology, vol. 12, no. 12, pp. 1140-1147, 2017.
[92] G. Weng et al., "Electron–Hole Plasma Lasing Dynamics in CsPbClmBr3-m Microplate Lasers," ACS Photonics, vol. 8, no. 3, pp. 787-797, 2020.
[93] H. Ichida, Y. Kanematsu, T. Shimomura, K. Mizoguchi, D. Kim, and M. Nakayama, "Photoluminescence dynamics of exciton-exciton scattering processes in CuI thin films," Physical Review B, vol. 72, no. 4, p. 045210, 2005.
[94] S. Cheng, Q. Chang, Z. Wang, L. Xiao, E. E. Chia, and H. Sun, "Observation of Net Stimulated Emission in CsPbBr3 Thin Films Prepared by Pulsed Laser Deposition," Advanced Optical Materials, vol. 9, no. 17, p. 2100564, 2021.
[95] T. Shubina et al., "InSe as a case between 3D and 2D layered crystals for excitons," Nature Communications, vol. 10, no. 1, pp. 1-8, 2019.
[96] R. Matsuzaki et al., "Purely excitonic lasing in ZnO microcrystals: Temperature-induced transition between exciton-exciton and exciton-electron scattering," Physical Review B, vol. 96, no. 12, p. 125306, 2017.
[97] C. Klingshirn, "The luminescence of ZnO under high one‐and two‐quantum excitation," Physica Status Solidi (b), vol. 71, no. 2, pp. 547-556, 1975.
[98] C. F. Klingshirn, "The electron-hole plasma," in Semiconductor optics: Springer, 2012, pp. 561-597.
[99] R. Su et al., "Perovskite semiconductors for room-temperature exciton-polaritonics," Nature Materials, vol. 20, no. 10, pp. 1315-1324, 2021.
[100] Y. Yu et al., "Room-temperature electron–hole liquid in monolayer MoS2," ACS Nano, vol. 13, no. 9, pp. 10351-10358, 2019.
[101] I. Pelant and J. Valenta, Luminescence spectroscopy of semiconductors. OUP Oxford, 2012.
[102] K. Park et al., "Light–matter interactions in cesium lead halide perovskite nanowire lasers," The Journal of Physical Chemistry Letters, vol. 7, no. 18, pp. 3703-3710, 2016.
[103] X. Wang et al., "Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers," Nanoscale, vol. 11, no. 5, pp. 2393-2400, 2019.
[104] M. He et al., "Revealing Excitonic and Electron-Hole Plasma States in Stimulated Emission of Single CsPbBr3 Nanowires at Room Temperature," Physical Review Applied, vol. 13, no. 4, p. 044072, 2020.
[105] T.-C. Lu et al., "Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity," Optics Express, vol. 20, no. 5, pp. 5530-5537, 2012.
[106] 周昱薰,盧廷昌, "半導體微共振腔極化子雷射," 科儀新知, no. 201706 (211期), pp. 42-48, 2017.
[107] R. Su et al., "Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets," Nano Letters, vol. 17, no. 6, pp. 3982-3988, 2017.
[108] A. Sekretenko, S. Gavrilov, and V. Kulakovskii, "Polariton-polariton interactions in microcavities under a resonant 10 to 100 picosecond pulse excitation," Physical Review B, vol. 88, no. 19, p. 195302, 2013.
[109] L. Sun et al., "Chemical vapour deposition," Nature Reviews Methods Primers, vol. 1, no. 1, pp. 1-20, 2021.
[110] W. L. Bragg, "The analysis of crystals by the X-ray spectrometer," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 89, no. 613, pp. 468-489, 1914.
[111] H. J. Viljoen, J. J. Thiart, and V. Hlavacek, "Controlling the morphology of CVD films," AIChE Journal, vol. 40, no. 6, pp. 1032-1045, 1994.
[112] F. Di Stasio, S. Christodoulou, N. Huo, and G. Konstantatos, "Near-unity photoluminescence quantum yield in CsPbBr3 nanocrystal solid-state films via postsynthesis treatment with lead bromide," Chemistry of Materials, vol. 29, no. 18, pp. 7663-7667, 2017.
[113] D. Kim et al., "On the Origin of Room-Temperature Amplified Spontaneous Emission in CsPbBr3 Single Crystals," Chemistry of Materials, vol. 33, no. 18, pp. 7185-7193, 2021.
[114] C. Cho, A. Palatnik, M. Sudzius, R. Grodofzig, F. Nehm, and K. Leo, "Controlling and optimizing amplified spontaneous emission in perovskites," ACS Applied Materials & Interfaces, vol. 12, no. 31, pp. 35242-35249, 2020.
[115] C. Li et al., "Highly compact CsPbBr3 perovskite thin films decorated by ZnO nanoparticles for enhanced random lasing," Nano Energy, vol. 40, pp. 195-202, 2017.
[116] T. Matsumoto, H. Kato, K. Miyamoto, M. Sano, E. A. Zhukov, and T. Yao, "Correlation between grain size and optical properties in zinc oxide thin films," Applied Physics Letters, vol. 81, no. 7, pp. 1231-1233, 2002.
[117] S.-i. Kondo, M. Kakuchi, A. Masaki, and T. Saito, "Strongly enhanced free-exciton luminescence in microcrystalline CsPbBr3 films," Journal of the Physical Society of Japan, vol. 72, no. 7, pp. 1789-1791, 2003.
[118] S. Sanders et al., "Showerhead-assisted chemical vapor deposition of CsPbBr3 films for LED applications," Journal of Materials Research, vol. 36, no. 9, pp. 1813-1823, 2021.
[119] Y. Zhong et al., "Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application," ACS Nano, vol. 14, no. 11, pp. 15605-15615, 2020.
[120] X. Zhang et al., "Temperature dependence of excitonic luminescence from nanocrystalline ZnO films," Journal of Luminescence, vol. 99, no. 2, pp. 149-154, 2002.
[121] W.-J. Yin, T. Shi, and Y. Yan, "Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber," Applied Physics Letters, vol. 104, no. 6, p. 063903, 2014.
[122] C. H. Lin et al., "Large‐area lasing and multicolor perovskite quantum dot patterns," Advanced Optical Materials, vol. 6, no. 16, p. 1800474, 2018.
[123] W. Du et al., "Unveiling lasing mechanism in CsPbBr3 microsphere cavities," Nanoscale, vol. 11, no. 7, pp. 3145-3153, 2019.
[124] N. Bohr, "Über die Anwendung der Quantentheorie auf den Atombau: I. Die Grundpostulate der Quantentheorie," Zeitschrift Für Physik, vol. 13, no. 1, pp. 117-165, 1923.
電子全文 電子全文(網際網路公開日期:20260409)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊